Inorganic Nanoprobes for Biological Sensing and Imaging. için kapak resmi
Inorganic Nanoprobes for Biological Sensing and Imaging.
Başlık:
Inorganic Nanoprobes for Biological Sensing and Imaging.
Yazar:
Mattoussi, Hedi.
ISBN:
9781596931978
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (331 pages)
İçerik:
Inorganic Nanoprobes for Biological Sensing and Imaging -- Contents -- Chapter 1: Colloidal Quantum Dots: Synthesis, Photophysical Properties, and Biofunctionalization Strategies -- 1.1 Introduction -- 1.2 Chemistry and Physics of Semiconductor Quantum Dots -- 1.2.1 Basic Physical Properties of Semiconductor Quantum Dots -- 1.2.2 Synthesis, Characterization, and Capping Strategies -- 1.3 Strategies for Surface-Functionalization and Conjugation to Biomolecules -- 1.3.1 Water-Solubilization Strategies -- 1.3.2 Methods for Conjugating QDs with Biomolecular Receptors -- 1.4 Concluding Remarks and Future Outlook -- Acknowledgments -- References -- Chapter 2: Colloidal Chemical Synthesis of Organic-Dispersible Uniform Magnetic Nanoparticles -- 2.1 Magnetism of Nanoparticles -- 2.2 Transition Metal Nanoparticles -- 2.2.1 Cobalt Nanoparticles -- 2.2.2 Iron and Nickel Nanoparticles -- 2.3 Metal Alloy Nanoparticles -- 2.3.1 FePt Nanoparticles -- 2.3.2 Other Metal Alloy Nanoparticles -- 2.4 Metal Oxide Nanoparticles -- 2.4.1 Monometallic Oxide Nanoparticles -- 2.4.2 Bimetallic Ferrite Nanoparticles -- 2.5 Representative Synthetic Procedures for Magnetic Nanoparticles -- 2.5.1 Iron Nanoparticles -- 2.5.2 Iron Oxide Nanoparticles -- References -- Chapter 3: Peptide-Functionalized Quantum Dots for Live Diagnostic Imaging and Therapeutic Applications -- 3.1 Introduction -- 3.2 Phytochelatin Peptides: The All-in-One Solubilization/Functionalization Approach -- 3.3 Colloidal and Photophysical Properties of Peptide-Coated Qdots -- 3.4 Live Cell Dynamic Imaging -- 3.4.1 Single-Particle Tracking of Cell-Surface Membrane Receptors -- 3.4.2 Peptide-Mediated Intracellular Delivery and Targeting of Qdots -- 3.5 Live Animal Imaging -- 3.5.1 Near-Infrared Deep-Tissue Dual-Modality Imaging -- 3.5.2 In Vivo Targeting of Tumor Vasculature.

3.6 Beyond Diagnostic Imaging: Sensing and Therapeutic Applications -- 3.6.1 Cleavable Peptides for Proteases Activity -- 3.6.2 Photodynamic Therapy -- 3.7 Conclusion and Perspectives -- Acknowledgments -- References -- Chapter 4: Resonance Energy Transfer-Based Sensing Using Quantum Dot Bioconjugates -- 4.1 Introduction and Background -- 4.2 Unique Attributes of Quantum Dots As FRET Donors -- 4.2.1 Improving the Spectral Overlap by Tuning QD Emission -- 4.2.2 Significant Reduction of Direct Excitation of the Acceptor -- 4.2.3 Increase FRET Efficiency by Arraying Multiple Acceptors around a Single QD -- 4.2.4 Achieving Multiplex FRET Configurations with One Excitation Source -- 4.2.5 Multiphoton FRET Configurations -- 4.3 FRET-Based Biosensing with Quantum Dots -- 4.3.1 Competitive Sensing Using QD-Protein Conjugates -- 4.3.2 Sensing Enzymatic Activity Using QD-Peptide and QD-Oligonucleotide Substrates -- 4.3.3 Detection of Hybridization Using QD-Nucleic Acid Conjugates -- 4.3.4 pH and Ion Sensing -- 4.4 Quantum Dots As Sensitizers for Photodynamic Therapy -- 4.5 Special Sensing Configurations -- 4.6 Conclusions and Outlook -- Acknowledgments -- References -- Chapter 5: Use of Luminescent Quantum Dots to Image and Initiate Biological Functions -- 5.1 Introduction -- 5.2 Multivalency Allows Multifunctionality -- 5.3 Stimuli-Responsive Polymers and Qds As Tools for Imaging -- 5.4 Conclusions -- Acknowledgments -- References -- Chapter 6: Single Particle Investigation of Biological Processes Using QD-Bioconjugates -- 6.1 Introduction -- 6.2 Physical Properties of Single QDs -- 6.3 In Vitro Detection of Biomolecular Interactions Using Single QD Fluorescence -- 6.3.1 Detection of Biomolecules Using Multicolor Colocalization of QD Probes -- 6.3.2 Colocalization Studies Using Streptavidin-Coupled QD-Dye Pairs.

6.3.3 Fluorescence Energy Transfer from Single QD to Organic Fluorophores -- 6.4 In Vitro and In Vivo Tracking of Protein Using Single QDs -- 6.4.1 In Vitro Detection of Kinesin and Myosin Motor Movement -- 6.4.2 Tracking of Protein Receptors in Live Cells -- 6.5 Conclusion -- Acknowledgments -- References -- Chapter 7: Assessment of the Issues Related to the Toxicity of Quantum Dots -- 7.1 Introduction -- 7.2 General Considerations -- 7.2.1 Routes of Exposure -- 7.2.2 Mechanisms of Cellular Internalization of QDs -- 7.2.3 Detection of QD-Induced Cytotoxicity -- 7.3 Mechanisms of Quantum Dots Cytotoxicity -- 7.3.1 Release of Toxic Metal Ions -- 7.3.2 Effects of Capping Materials on Cytotoxicity -- 7.3.3 Effects of QD Size on Cytotoxicity -- 7.3.4 Effects of Reactive Oxygen Species on Cytotoxicity -- 7.3.5 Effects of QDs on Genomic DNA -- 7.4 Bioaccumulation and Clearance of QDs -- 7.5 Outlook -- Acknowledgments -- References -- Chapter 8: Chemical and Biological Sensing Based on Gold Nanoparticles -- 8.1 Introduction -- 8.2 Synthesis of Gold Nanoparticles -- 8.3 Physical Properties of Gold Nanoparticles -- 8.4 Colorimetric Sensing -- 8.4.1 Colorimetric Detection of Metal Ions and Anions -- 8.4.2 Colorimetric Detection of Biomaterials -- 8.5 Fluorescence Sensing -- 8.6 Electrical and Electrochemical Sensing -- 8.7 Surface Enhanced Raman Scattering-Based Sensing -- 8.8 Gold Nanoparticle-Amplified SPR Sensing -- 8.9 Quartz Crystal Microbalance-Based Sensing -- 8.10 Gold Nanoparticle-Based Bio-Barcode Assay -- 8.11 Concluding Remarks -- Acknowledgments -- References -- Chapter 9: Plasmon-Resonant Gold Nanorods: Photophysical Properties Applied Toward Biological Imaging and Therapy -- 9.1 Introduction -- 9.2 Synthesis -- 9.3 Optical Properties -- 9.3.1 Absorption -- 9.3.2 Plasmon-Resonant Scattering -- 9.3.3 Linear Photoluminescence.

9.3.4 Nonlinear Optical Properties -- 9.3.5 Other Optical Properties -- 9.4 Surface Chemistry and Biocompatibility -- 9.4.1 Bioconjugation Methods -- 9.4.2 Cytotoxicity and Nonspecific Cell Uptake -- 9.5 Biological Applications of Gold Nanorods -- 9.5.1 Contrast Agents for Imaging -- 9.5.2 Photothermal Therapy -- 9.5.3 Ex Vivo Bioanalytical Applications -- 9.6 Outlook -- References -- Chapter 10: Magnetic Nanoparticles in Biomedical Applications -- 10.1 Introduction -- 10.2 Nanoscale Magnetic Properties -- 10.3 Magnetic Resonance Imaging (MRI) Contrast Agent -- 10.4 Magnetic Separation -- 10.5 Magnetic Drug Delivery -- 10.6 Conclusions -- References -- Chapter 11: Magnetic Nanoparticles-Assisted Cellular MR Imaging and Their Biomedical Applications -- 11.1 Introduction -- 11.2 Characterization of MRI Contrast Agents or Magnetic Nanoparticles Used in Cell Labeling for CMRI -- 11.2.1 Paramagnetic Agents -- 11.2.2 Superparamagnetic Agents -- 11.3 Methods for Labeling Cells with Magnetic Nanoparticles for CMRI -- 11.3.1 Endocytosis of Contrast Agents -- 11.3.2 Modified Nanoparticles for Cell Labeling -- 11.3.3 Transfection Agent Mediated Cell Labeling -- 11.3.4 Other Methods of Cell Labeling -- 11.4 Methods to Monitor the Functional Status of Labeled Cells or Toxicity Following Labeling -- 11.4.1 Determination of Cell Viability -- 11.4.2 Determination of Cell Function -- 11.4.3 Determination of Cell Differentiation Capacity -- 11.5 MRI Techniques to Detect Cells Labeled with Superparamagnetic Iron Oxides -- 11.6 Animal Studies That Have Utilized CMRI -- 11.6.1 Stem Cell Tracking -- 11.6.2 Intracranial Tumor Studies -- 11.6.3 Tumor Angiogenesis -- 11.6.4 Stroke and Trauma Models -- 11.6.5 Myocardial Infarction and Vascular Models -- 11.6.6 Models of Multiple Sclerosis -- 11.7 Translation to the Clinic -- 11.7.1 Human Studies -- 11.7.2 Regulatory Issues.

References -- About the Edi tors -- List of Contributors -- Index -- Color Plates.
Özet:
Written and edited by leading experts in the field, this unique book places particular emphasis nanoprobes made of luminescent semiconductor nanocrystals (quantum dots or QDs) and magnetic nanoparticles (MNPs). You find an insightful discussion on the synthesis, characterization, and analysis of the unique properties of luminescent QDs and MNPs.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: