Methods in Bioengineering : Microdevices in Biology and Medicine. için kapak resmi
Methods in Bioengineering : Microdevices in Biology and Medicine.
Başlık:
Methods in Bioengineering : Microdevices in Biology and Medicine.
Yazar:
Nahmias, Yaakov.
ISBN:
9781596934054
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (272 pages)
Seri:
Methods in Bioengineering
İçerik:
Methods in Bioengineering: Microdevices in Biology and Medicine -- Contents -- Preface -- Chapter 1 Immunoaffinity Capture of Cells from Whole Blood -- 1.1 Introduction -- 1.2 Experimental Design -- 1.3 Materials -- 1.4 Methods -- 1.4.1 Device fabrication -- 1.4.2 Fluidic port punching -- 1.4.3 Surface modification -- 1.4.4 Cell capture -- 1.4.5 Injecting blood into cassette -- 1.4.6 Washing noncaptured cells with PBS -- 1.4.7 Postcapture processing -- 1.4.8 Immunofluorescence staining -- 1.4.9 Giemsa staining protocol -- 1.4.10 Cell lysis for genomic applications -- 1.5 Data Acquisition, Anticipated Results, and Interpretation -- 1.6 Discussion and Commentary -- 1.7 Application Notes -- 1.8 Summary Points -- Acknowledgments -- References -- Chapter 2 Dynamic Gene-Expression Analysis in a Microfluidic Living Cell Array (mLCA) -- 2.1 Introduction -- 2.2 Materials -- 2.2.1 Reagents -- 2.2.2 Fabrication facilities -- 2.2.3 Imaging equipment -- 2.2.4 Perfusion components -- 2.3 Methods -- 2.3.1 GFP reporter cell line construction -- 2.3.2 Microfluidic cell array fabrication -- 2.3.3 Microfluidic array pretreatment and seeding -- 2.3.4 Stimulation and reporter imaging -- 2.4 Data Acquisition, Anticipated Results, and Interpretation -- 2.5 Discussion -- 2.6 Application Notes -- 2.7 Summary Points -- Acknowledgments -- References -- Chapter 3 Micromechanical Control of Cell-Cell Interactions -- 3.1 Introduction -- 3.1.1 Cell-cell interactions -- 3.1.2 Conventional cocultivation models -- 3.1.3 Micromechanical reconfigurable culture -- 3.1.4 Application examples -- 3.2 Experimental Design -- 3.2.1 Experimental variables -- 3.2.2 Readout -- 3.3 Materials -- 3.3.1 Reagents/supplies -- 3.3.2 Facilities/equipment -- 3.4 Methods -- 3.4.1 Device handling and actuation -- 3.4.2 Preparing devices for cell culture -- 3.4.3 Cell seeding -- 3.4.4 Assay preparation.

3.5 Discussion -- 3.6 Summary Points -- Acknowledgments -- References -- Related sources -- Chapter 4 Mechanotransduction and the Study of Cellular Forces -- 4.1 Introduction -- 4.1.1 Cellular forces: Functions and underlying mechanisms -- 4.1.2 Techniques for studying traction forces -- 4.2 Materials -- 4.2.1 Reagents and supplies -- 4.2.2 Facilities, equipment, and software -- 4.3 Methods -- 4.3.1 Microfabrication of micropost arrays -- 4.3.2 Analysis of traction forces with micropost arrays -- 4.4 Discussion -- 4.4.1 Applications and enhancements of the micropost arrays -- 4.4.2 Potential pitfalls of micropost arrays -- 4.4.3 Biological insights from using micropost arrays -- 4.4.4 Future innovations for studying cellular forces -- 4.5 Summary Points -- References -- Chapter 5 A Microfluidic Tool for Immobilizing C. elegans -- 5.1 Introduction -- 5.2 Materials -- 5.3 Methods -- 5.3.1 Overview and timeline -- 5.3.2 Designing the device and ordering the photomask -- 5.3.3 Fabricating the master for the device -- 5.3.4 Replica-molding the master in PDMS -- 5.3.5 Preparing C. elegans for loading -- 5.3.6 Assembling the microfluidic device -- 5.3.7 Preparing the device for loading -- 5.3.8 Loading worms into the device -- 5.3.9 Unloading worms from the device -- 5.4 Data Acquisition, Anticipated Results, and Interpretation -- 5.5 Discussion and Commentary -- 5.6 Application Notes -- 5.7 Summary Points -- Acknowledgments -- Annotated References -- Supplementary electronic materials and resources -- Chapter 6 Osmolality Control for Microfluidic Embryo Cell Culture Using Hybrid Polydimethylsiloxane(PDMS)-Parylene Membranes -- 6.1 Introduction -- 6.2 Experimental Design -- 6.2.1 Hypothesis -- 6.3 Materials -- 6.3.1 Reagents -- 6.3.2 Equipment -- 6.4 Methods -- 6.4.1 PDMS-Parylene-PDMS membrane preparation.

6.4.2 Preparation of glass slides and bonding to hybrid membranes -- 6.4.3 Embryo preparation -- 6.4.4 Osmolality measurements -- 6.5 Data Acquisition, Anticipated Results, and Interpretation -- 6.6 Discussion and Commentary -- 6.7 Application Notes -- 6.8 Summary Points -- Acknowledgments -- References -- Chapter 7 Image-Based Cell Sorting Using Microscale Electrical and Optical Actuation -- 7.1 Introduction -- 7.1.1 Electrical and optical microscale cell manipulation -- 7.2 Materials -- 7.2.1 Materials for microfabrication -- 7.2.2 Cell lines and culture -- 7.2.3 Buffers and reagents -- 7.2.4 Staining -- 7.2.5 Equipment -- 7.3 Experimental Design -- 7.4 Methods -- 7.4.1 Material choices and fabrication -- 7.4.2 Packaging and experimental setup -- 7.5 Data Acquisition, Anticipated Results, and Interpretation -- 7.5.1 Cell culture and assay -- 7.5.2 Imaging and sorting -- 7.6 Discussion and Commentary -- 7.7 Summary Points -- Acknowledgments -- References -- Chapter 8 Pharmacokinetic-Pharmacodynamic Models on a Chip -- 8.1 Introduction -- 8.2 Pharmacokinetic-Pharmacodynamic Modeling -- 8.2.1 Basic concept -- 8.2.2 Pharmacokinetic model -- 8.2.3 Pharmacodynamic model -- 8.2.4 Integrated PK-PD modeling -- 8.3 Micro Cell Culture Analog ( uCCA) -- 8.3.1 Design of a CCA and calculation of flow rates -- 8.3.2 Fabrication of a uCCA -- 8.3.3 Cell seeding and assembly of the device -- 8.3.4 Data acquisition, anticipated results, and interpretation -- 8.3.5 Discussion and commentary -- 8.4 Application Notes -- 8.5 Summary Points -- Acknowledgments -- References -- Chapter 9 Lab-on-a-Chip Impedance Detection of Microbial and Cellular Activity -- 9.1 Introduction -- 9.2 Lab-on-a-Chip for Monitoring Microbial Metabolic Activity -- 9.2.1 "Impedance microbiology-on-a-chip" for bacterial concentration and detection.

9.2.2 Microfluidic biochips for impedance detection of Bacillus anthracisspore germination -- 9.3 Lab-on-a-Chip for Impedance Detection of Cell Concentration Based on Ion Release from Cells -- 9.3.1 Microchips for impedance detection of CD4+ T lymphocytes -- 9.3.2 Interdigitated microelectrode chip for impedance detection ofbacterial cells -- 9.4 Conclusion -- 9.5 Summary Points -- Acknowledgments -- References -- Chapter 10 Controlling the Cellular Microenvironment -- 10.1 Introduction -- 10.2 Microenvironmental Control of Cell-Cell Interactions -- 10.2.1 Surface patterning for cell coculture -- 10.2.2 Microfluidic systems for cardiac organoid formation -- 10.2.3 3-D patterning of embryonic stem cells -- 10.3 Interactive Use of Substrate Topography and Electrical Stimulation for the Control of Cell Alignment -- 10.3.1 Materials -- 10.3.2 Methods -- 10.3.3 Data acquisition, anticipated results, and interpretation -- 10.3.4 Discussion and commentary -- 10.3.5 Summary points -- Acknowledgments -- References -- Chapter 11 Subtractive Methods for Forming Microfluidic Gels of Extracellular Matrix Proteins -- 11.1 Introduction -- 11.2 Materials -- 11.2.1 Supporting dishes -- 11.2.2 PDMS housing -- 11.2.3 Removable elements (needles and gelatin mesh) -- 11.2.4 ECM proteins -- 11.2.5 High-flow perfusion -- 11.3 Methods -- 11.3.1 Construction of supporting dishes -- 11.3.2 Construction of PDMS housings -- 11.3.3 Preparation of removable elements -- 11.3.4 Formation of microfluidic gels -- 11.3.5 Perfusion of microfluidic gels -- 11.4 Anticipated Results -- 11.5 Application Notes -- 11.5.1 Rate of gelation -- 11.5.2 Resistance of microfluidic gels and tubing -- 11.6 Discussion and Commentary -- 11.6.1 Enlarged and/or deformed channels -- 11.6.2 Leaks between the gel and PDMS or between the gel and coverslip -- 11.7 Summary Points -- Acknowledgments.

References -- About the Editors -- List of Contributors -- Index.
Özet:
Offering a practical look into the field, this volume presents the science behind microscale device design and the engineering of its fabrication. Supported with dozens of full-color illustrations, this book offers you clear, step-by-step methods for the cell capture from whole blood, high-throughput study of transcriptional dynamics in living cells, temporal control of cell-cell interaction, nanoscale measurements of cellular forces, immobilizing living c. elegans, optical and electrical on-chip cell sorting and human-on-chip modeling of drug metabolism.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: