Xylan degradation mechanism of human intestinal bacteria için kapak resmi
Xylan degradation mechanism of human intestinal bacteria
Başlık:
Xylan degradation mechanism of human intestinal bacteria
Yazar:
Polat, Nüket, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
ix, 69 leaves: color illustraltions.+ 1 computer laser optical disc.
Özet:
Xylan is the second most abundant plant cell wall polysaccharide after cellulose. The xylan rich lignocellulosic material obtained from agriculture, forestry and industrial wastes provides cost effective raw materials. The degradation of xylan in the human body is an important process contributing to the continuation of the microbial communities living in the human colonic ecosystem. Due to its complex, long chain structure and the various chemical bonds it contains, xylan hydrolysis requires different enzymatic activities. Bacteria that live in the colon and are useful for human health, such as Bifidobacterium and Lactobacillus species can not perform xylan utilization. However, several types of xylan are utilized by the Bacteroides species, which have the second largest density in the colon. In this study, different Bifidabacterium and Bacteriodes species were investigated for their ability to degrade beechwood xylan and corncob xylan. Bifidabacterium and Bacteriodes were cultured together in tubes containing xylan as the sole carbon source. It was observed that; the B. animalis subsp. lactis, which does not have the ability to use the xylan, could grow when cultured on xylan-containing medium with Bacteroides species. These showed that, the xylan in the media was degraded into xylooligosaccharides by the Bacteroides species and the XOS formed was used as a carbon source by both species. The short chain fatty acid and lactic and succinic acid production profiles of co-cultures were different than the mono cultures, indicating a positive effect of co-culturing. This study showed that xylan is a potential prebiotic carbohydrate, which can selectively stimulate the growth of beneficial bacteria in the colon, as a result of possible cross feeding of different bacteria residing in the colon.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Biotechnology.

İzmir Institute of Technology: Biotechnology--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: