The investigation of the dynamic compression characteristics of a layered glass system için kapak resmi
The investigation of the dynamic compression characteristics of a layered glass system
Başlık:
The investigation of the dynamic compression characteristics of a layered glass system
Yazar:
Ağırdıcı, Burak, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xi, 78 leaves: charts;+ 1 computer laser optical disc
Özet:
Layered glass structures are one of the most common material types used in air, land, and sea vehicles. Since these structures are exposed to external impact loads, it is important to determine their dynamic mechanical behavior. In this study, dynamic compression characteristics of the layered glass system were investigated numerically using the LS-DYNA finite element program. The Johnson Holmquist Ceramics material model was used for the glass layer, the Ogden Rubber material model, which is used in material models with high elastic structural behavior was used for the polyvinyl butyral (PVB) interlayer, and the SAMP-1 material model was used for the polycarbonate interlayer. Numerical studies were carried out to investigate the stress wave propagation, the amount of energy released, and the deceleration rate of the penetration velocity. Split Hopkinson Pressure Bar setup was used to numerically load the layered glass systems at high strain rates for a reliably easy controlled wave generation. The layered glass structure consisting of two interlayer types with different thicknesses was loaded in the SHPB system, and the effect of the interlayer material type and thickness on the stress wave propagation was investigated. Then, the projectile impact test was modeled at different impact velocities for a square plate of PVB-layered glass structure. The thickness of the PVB interlayer was kept constant, while the thickness and location of the glass layer varied. From the results, the slowing rate of the projectile, the amount of erosion energy, and the energy balance were determined.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Mechanical Engineering.

İzmir Institute of Technology: Mechanical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: