Characterization of High Tc Materials and Devices by Electron Microscopy. için kapak resmi
Characterization of High Tc Materials and Devices by Electron Microscopy.
Başlık:
Characterization of High Tc Materials and Devices by Electron Microscopy.
Yazar:
Browning, Nigel D.
ISBN:
9780511155178
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (407 pages)
İçerik:
Cover -- Half-title -- Title -- Copyright -- Contents -- Contributors -- Preface -- 1 High-resolution transmission electron microscopy -- 1.1 Introduction -- 1.2 Theoretical background for HRTEM -- 1.2.1 Phase contrast -- 1.2.2 Lattice image and structure image -- 1.2.3 Phase contrast transfer function -- 1.2.4 Weak phase object approximation -- 1.2.5 Scherzer imaging condition -- 1.2.6 Resolution limit for HRTEM -- 1.2.7 Extension of weak phase object approximation -- 1.2.8 Effect of the coherence among electron waves -- 1.3 Techniques relevant to HRTEM -- 1.3.1 Electron-optical conditions to obtain an HRTEM image -- 1.3.2 Procedure for observing an HRTEM image -- 1.3.3 Computer simulation of an HRTEM image -- 1.3.4 Use of information from electron diffraction -- 1.4 HRTEM analysis of high T superconductors -- 1.4.1 Structure analysis of Ga2(Sr, Nd)4Nd3Cu4Oz -- 1.4.2 Crystal structure and projected potential in YBa2Cu4Ox -- 1.4.3 Visualization of oxygen atoms in YBa2Cu3O+x -- References -- 2 Holography in the transmission electron microscope -- 2.1 Introduction -- 2.2 Electron holography -- 2.3 Applications -- 2.3.1 Specimen thickness distribution -- 2.3.2 Magnetic field observation -- 2.3.3 Vortices in superconductors -- 2.4 Conclusions -- References -- 3 Microanalysis by scanning transmission electron microscopy -- 3.1 Introduction -- 3.2 Electron optics of STEM -- 3.2.1 Beam broadening -- 3.2.2 The role of beam brightness -- 3.2.3 Useful probe sizes -- 3.2.4 Energy spread of electron sources -- 3.2.5 Coherence of the electron source -- 3.3 Imaging in STEM -- 3.3.1 Reciprocity and phase contrast -- 3.3.2 ADF/HAADF -- 3.3.3 Holography -- 3.4 Microanalysis in STEM -- 3.4.1 Electron energy loss spectroscopy -- 1. Spectrometers and parallel acquisition systems -- 2. Virtual photon field picture of EELS -- 3. Plasmon excitation.

4. Kramers-Kronig analysis and interband transition -- 5. Inner-shell absorption spectroscopy -- 6. The nature of the transient field and the validity of dipole selection rules -- 7. Anisotropic electron energy loss spectroscopy -- 3.5 X-ray fluorescence spectroscopy -- 3.6 Microdiffraction -- 3.7 Resolution attainable in analysis -- 3.7.1 Impact parameter and X-ray microanalysis -- 1. EELS and detector aperture function -- 2. Microdiffraction -- 3.8 Radiation damage and nanolithography -- 3.9 Suggestions for further reading -- 3.10 Summary -- 3.11 Postscript -- References -- 4 Specimen preparation for transmission electron microscopy -- 4.1 Introduction -- 4.1.1 General requirements -- 4.1.2 What is a good TEM sample? -- 4.2 Crushing and cleaving -- 4.2.1 Crushing -- 4.2.2 Cleaving Bi2212 with tape -- 4.2.3 Cleaving a thin-film sample -- 4.3 Ion milling -- 4.3.1 Precision thickness control -- 4.3.2 Ion-thinning machines -- 4.3.3 End point detection -- 4.3.4 Plan-view sample preparation -- 4.4 Cross-section sample preparation -- 4.4.1 Cutting -- 4.4.2 Gluing together -- 4.4.3 Grinding the first side -- 4.4.4 Gluing the first side -- 4.4.5 Grinding the second side -- 4.4.6 Gluing the sample onto a grid -- 4.4.7 Ion thinning -- 4.4.8 Ion polishing -- 4.5 Examples -- 4.5.1 Precision grinding -- 4.5.2 Cylinder method -- 4.6 Ion-shadow method -- 4.7 Low-energy plasma cleaning -- 4.8 Artifacts -- 4.9 Case studies -- Acknowledgments -- References -- 5 Low-temperature scanning electron microscopy -- 5.1 Introduction -- 5.2 Electron beam as a local heat source -- 5.3 Thin films -- 5.4 Superconducting devices -- 5.4.1 Microbridges -- 5.4.2 Josephson junctions -- 5.5 Cryoelectronic circuits -- Acknowledgements -- References -- 6 Scanning tunneling microscopy -- 6.1 Introduction -- 6.2 Tunneling theory and historical perspective on tunneling spectroscopy.

6.3 General instrumental description -- 6.4 Specific details for STM design -- 6.4.1 Tips and tip preparations -- 6.4.2 Low temperature -- 6.4.3 UHV design -- 6.4.4 Piezoelectric scanners/feedback systems -- 6.4.5 Vibration and thermal isolation -- 6.5 Related techniques -- 6.5.1 Atomic force microscope (AFM) -- 6.5.2 Electric force microscope (EFM) -- 6.5.3 Magnetic force microscope (MFM) -- 6.6 The study of high T materials by STM -- 6.6.1 Spectroscopy and atomic imaging -- 6.6.2 High T thin film growth studies -- 6.6.3 Surface manipulation/lithography -- 6.6.4 Multilayer devices -- 6.7 Artifacts -- 6.8 Summary and future directions -- References -- 7 Identification of new superconducting compounds by electron microscopy -- 7.1 Introduction -- 7.2 Oxygen vacancy order in the CuO plane of YBa2Cu3O7-Delta -- 7.2.1 Tweed and twinning -- 7.2.2 Tetragonal phase -- 7.2.3 Short-range ordering -- 7.2.4 Ortho-I -- 7.2.5 Ortho-II -- 7.2.6 Ortho-III, Ortho-IV, … -- 7.2.7 YBCO at higher temperatures -- 7.2.8 The… -- 7.3 Oxygen ordering and Ba-displacements in the YBCO-247 compound -- 7.4 Oxygen vacancy ordering in… -- 7.4.1 Average structure -- 7.4.2 Local structure -- 7.5 New Hg-based superconducting materials -- 7.5.1 Pure Hg-compounds -- 7.5.2 Derived Hg-compounds -- 1. Superconducting materials based on the 1201 structure -- 2. Superconducting materials based on the 1212 structure -- 3. Intergrowths of Hg-1201 with other superconducting materials -- 7.5.3 Hg-based oxycarbonates -- Acknowledgments -- References -- 8 Valence band electron energy loss spectroscopy (EELS) of oxide superconductors -- 8.1 Introduction -- 8.2 Experimental -- 8.3 Anisotropic dielectric function of cuprates -- 8.3.1 Free carrier plasmon in the CuO2 plane -- 8.3.2 Confinement of the Hubbard transition in the CuO2 plane in the infinite-layer compound.

8.3.3 Hybridization between O Sigma and Cu 3d states in the Cu-O chains -- 8.4 Momentum-transfer (q) resolved electron energy loss spectroscopy -- 8.4.1 Symmetry of the electronic excitations in BaBiO3 -- 8.4.2 Symmetry of the charge transfer exciton in Sr2CuO2Cl2 -- 8.5 Conclusions -- Acknowledgments -- References -- 9 Investigation of charge distribution in Bi2Sr2CaCu2O8 and YBa2Cu3O7 -- 9.1 Introduction -- 9.2 Bi2Sr2CaCu2O8 -- 9.2.1 A general nanoscale description: difference structure -- 9.2.2 Direct imaging of charge modulation -- 9.3 YBa2Cu3O7 -- 9.3.1 A novel diffraction method: parallel recording of electron diffraction intensity as a function of thickness -- 9.3.2 Distribution of electron holes -- 9.4 Conclusions -- Acknowledgments -- References -- 10 Grain boundaries in high T materials: transport properties and structure -- 10.1 Introduction -- 10.2 Grain boundary structure -- 10.2.1 Grain boundary geometry -- 10.2.2 Grain boundary models -- 10.2.3 Global grain boundary structure -- 10.3 Oxide grain boundaries -- 10.3.1 Grain boundary phases -- 10.3.2 Symmetric high-angle grain boundaries -- 10.3.3 Asymmetrical grain boundaries -- 10.4 Grain boundaries in YBCO -- 10.4.1 High-angle grain boundaries -- 10.4.2 Low-angle grain boundaries -- 10.5 Direct correlation between grain boundary structure and electric transport properties -- 10.6 Discussion -- 10.7 Summary and conclusions -- Acknowledgments -- References -- 11 The atomic structure and carrier concentration at grain boundaries in YBa2Cu3O7-Delta -- 11.1 Introduction -- 11.2 Imaging and microanalysis of boundary structures -- 11.2.1 Atomic structure determination -- 11.2.2 Hole concentration measurement -- 11.3 Structural models -- 11.3.1 Low-angle grain boundaries -- 11.3.2 High-angle grain boundaries -- 11.4 Predicting bulk structure-property relationships -- 11.5 Conclusions.

Acknowledgments -- References -- 12 Microstructures in superconducting YBa2Cu3O7 thin films -- 12.1 Introduction -- 12.2 Grain boundaries -- 12.3 Boundary microstructures and facetting -- 12.4 Stacking faults and antiphase boundaries -- 12.5 Aligned a-axis films -- 12.6 Synthesis and properties -- 12.7 Single grain boundaries -- 12.8 Summary -- References -- 13 Investigations on the microstructure of YBa2Cu3O7 thin-film edge Josephson junctions by high-resolution electron… -- 13.1 Introduction -- 13.2 Experimental -- 13.3 Microstructure of YBa2Cu3O7 -- 13.3.1 Introduction -- 13.3.2 Preparation of step-edge samples -- 13.3.3 Dependence of the microstructure upon step angle -- 13.3.4 Grain boundaries in step-edge junctions -- 1. Morphology of grain boundaries in films over large-angle steps -- 2. Atomic structure of the grain boundaries -- 13.3.5 Lattice defects and distortions near grain boundaries in step-edge junctions -- 13.4 Interfaces in YBa2Cu3O7 multilayer edge junctions -- 13.4.1 Introduction -- 13.4.2 Interfaces in triple-layer films of YBa2Cu3O7/SrRuO3 -- 1. Interface between the SrRuO3 layer and the first YBa2Cu3O7 layer -- 2. Interface between the second YBa2Cu3O7 layer and the SrRuO3 barrier -- 3. General aspect of this investigation -- 13.4.3 Interfaces of YBa2Cu3O7/PrBa2Cu3O7 edge junctions -- 1. Introduction -- 2. The chemically etched interface -- 3. The ion-etched interface -- 13.5 Summary -- Acknowledgments -- References -- 14 Controlling the structure and properties of high T thin-film devices -- 14.1 Introduction -- 14.2 Single-layer films -- 14.2.1 Epitaxial growth of c-axis-oriented films on planar surfaces -- 1. c-Axis-oriented YBa2Cu3O7-x (YBCO) -- 2. Well lattice-matched film/substrate configurations -- 3. Graphoepitaxy -- 4. Effect of deposition temperature -- 14.3 Buffer layers -- 14.3.1 Chemical interaction.

14.4 Mechanical interactions.
Özet:
A comprehensive account of the application of electron-based microscopies to the study of high-Tc superconductors.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: