Multiscale Modeling in Solid Mechanics : Computational Approaches. için kapak resmi
Multiscale Modeling in Solid Mechanics : Computational Approaches.
Başlık:
Multiscale Modeling in Solid Mechanics : Computational Approaches.
Yazar:
Galvanetto, Ugo.
ISBN:
9781848163089
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (352 pages)
Seri:
Computational and Experimental Methods in Structures ; v.3

Computational and Experimental Methods in Structures
İçerik:
CONTENTS -- Preface -- Contributors -- Computational Homogenisation for Non-Linear Heterogeneous Solids V. G. Kouznetsova, M. G. D. Geers and W. A. M. Brekelmans -- 1. Introduction -- 2. Basic Hypotheses -- 3. Definition of the Problem on the Microlevel -- 4. Coupling of the Macroscopic and Microscopic Levels -- 4.1. Deformation -- 4.2. Stress -- 4.3. Internal work -- 5. FE Implementation -- 5.1. RVE boundary value problem -- 5.1.1. Fully prescribed boundary displacements -- 5.1.2. Periodic boundary conditions -- 5.2. Calculation of the macroscopic stress -- 5.2.1. Fully prescribed boundary displacements -- 5.2.2. Periodic boundary conditions -- 5.3. Macroscopic tangent stiffness -- 5.3.1. Condensation of the microscopic stiffness: Fully prescribed boundary displacements -- 5.3.2. Condensation of the microscopic stiffness: Periodic boundary conditions -- 5.3.3. Macroscopic tangent -- 6. Nested Solution Scheme -- 7. Computational Example -- 8. Concept of an RVE within Computational Homogenisation -- 9. Extensions of the Classical Computational Homogenisation Scheme -- 9.1. Homogenisation towards second gradient continuum -- 9.2. Computational homogenisation for beams and shells -- 9.3. Computational homogenisation for heat conduction problems -- Acknowledgements -- References -- Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials Qi-Zhi Xiao and Bhushan Lal Karihaloo -- 1. Introduction -- 2. Mathematical Formulation of First- and Higher-Order Two-Scale Asymptotic Homogenisation -- 2.1. Two-scale expansion -- 2.2. O(ε.2) equilibrium: Solution structure of ui(0) -- 2.3. O(ε.1) equilibrium: First-order homogenisation and solution structure of u(1)m -- 2.4. O(ε0) equilibrium: Second-order homogenisation -- 2.4.1. Solution structure of u(2) -- 2.4.2. Solution of u(0) m -- 2.4.3. Solution of ψmno k (y).

2.4.4. Constraints from higher-order solutions -- 2.5. O(ε1) equilibrium: Third-order homogenisation -- 2.5.1. Solution of u(3) k -- 2.5.2. Constraints from higher-order terms -- 3. Variational Formulation of Problem (29) -- 4. Finite Element Methods -- 4.1. Displacement compatible elements from the potential principle -- 4.2. Element-free Galerkin method from the potential principle -- 4.2.1. MLS interpolant -- 4.2.2. Imposition of the essential boundary conditions -- 4.2.3. Discontinuity in the displacement field -- 4.2.4. Interfaces with discontinuous first-order derivatives -- 4.3. Displacement incompatible element from the potential principle -- 4.3.1. 2D 4-node incompatible element -- 4.3.2. 3D 8-node incompatible element -- 4.4. Hybrid stress elements from the Hellinger-Reissner principle -- 4.4.1. Plane 4-node Pian and Sumihara (PS) 5β element -- 4.4.2. 3D 8-node 18β hybrid stress element -- 4.5. Enhanced-strain element based on the Hu-Washizu principle -- 4.5.1. Plane 4-node enhanced-strain element -- 4.5.2. 3D 8-node enhanced-strain element -- 4.6. Comments on the various methods -- 5. Enforcing the Periodicity Boundary Condition and Constraints from Higher-Order Equilibrium in the Analysis of the RUC -- 6. A Posteriori Recovery of the Gradients -- 6.1. Superconvergent patch recovery (SPR) -- 6.2. Moving Least Squares (MLS) -- 7. Numerical Examples -- 8. Discussion and Conclusions -- References -- Multi-Scale Boundary Element Modelling of Material Degradation and Fracture G. K. Sfantos and M. H. Aliabadi -- 1. Introduction -- 2. Macromechanics -- 2.1. Modelling the continuum -- 3. Artificial Microstructure Generation -- 4. Microstructure Modelling -- 4.1. Grain material modelling -- 4.2. A boundary cohesive element formulation -- 4.3. Grain discretisation -- 5. Grain Boundary Interface -- 6. Microcracking Evolution Algorithm.

6.1. Non-local approach -- 7. Definitions: Averaging Theorems -- 7.1. RVE boundary conditions -- 8. Micro-Macro Interface -- 8.1. Coupling with macro-BEM -- 8.2. Coupling with macro-FEM -- 9. Multiprocessing Algorithm -- 10. Multi-Scale Damage Simulations -- 11. Conclusions -- References -- Appendix -- Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics Jean-Claude Michel and Pierre Suquet -- 1. Introduction -- 2. Structural Problems with Multiple Scales -- 2.1. Homogenisation and two-scale expansions -- 2.2. Individual constituents -- 2.3. Unit-cell problem: Effective response of heterogeneous materials -- 2.4. An auxiliary elasticity problem -- 3. Non-Uniform Transformation Field Analysis (NTFA) -- 3.1. Motivation: Approximate resolution of the local problem -- 3.2. Non-uniform transformation fields -- 3.3. Reduced variables and influence factors -- 3.4. Constitutive relations for the reduced variables -- 3.5. Choice of the plastic modes -- 3.6. Reduced localisation tensors and influence factors -- 3.7. Time-integration of the NTFA model: Strain control -- 3.8. Time-integration of the NTFA model: Stress control -- 3.9. Example 1: Effective response of a dual-phase inelastic composite -- 3.9.1. Material data -- 3.9.2. Microstructure -- 3.9.3. Plastic modes -- 3.9.4. Discussion of the results -- 4. Application of the NTFA to Structural Problems -- 4.1. Implementation of the NTFA method -- 4.2. Implementation of the NTFA in a Finite Element code (step C) -- 4.3. Localisation rules -- 4.4. Example 2: Fatigue of a metal-matrix composite structure -- 4.4.1. Meshes -- 4.4.2. Loading -- 4.4.3. Plastic modes -- 4.4.4. Accuracy of the NTFA model at the level of a material point -- 4.4.5. Accuracy of the NTFA model at the structure level -- 5. Conclusion -- References.

Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures Marek J. Lefik, Daniela P. Boso and Bernhard A. Schrefler -- 1. Introduction -- 1.1. Bounds and other estimates -- 2. Asymptotic Theory of Homogenisation -- 2.1. Asymptotic analysis -- 2.2. Statement of the problem and assumptions -- 2.3. Formalism of the homogenisation procedure -- 2.4. Global solution -- 2.5. Local approximation of the stress vector -- 2.6. Finite element analysis applied to the local problem -- 2.7. Asymptotic homogenisation at three levels: Micro, meso, and macro -- 3. Non-Standard Numerical Techniques in Modelling of Hierarchical Composites -- 3.1. Definition of effective behaviour based on numerical or real experiment -- 3.2. Characterisation of the elastic-plastic behaviour of a composite based directly on numerical experiments (virtual testing) -- 3.3. ANN in constitutive modelling -- 3.4. Direct use of an ANN to define the effective material behaviour known from laboratory experiments -- 3.5. Direct use of an ANN to define the effective material behaviour based on numerical experiment -- 3.6. Approximation of dependence of effective material properties on the microstructural parameters by ANN in multiscale homogenisation -- 3.7. ANN as a tool for unsmearing -- 4. Concluding Remarks -- Acknowledgements -- References -- Recent Advances in Masonry Modelling: Micromodelling and Homogenisation Paulo B. Louren¸co -- 1. Introduction -- 2. Masonry Behaviour and Non-Linear Mechanics -- 2.1. Non-linear properties of unit and mortar (tension) -- 2.2. Non-linear properties of the interface (tension and shear) -- 2.3. Non-linear properties of unit, mortar and masonry (compression) -- 3. Modelling Approaches -- 4. Micromodelling Approaches -- 4.1. A combined crack-shear-compression interface model -- 4.1.1. Standard plasticity constitutive model.

4.1.2. Extension for cyclic loading -- 4.2. A combined crack-shear-compression limit analysis model -- 4.3. Applications -- 4.3.1. Modelling masonry under compression -- 4.3.2. Conventional micromodelling -- 4.3.3. The macroblock approach for historical buildings -- 5. Homogenisation Approaches -- 5.1. Homogenised failure surfaces -- 5.2. Applications -- 5.2.1. Masonry shear wall -- 5.2.2. Two-storeyed unreinforced masonry building -- 6. Conclusions -- References -- Mechanics of Materials With Self-Similar Hierarchical Microstructure R. C. Picu and M. A. Soare -- 1. Introduction -- 2. Elements of Fractal Geometry -- 3. Elements of Fractional Calculus -- 3.1. Local fractional differential operators -- 3.2. Fractional integral operators -- 3.2.1. The 1D case -- 3.2.2. Approximate relationship between classical and fractional integrals -- 4. Mechanics BVPs on Materials with Fractal Microstructure -- 4.1. Deterministic fractal microstructures -- 4.1.1. Iterative approaches -- 4.1.2. Approaches based on the reformulation of governing equations -- 4.1.2.1. Non-local fractional operators-based approach -- 4.1.2.2. Local fractional operators-based approach -- 4.2. Stochastic fractal microstructures -- 5. Conclusions -- References -- Index.
Özet:
This unique volume presents the state of the art in the field of multiscale modeling in solid mechanics, with particular emphasis on computational approaches. For the first time, contributions from both leading experts in the field and younger promising researchers are combined to give a comprehensive description of the recently proposed techniques and the engineering problems tackled using these techniques. The book begins with a detailed introduction to the theories on which different multiscale approaches are based, with regards to linear Homogenisation as well as various nonlinear approaches. It then presents advanced applications of multiscale approaches applied to nonlinear mechanical problems. Finally, the novel topic of materials with self-similar structure is discussed. Sample Chapter(s). Chapter 1: Computational Homogenisation for Non-Linear Heterogeneous Solids (808 KB). Contents: Computational Homogenisation for Non-Linear Heterogeneous Solids (V G Kouznetsova et al.); Two-Scale Asymptotic Homogenisation-Based Finite Element Analysis of Composite Materials (Q-Z Xiao & B L Karihaloo); Multi-Scale Boundary Element Modelling of Material Degradation and Fracture (G K Sfantos & M H Aliabadi); Non-Uniform Transformation Field Analysis: A Reduced Model for Multiscale Non-Linear Problems in Solid Mechanics (J-C Michel & P Suquet); Multiscale Approach for the Thermomechanical Analysis of Hierarchical Structures (M J Lefik et al.); Recent Advances in Masonry Modelling: Micro-Modelling and Homogenisation (P B Lourenço); Mechanics of Materials with Self-Similar Hierarchical Microstructure (R C Picu & M A Soare). Readership: Researchers and academics in the field of heterogeneous materials and mechanical engineering; professionals in aeronautical engineering and materials science.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: