Explosive Pulsed Power. için kapak resmi
Explosive Pulsed Power.
Başlık:
Explosive Pulsed Power.
Yazar:
Altgilbers, Larry L.
ISBN:
9781848163232
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (500 pages)
İçerik:
Contents -- Preface -- 1. Introduction -- 1.1 What is Pulsed Power? -- 1.2 Pulsed Power Parameters -- 1.3 Explosive Power Sources -- 1.3.1 Flux Compression Generators -- 1.3.2 Explosive Magnetohydrodynamic Generators -- 1.3.3 Moving Magnet Generators -- 1.3.4 Ferroelectric Generators -- 1.3.5 Ferromagnetic Generators -- 1.4 Book Outline -- Bibliography -- 2. Fundamentals of Electromagnetic Theory and Electric Circuits -- 2.1 Introduction -- 2.2 Maxwell's Equations -- 2.3 Circuit Elements and Equations -- 2.3.1 Circuit Elements -- 2.3.1.1 Resistors -- 2.3.1.2 Inductors -- 2.3.1.3 Capacitors -- 2.3.1.4 Transformers -- 2.3.1.5 Switches -- 2.3.1.6 Transmission Lines -- 2.3.1.7 Insulation -- 2.3.2 Circuit Equations -- 2.3.3 Transient Circuits -- 2.4 Electromagnetic Phenomena -- 2.4.1 Magnetic Di.usion -- 2.4.2 Magnetic Force -- 2.4.3 Magnetic Pressure -- 2.4.4 Electric Fields -- 2.4.5 Electrical Breakdown -- 2.4.5.1 Gas Breakdown -- 2.4.5.2 Liquid Breakdown -- 2.4.5.3 Solid Breakdown -- 2.4.5.4 Surface Flashover -- 2.5 Summary -- Bibliography -- 3. Fundamentals of Shock Waves and High Explosives -- 3.1 Introduction -- 3.2 Shock and Detonation Waves -- 3.2.1 Stress and Strain -- 3.2.2 Sound Velocity -- 3.2.3 ShockWaves -- 3.2.4 Detonation Waves -- 3.2.5 Detonation Jump Equations -- 3.3 Explosives and Explosive Components -- 3.3.1 Explosives -- 3.3.1.1 Categories of Explosives -- 3.3.1.2 Chemistry of Explosives -- 3.3.1.3 Explosive Thermochemistry -- 3.3.1.4 Chemical Kinetics -- 3.3.1.5 Factors That Affect Explosives -- 3.3.1.6 Explosive Power -- 3.3.2 Explosive Train -- 3.3.2.1 Detonators -- 3.3.2.2 Fire Set and Cabling -- 3.4 Interaction of Detonation Waves with Materials -- 3.4.1 Impedance -- 3.4.2 Gurney Equations -- 3.4.3 Taylor Angle Approximation -- 3.5 Summary -- Bibliography -- 4. Measurement Techniques -- 4.1 High Power Electrical Measurements.

4.1.1 Voltage Measurements -- 4.1.1.1 Resistive Voltage Divider -- 4.1.1.2 Capacitive Voltage Divider -- 4.1.1.3 Optical Voltage Monitors -- 4.1.2 Current Measurements -- 4.1.2.1 Pure Resistive Shunt Method -- 4.1.2.2 Rogowski Coil -- 4.1.2.3 Pearson Current Monitor -- 4.1.2.4 Current Viewing Resistor -- 4.1.2.5 Cavity Current Monitor -- 4.1.2.6 Magneto-Optical Current Sensor -- 4.1.3 Power and Energy Measurements -- 4.2 Pulsed Electric and Magnetic Field Measurements -- 4.2.1 B-Dot Probes -- 4.2.2 D-Dot Probes -- 4.2.3 Current Monitor Transformer -- 4.2.4 Antennae -- 4.2.4.1 Dipole Antenna -- 4.2.4.2 Monopole Antenna -- 4.2.4.3 Log Periodic Antenna -- 4.2.4.4 Vivaldi Antenna -- 4.2.5 Thin Film Sensors -- 4.3 DetonicMeasurement Techniques -- 4.3.1 Time of Arrival Detectors -- 4.3.2 Surface Displacement Detectors -- 4.3.3 Stress Versus Time Detectors -- 4.3.3.1 Piezoresistive Gages -- 4.3.3.2 Piezoelectric Gages -- 4.3.4 Cinematographic and Flash X-Ray Techniques -- 4.3.4.1 Shadowgraphs -- 4.3.4.2 Rotating-Mirror and Rotating-Drum Cameras -- 4.3.4.3 Image Converter and Electronic Cameras -- 4.3.4.4 Flash X-Ray Radiography -- 4.4 Summary -- Bibliography -- 5. Flux Compression Generators -- 5.1 Classifications of FCGs -- 5.2 Historical Perspectives -- 5.3 Principles of Operation -- 5.3.1 General Principles -- 5.3.2 Some Important Generator Parameters -- 5.3.3 Generator Impedance -- 5.3.4 Example: An Idealised Generator -- 5.3.5 Advantages and Disadvantages -- 5.3.5.1 High Energy and Power Density -- 5.3.5.2 Adaptability -- 5.3.5.3 Pulse Shape Effects -- 5.3.5.4 Powering Parallel Loads -- 5.4 Specific Types of Generator -- 5.4.1 Plate Generators -- 5.4.2 Strip Generators -- 5.4.3 Cylindrical Implosion System -- 5.4.4 Coaxial Generators -- 5.4.5 Disk Generators -- 5.4.6 Loop Generators -- 5.4.7 Helical or Spiral Generators.

5.4.8 Simultaneous Helical Generators -- 5.4.9 Shock Wave Generators -- 5.4.10 Summary of Generator Classes -- 5.5 Losses and Efficiencies -- 5.5.1 Diffusion Related Losses -- 5.5.2 Mechanical Related Losses -- 5.5.2.1 Mechanical Tolerances -- 5.5.2.2 Moving Contact Effects -- 5.5.2.3 Explosive Produced Jets -- 5.5.2.4 Undesired Component Motion -- 5.5.3 Efficiencies -- 5.6 Power Conditioning -- 5.6.1 Switches -- 5.6.1.1 Closing Switches -- 5.6.1.2 Opening Switches -- 5.6.2 Transformer Coupling -- 5.6.2.1 Powering a Large Inductance -- 5.6.2.2 Powering Large Resistances -- 5.6.3 Transformers -- 5.6.3.1 Helical-Wound Coils -- 5.6.3.2 Tape-Wound Coils -- 5.6.4 Generator Flux Sources (Seed Sources) -- 5.6.4.1 Capacitive Seed Sources -- 5.6.4.2 External Seed Coils -- 5.6.4.3 Booster Generators -- 5.6.4.4 Permanent Magnets, FEGs and FMGs -- 5.7 Summary -- Bibliography -- 6. Helical Flux Compression Generators -- 6.1 Basic Theoretical Treatment -- 6.2 Figures of Merit -- 6.3 Loss Mechanisms -- 6.3.1 Electrical Loss Mechanisms -- 6.3.1.1 Magnetic Diffusion -- 6.3.1.2 Electrical Breakdown -- 6.3.1.3 Contact Point Resistance Model -- 6.3.2 Mechanical Loss Mechanisms -- 6.3.2.1 Mechanical Tolerances -- 6.3.2.2 Expansion and Fracturing -- 6.3.3 Geometrical Loss Mechanisms -- 6.3.3.1 Moving Contact E.ects -- 6.3.3.2 Explosive Produced Jets -- 6.3.3.3 Explosive Packing and Voids -- 6.3.3.4 Undesired Component Motion -- 6.4 Seed Sources for HFCGs -- 6.4.1 Capacitive Energy Stores -- 6.4.2 Batteries -- 6.4.3 Permanent Magnets -- 6.5 HFCGs with Simultaneous Axial Initiation -- 6.6 Cascaded HFCGs -- 6.7 Practical Design and Optimisation of HFCGs -- 6.7.1 Philosophy -- 6.7.2 PreliminaryDesign -- 6.7.3 Advanced Design -- 6.8 Small versus Large HFCGs -- 6.9 Computer Models -- 6.10 Summary -- Bibliography -- 7. Magnetic Materials and Circuits.

7.1 Properties of Magnetic Materials -- 7.1.1 Types of Magnetic Materials -- 7.1.2 Properties of Magnetic Materials -- 7.2 Shock Compression of Ferromagnetic Materials -- 7.3 Magnetic Circuits -- 7.3.1 Magnetic Circuit Laws -- 7.3.2 Magnetic Circuit Model for Permanent Magnets -- 7.4 Magnetic Loss Mechanisms -- 7.4.1 Hysteresis Loss -- 7.4.2 Eddy Current Loss -- 7.5 Summary -- Bibliography -- 8. Ferromagnetic Generators -- 8.1 Explosive Driven Soft Ferromagnetic Generators -- 8.2 Explosive Driven Soft Ferromagnetic Generator Limitations -- 8.3 Pressure Induced Magnetic Phase Transitions in Hard Ferromagnets -- 8.3.1 Longitudinal Shock Wave Demagnetisation of Nd2Fe14B -- 8.3.2 Pressure in Shock Compressed Nd2Fe14B Ferromagnets -- 8.3.3 High Voltage and High Current Generation by Longitudinally Shock Demagnetising Nd2Fe14B. -- 8.4 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets -- 8.4.1 Static Magnetic Flux Initially Stored in Nd2Fe14B Ferromagnets -- 8.4.2 Transverse Shock Wave Demagnetisation of Nd2Fe14B Ferromagnets -- 8.5 Generation of High Currents by Miniature Transverse FMGs -- 8.5.1 The Physical Principle of Seed Current Generation -- 8.5.2 Magnetic Flux Changes in Transverse FMGs -- 8.5.3 Currents Produced by Transverse FMGs -- 8.6 FMG Analytical Techniques -- 8.6.1 Analytical Equations -- 8.6.2 Current Generated by Longitudinal FMGs -- 8.6.3 Current Generated by Transverse FMGs -- 8.6.4 Summary -- 8.7 Charging Capacitors with High Voltage Transverse FMGs -- 8.7.1 High Voltage Transverse FMG Design -- 8.7.2 Results and Discussion -- 8.7.3 Summary -- 8.8 Miniature High Voltage, Nanosecond FMG System -- 8.8.1 Operating Principles -- 8.8.2 Performance of the FMG-VIG System -- 8.8.3 Summary -- 8.9 Explosive Driven FMG-FCG System -- 8.9.1 FMG-FCG System -- 8.9.2 FMG-FCG Performance -- 8.10 Summary -- Bibliography.

9. Ferroelectric Materials and Their Properties -- 9.1 Introduction -- 9.2 Historical Perspectives -- 9.3 Electromechanical Effects in Ferroelectric Materials -- 9.4 Piezoelectric Figures ofMerit -- 9.4.1 Dielectric Constant/Permittivity -- 9.4.2 Dielectric Strength -- 9.4.3 Remnant Polarisation -- 9.4.4 Coercive Field -- 9.4.5 Compliance -- 9.4.6 Piezoelectric Charge Constant or Piezoelectric Coefficient -- 9.4.7 Piezoelectric Voltage Constant -- 9.4.8 Electromechanical Coupling Factor -- 9.4.9 Acoustic Impedance -- 9.5 Notation -- 9.6 FerroelectricMaterials -- 9.6.1 Single-Crystals -- 9.6.2 Ferroceramics -- 9.6.3 Ferropolymers -- 9.6.4 Ferrocomposites -- 9.6.5 Thin Films -- 9.7 Lead Zirconate Titanate (PZT) -- 9.7.1 PZT Properties -- 9.7.2 Important PZT Parameters -- 9.7.2.1 Intrinsic Effects -- 9.7.2.2 Extrinsic Effects -- 9.7.2.3 PZT 95/5 -- 9.7.3 Fabrication of PZT -- 9.7.4 Factors that A.ect PZT -- 9.7.4.1 Dopants -- 9.7.4.2 Density and Porosity -- 9.7.4.3 Encapsulating Materials -- 9.7.4.4 Shock and Electric Field Amplitudes -- 9.7.5 Optimisation of PZT for FEGs -- 9.7.6 PZT Failure Modes -- 9.8 Chapter Summary -- 9.9 Suggested Reading on Ferromagnetic Materials -- Bibliography -- 10. Phase Transformations in Ferroelectric Crystals -- 10.1 Introduction -- 10.2 Perovskite-Type ABO3 Crystal Structure -- 10.3 The PhaseDiagram -- 10.3.1 Cubic -- 10.3.2 Tetragonal -- 10.3.3 Rhombohedral, F -- 10.3.4 Rhombohedral, AF -- 10.3.5 Orthorhombic -- 10.3.6 Monoclinic A,B,C. -- 10.4 Single-Crystal Behavior -- 10.4.1 Domains (Crystal Variants) -- 10.4.2 Domain Walls -- 10.5 Driving Forces for Domain Wall Motion (Evolution of Variants, Poling and Depoling) -- 10.5.1 Mechanical Work -- 10.5.2 ElectricWork -- 10.5.3 Combined Stress and Electric Field -- 10.5.4 Orientation Effects (Orthogonal Transformations) -- 10.5.5 Stress -- 10.5.6 Electric Field.

10.5.7 Kinetics of Variant Evolution.
Özet:
Explosive pulsed power generators are devices that either convert the chemical energy stored in explosives into electrical energy or use the shock waves generated by explosives to release energy stored in ferroelectric and ferromagnetic materials. The objective of this book is to acquaint the reader with the principles of operation of explosive generators and to provide details on how to design, build, and test three types of generators: flux compression, ferroelectric, and ferromagnetic generators, which are the most developed and the most near term for practical applications. Containing a considerable amount of new experimental data that has been collected by the authors, this is the first book that treats all three types of explosive pulsed power generators. In addition, there is a brief introduction to a fourth type ix explosive generator called a moving magnet generator. As practical applications for these generators evolve, students, scientists, and engineers will have access to the results of a considerable body of experience gained by almost 10 years of intense research and development by the authors.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: