Temperature dependence of resistivity and hall coefficient in Cu2ZnSnS4 absorbers for thin film solar cells için kapak resmi
Temperature dependence of resistivity and hall coefficient in Cu2ZnSnS4 absorbers for thin film solar cells
Başlık:
Temperature dependence of resistivity and hall coefficient in Cu2ZnSnS4 absorbers for thin film solar cells
Yazar:
Akça, Fatime Gülşah, author.
Fiziksel Tanımlama:
xii, 85 leaves: illustrarions, charts;+ 1 computer laser optical disc.
Özet:
Solar energy is the most powerful clean energy source to act on the current energy needing all over the world. The utilization of green energy systems should be promoted since these energy systems benefit consumers, industry and the environment effectively for the developing countries. This advancement can be solely achieved if renewable energy sources become more accessible. It means that not only cheaper but also handy clean energy systems are needed. In spite of relatively high efficiency obtained by using c-Si, Si solar modules require high budget for manufacturing. The high production cost of c-Si, PV industry is lead to search for cheaper candidate materials like Cu2ZnSnS4 (CZTS) as absorber layer in solar cells. The aim of the thesis is to investigate electrical properties of CZTS p-type intrinsic semiconductor compound on soda lime glass substrates, including the temperature dependent electrical conductivity, carrier concentrations and mobility extracted from Hall Effect measurements. Firstly, the metal precursor films were fabricated in multi-target sputtering system, then they were sulfurized inside the tubular furnace in order to obtain the CZTS compound. X-ray diffraction and Raman spectroscopy measurements revealed the formation of kesterite structure. A good crystallinity and grain compactness of the films were determined by scanning electron microscopy (SEM). Electrical properties were measured by van der Pauw techniques. Hall effect measurements showed the p-type semiconductor behavior for all samples at room temperature. Also, optical properties including absorption coefficient, spectral transmission, and optical band gap were determined to characterize CZTS thin films.
Konu Başlığı:

Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Physics.

İzmir Institute of Technology: Physics--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: