Functional Materials : Preparation, Processing and Applications. için kapak resmi
Functional Materials : Preparation, Processing and Applications.
Başlık:
Functional Materials : Preparation, Processing and Applications.
Yazar:
Banerjee, S.
ISBN:
9780123851437
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (731 pages)
İçerik:
Front Cover -- Functional Materials -- Copyright Page -- Contents -- Preface -- About the Editors -- Contributors -- 1 Soft Materials - Properties and Applications -- 1.1 Introduction to Soft Matter -- 1.1.1 Introduction -- 1.1.2 Soft Matter: A Viscoelastic Fluid -- 1.1.3 Shear Modulus and the Energy Density -- 1.2 Intermolecular Interactions in Soft Materials -- 1.2.1 Charge-Charge Interaction -- 1.2.2 Ion-Dipole Interactions -- 1.2.3 Dipole-Dipole Interactions -- 1.2.4 Ion-Induced Dipole Interactions -- 1.2.5 Dipole-Induced Dipole Interaction -- 1.2.6 Induced Dipole-Induced Dipole Interactions -- 1.2.7 Hydrogen Bonds -- 1.2.8 Hydrophobic Interactions -- 1.2.9 Depletion Interactions -- 1.3 Colloids -- 1.3.1 Interactions Between Colloidal Particles -- van der Waals Interaction -- Electrostatic Forces Between Surfaces -- 1.3.2 DLVO Theory of Colloid Stability -- 1.4 Surfactant Assemblies -- 1.4.1 Surface Tension and Surface Activity -- 1.4.2 Surfactant Aggregation and Hydrophobic Effect -- 1.4.3 Thermodynamics of Micelle Formation -- 1.4.4 Dynamics of Micelle Formation -- 1.4.5 Phase Behaviour of Surfactants -- 1.4.6 Packing Parameter and Bending Rigidity -- 1.5 Polymer Solutions -- 1.5.1 Introduction -- 1.5.2 Conformations of Polymer Chains -- 1.5.3 Size of a Freely Jointed Chain -- 1.5.4 Size of an Ideal Chain with Fixed Bond Angle -- 1.5.5 Flexibility of a Polymer Chain -- 1.5.6 Polymer Gels -- 1.5.7 Theories of Gelation -- Classical Theory or Flory-Stockmayer Model -- Percolation Theory -- 1.5.8 Polyelectrolytes and Counterion Condensation -- Counterion condensation -- 1.6 Experimental Techniques in Soft Matter -- 1.6.1 Scattering Techniques -- Light Scattering -- Static Light Scattering -- Dynamic Light Scattering -- Small-Angle Neutron Scattering -- Contrast Factor -- Determination of Intraparticle Structure -- Polydisperse Particles.

Guinier Approximation -- Porod Law -- Determination of Interparticle Structure Factor -- Small-Angle X-Ray Scattering -- 1.6.2 Microscopy -- Cryo-Transmission Electron Microscope -- 1.6.3 Rheology -- 1.7 Applications of Soft Matter -- 1.7.1 Stimuli Responsive Materials -- 1.7.2 Soft Materials in Drug Delivery -- 1.7.3 Nanotechnology Using Soft Materials -- 1.7.4 Oil Field Applications -- References -- 2 Conducting Polymer Sensors, Actuators and Field-Effect Transistors -- 2.1 Introduction -- 2.2 Synthesis of Conducting Polymers -- 2.2.1 Synthesis of Bulk and Fibre Polyindole -- 2.2.2 Synthesis of Crystalline Polyaniline -- 2.2.3 Films of Conducting Polymers -- 2.3 Conducting Polymer Gas Sensors -- 2.3.1 Configuration of Chemiresistor Sensors -- 2.3.2 Polycarbazole Langmuir-Blodgett Film-Based Sensors -- 2.3.3 Polyaniline Nanofibre Sensors -- 2.3.4 Composite Poly(3-hexylthiophene):ZnO-Nanowire-Based NO2 Sensors -- 2.3.5 Composite Polypyrrole:ZnO-Nanowire-Based Chlorine Sensor -- 2.4 Electrochemical Actuators -- 2.4.1 Fabrication of PPy-DBS/Au Free-standing Film -- 2.4.2 PPy-DBS/Au Free-standing Film as Actuator -- 2.5 Conducting Polymer FETs -- 2.5.1 Fabrication of Top-Contact FET -- 2.5.2 Characteristics of P3HT Active Layer -- 2.5.3 Transistor Characteristics of P3HT Active Layer -- 2.6 Summary -- Acknowledgements -- References -- 3 Functional Magnetic Materials: Fundamental and Technological Aspects -- 3.1 Introduction -- 3.2 Magnetocaloric Effect -- 3.2.1 Fundamentals of Magnetic Cooling and Heating -- 3.2.2 Magnetic Transition and Magnetocaloric Effect -- 3.2.3 Relative Cooling Power -- 3.2.4 Magnetocaloric Materials -- 3.2.5 Challenges in Using GMCE Materials in Magnetic Refrigerators -- 3.3 Molecular Magnetic Materials -- 3.3.1 Purely Organic Molecular Magnets -- 3.3.2 Organic-Inorganic Molecular Magnets -- 3.3.3 Inorganic Molecular Magnets.

3.3.4 Molecular Magnetic Clusters -- 3.3.5 Functionalities in Molecular Magnets -- 3.3.6 Controlling the Magnetic Hardness by Co Substitution in the (CoxNi1-x)1.5[Fe(CN)6]·zH2O (x = 0, 0.25, 0.5, 0.75 and 1) PBAs -- 3.3.7 Implications of the Magnetic Pole Reversal Phenomenon in the Cu0.73Mn0.77[Fe(CN)6]·zH2O Molecular Magnetic Compound -- 3.3.8 Thickness- and Stoichiometry-Dependent Magnetic Properties of Electrochemically Prepared Crystalline Thin Films of PBAs KjFeIIk[CrIII(CN6]1.mH2O -- 3.4 Magnetic Nanoparticles -- 3.4.1 Spintronics Materials -- 3.4.2 Nanoparticles for High-Density Magnetic Recording -- 3.4.3 Possible Application in Radionuclide Separation -- 3.4.4 Scope in Biomedical Science -- 3.5 CMR Manganites -- 3.5.1 Study of Ionic Size Effect in Dy-Substituted La0.7Ca0.3MnO3 CMR Perovskite -- 3.6 Summary and Conclusion -- Acknowledgements -- References -- 4 Multiferroic Materials -- 4.1 Introduction -- 4.2 Origin of Ferro- and Antiferromagnetism -- 4.3 Origin of Ferroelectricity -- 4.4 Mutually Exclusive Reason for Multiferroicity -- 4.5 Types of Multiferroic Material -- 4.6 Observation of Multiferroic Properties -- 4.7 Examples -- 4.7.1 Perovskite-Type Materials -- 4.7.2 Composites of Perovskites -- 4.7.3 Bismuth-Based Perovskites -- BiMnO3 -- BiFeO3 -- 4.8 Applications -- 4.9 Summary -- References -- 5 Spintronic Materials, Synthesis, Processing and Applications -- 5.1 Introduction -- 5.2 Ferromagnetic Semiconductors or Dilute Magnetic Semiconductors -- 5.3 Spintronics -- 5.3.1 Physics Aspects -- 5.4 Overview of some Major Spintronic Materials -- 5.4.1 (Ga,Mn)As -- 5.4.2 (Ga,Mn)N -- 5.5 Oxide Semiconductors -- 5.5.1 TiO2-Based DMS -- 5.5.2 SnO2-Based DMS -- 5.5.3 Co-doped ZnO -- 5.5.4 Mn-Doped ZnO -- 5.6 Material Synthesis, Processing and Characterization -- 5.6.1 Low-Temperature Solid-State Synthesis.

5.6.2 Sol-gel and Xerogel Pyrolysis -- 5.6.3 Gel-Combustion -- 5.6.4 Refluxing Method -- 5.6.5 PLD -- 5.6.6 Ink Formulation and Piezoelectric Drop on Demand (DOD) Inkjet Printing -- 5.7 Characterization -- 5.8 Recent Results -- 5.8.1 Bulk and Nanoparticles of Mn-based ZnO System -- 5.8.2 Nanoparticles of Co-Based ZnO System -- 5.8.3 Mn-Based ZnO Nanostructure -- 5.8.4 Mn-Based ZnO Films by PLD -- 5.8.5 Mn- or Co-Doped ZnO Film and Patterns Developed by Inkjet Printing -- 5.9 One-Dimensional Structures of ZnO-Based Materials -- 5.9.1 Co-Doped ZnO with Li Co-Doping -- 5.9.2 Ni-Doped ZnO with Li Co-Doping -- 5.9.3 Fe-Doped In2O3 Nanoparticles -- 5.10 Applications (Spintronic Devices) -- 5.10.1 GMR/Spin Valve -- 5.10.2 MTJs and MRAM -- 5.10.3 Spin-FET -- Acknowledgements -- References -- 6 Functionalized Magnetic Nanoparticles: Concepts, Synthesis and Application in Cancer Hyperthermia -- 6.1 Introduction -- 6.2 Methods of Preparation of Nanoparticles -- 6.2.1 The Top-Down Approach -- High-Energy Particles -- Other Deposition Methods -- Ball-Milling Method -- Sonication -- 6.2.2 Bottom-Up Approach -- Metallic Magnetic Nanoparticles -- Ni Nanoparticles -- Co Nanoparticles -- CoNi Nanoparticles -- FePd Nanoparticles -- Metallic Non-Magnetic Nanoparticles -- Non-Conducting Magnetic Nanoparticles -- Non-Conducting Non-Magnetic Nanoparticles -- 6.3 Characterization of Magnetic Nanoparticles -- 6.3.1 Size and Crystallinity of Nanoparticles -- XRD -- DLS -- SANS -- TEM -- 6.3.2 Chemical Bonding -- 6.3.3 Magnetic Behaviour -- 6.3.4 Induction Heating -- 6.4 Magnetic Properties of Nanoparticles -- 6.4.1 Ni Nanoparticles -- 6.4.2 Co Nanoparticles -- 6.4.3 FePd Particles -- 6.4.4 CoNi Particles -- 6.4.5 Li-doped CoFe2O4 Particles -- 6.4.6 Fe3O4 Particles -- 6.5 Induction Heating Behaviour of Particles.

6.5.1 Fe3O4 Magnetic Nanoparticles Capped with OA and PEG (Semiconductor/Insulator Magnetic) -- 6.5.2 Ni Particles (Metallic Magnetic) -- 6.5.3 Ag, Pt, Au, Ti, Al Particles (Metallic Non-Magnetic) -- 6.6 Therapeutic Efficacy of Magnetic Nanoparticles in Human Cancer Cells -- 6.7 Future Perspectives -- Acknowledgements -- References -- 7 Functional Superconducting Materials -- 7.1 Background -- 7.2 Niobium Titanium (NbTi) -- 7.3 A15 Superconductors and Nb3Sn -- 7.4 Chevrel-Phase Superconductors -- 7.5 High-Tc Superconductors -- 7.5.1 BiSrCaCuO or BSCCO -- 7.5.2 YBCO Coated Conductors -- 7.6 MgB2 -- 7.7 Borocarbides -- 7.8 Iron Arsenide Superconductors -- 7.9 Conclusions -- References -- 8 Optical Materials: Fundamentals and Applications -- 8.1 Introduction -- 8.2 Origin of Different Types of Optical Material and their Applications -- 8.3 Optical Parameters -- 8.3.1 Refractive Index (n) -- 8.3.2 Absorption Coefficient (α) -- 8.3.3 Reflectivity and Transmissivity -- 8.3.4 Intensity of Light -- 8.3.5 Specular and Diffused Reflections -- 8.4 Optical Properties of Metals -- 8.5 Optical Properties of Insulators -- 8.5.1 Luminescent Lead Silicate Glasses Containing Alkali Oxides -- 8.5.2 Optical Properties of ZnO-P2O5 Glasses -- 8.5.3 Optical Properties of Lanthanide-Ion-Doped Glasses -- 8.6 Optical Properties of Nanomaterials -- 8.6.1 Metal Nanoparticles -- 8.6.2 Host Emissions from Nanomaterials -- 8.6.3 Luminescence from ZnGa2O4 Nanoparticles -- 8.6.4 Luminescence from Sb2O3 Nanorods -- 8.6.5 Optical Properties of Lanthanide-Ion-Doped Nanomaterials -- 8.7 Nonlinear Optical Materials -- 8.7.1 Z-Scan Technique -- 8.7.2 Evaluation of n2 Values -- 8.7.3 Evaluation of β Values -- 8.7.4 Examples of Nonlinear Optical Processes -- 8.7.4.1 Frequency Mixing Processes: Second-Harmonic Generation (SHG) -- 8.7.4.2 Third-Harmonic Generation (THG).

8.7.4.3 Sum/Difference Frequency Generation (SFG or DFG).
Özet:
Functional materials have assumed a very prominent position in several high-tech areas. Such materials are not being classified on the basis of their origin, nature of bonding or processing techniques but are classified on the basis of the functions they can perform. This is a significant departure from the earlier schemes in which materials were described as metals, alloys, ceramics, polymers, glass materials etc. Several new processing techniques have also evolved in the recent past. Because of the diversity of materials and their functions it has become extremely difficult to obtain information from single source. Functional Materials: Preparation, Processing and Applications provides a comprehensive review of the latest developments. Serves as a ready reference for Chemistry, Physics and Materials Science researchers by covering a wide range of functional materials in one book Aids in the design of new materials by emphasizing structure or microstructure - property correlation Covers the processing of functional materials in detail, which helps in conceptualizing the applications of them.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: