Machinability of Advanced Materials. için kapak resmi
Machinability of Advanced Materials.
Başlık:
Machinability of Advanced Materials.
Yazar:
Davim, J. Paulo.
ISBN:
9781118576793
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (217 pages)
İçerik:
Cover -- Title Page -- Contents -- Preface -- Chapter 1. Machinability: Existing and Advanced Concepts -- 1.1. Introduction -- 1.2. Traditional concepts of machinability and methods for its assessment -- 1.2.1. Common perceptions -- 1.2.2. Non-standardized tests for machinability assessment -- 1.2.3. Standard tests -- 1.2.4. Assessments used in machining practice -- 1.2.5. The merit of the known concepts of machinability -- 1.3. Knowledge-based foundations of machinability -- 1.3.1. Practical need -- 1.3.2. Ability of the prevailing metal cutting theory -- 1.3.3. Notion of two kinds of machinability -- 1.3.4. Machinability of the work material -- 1.3.5. Process machinability -- 1.3.6. Improvement the process machinability -- 1.4. Bibliography -- Chapter 2. Milling Burr Formation and Avoidance -- 2.1.Introduction -- 2.1.1. Definition and classification of burrs -- 2.1.2. Factors governing milling burr formation -- 2.1.3. Burr formation modeling and control -- 2.1.4. Burr avoidance and removal (deburring) -- 2.2. Case study 1: burr formation during slot milling of aluminum alloys -- 2.2.1. Introduction -- 2.3. Case study 2: burr limitation and tool path planning strategies - application to the slot milling of AM6414 steel -- 2.3.1. Burr size estimation during slot milling (approaches CH1, CH2 and CH3) -- 2.3.2. Conclusion on case study 2 - burr limitation during slotting -- 2.4. General concluding remarks -- 2.5. Acknowledgments -- 2.6. Bibliography -- Chapter 3. Machinability of Titanium and Its Alloys -- 3.1. Introduction -- 3.2. Titanium: a brief overview -- 3.3. Titanium alloys -- 3.4. Challenges toward machining titanium -- 3.4.1. Low modulus of elasticity -- 3.4.2. Poor thermal conductivity -- 3.4.3. Chemical reactivity -- 3.4.4. Hardening characteristics -- 3.5. Mechanics of chip formation.

3.6. Cutting forces and power consumption -- 3.7. Cutting tools and wear phenomenon -- 3.7.1. High-speed steel tools -- 3.7.2. Carbide tools -- 3.7.3. Ceramic tools -- 3.7.4. Cubic boron nitride (CBN) tools -- 3.8. Application of coolant -- 3.9. Surface integrity -- 3.10. Concluding remarks -- 3.11. Bibliography -- Chapter 4. Effects of Alloying Elements on the Machinability of Near-Eutectic Al-Si Casting Alloys -- 4.1. Introduction -- 4.2. Alloy preparation and casting procedures -- 4.2.1. Metallography-microstructural examination -- 4.2.2. Mechanical tests -- 4.2.3. Machining procedures -- 4.2.4. Total drilling force -- 4.2.5. Tool life criteria -- 4.3. Results -- 4.3.1. Microstructures -- 4.3.2. Hardness and tensile properties -- 4.3.3. Machining behavior -- 4.4. Discussion -- 4.5. Conclusions -- 4.6. Acknowledgments -- 4.7. Bibliography -- Chapter 5. The Machinability of Hard Materials - A Review -- 5.1. Introduction -- 5.1.1. Definition of hard machining -- 5.1.2. Application of hard machining processes -- 5.2. Cutting tools -- 5.2.1. Ceramics -- 5.2.2. Cubic boron nitride (CBN) -- 5.3. Wiper technology -- 5.4. Machinability -- 5.4.1. Cutting parameters -- 5.4.2. Cutting forces -- 5.4.3. Chip formation -- 5.4.4. Cutting temperature -- 5.5. Surface integrity in hard machining processes -- 5.5.1. Surface integrity -- 5.5.2. Surface roughness -- 5.5.3. Residual stresses -- 5.5.4. White-layer effect -- 5.6. Optimization of hard machining processes -- 5.7. Synthesis -- 5.8. Acknowledgments -- 5.9. Bibliography -- Chapter 6. An Investigation of Ductile Regime Machining of Silicon Nitride Ceramics -- 6.1. Introduction -- 6.2. Ceramic machining -- 6.2.1. Machining forces -- 6.2.2. Surface quality -- 6.2.3. Machining model -- 6.3. Ductile regime machining.

6.3.1. Factors contributing to the ductile-regime machining of ceramics -- 6.4. Developments in simulations of ceramic machining -- 6.4.1. Material model for simulations -- 6.4.2. Elastic and plastic behavior -- 6.4.3. Heat transfer and thermal softening -- 6.4.4. Strain rate sensitivity -- 6.4.5. Determination of initial yield stress -- 6.4.6. Material model validation -- 6.4.7. Simulation model of AdvantEdge® -- 6.4.8. Work material properties -- 6.4.9. Wear model -- 6.4.10. Process parameters -- 6.4.11. Convergence -- 6.5. Design of experiments -- 6.5.1. Tabulation of results -- 6.5.2. Results and discussion -- 6.6. Effect of the depth of cut -- 6.7. Effect of the feed rate -- 6.7.1. Summary -- 6.8. Materials and means -- 6.8.1. Hardness test -- 6.8.2. Fracture toughness KIC - micro indentation test -- 6.8.3. Elastic modulus - semi-empirical relation -- 6.8.4. Material preparation -- 6.8.5. Fixture base -- 6.8.6. Gluing the ceramic to the fixture base -- 6.8.7. PCD end mill tool -- 6.9. Experimental set-up -- 6.9.1. Results and discussion -- 6.9.2. Effect of the depth of cut -- 6.9.3. Effect of the feed rate -- 6.9.4. Surface roughness -- 6.9.5. Analysis of variance -- 6.9.6. Resultant force -- 6.9.7. Surface roughness -- 6.9.8. Summary -- 6.10. Bibliography -- List of Authors -- Index.
Özet:
Machinability of Advanced Materials addresses the level of difficulty involved in machining a material, or multiple materials, with the appropriate tooling and cutting parameters.  A variety of factors determine a material's machinability, including tool life rate, cutting forces and power consumption, surface integrity, limiting rate of metal removal, and chip shape. These topics, among others, and multiple examples comprise this research resource for engineering students, academics, and practitioners.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: