Thin Film Materials : Stress, Defect Formation and Surface Evolution. için kapak resmi
Thin Film Materials : Stress, Defect Formation and Surface Evolution.
Başlık:
Thin Film Materials : Stress, Defect Formation and Surface Evolution.
Yazar:
Freund, L. B.
ISBN:
9780511163722
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (770 pages)
İçerik:
Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction and Overview -- 1.1 A classification of thin film configurations -- 1.2 Film deposition methods -- 1.2.1 Physical vapor deposition -- 1.2.2 Chemical vapor deposition -- 1.2.3 Thermal spray deposition -- 1.2.4 Example: Thermal barrier coatings -- 1.3 Modes of film growth by vapor deposition -- 1.3.1 From vapor to adatoms -- 1.3.2 From adatoms to film growth -- 1.3.3 Energy density of a free surface or an interface -- 1.3.4 Surface stress -- 1.3.5 Growth modes based on surface energies -- 1.4 Film microstructures -- 1.4.1 Epitaxial films -- 1.4.2 Example: Vertical-cavity surface-emitting lasers -- 1.4.3 Polycrystalline films -- 1.4.4 Example: Films for magnetic storage media -- 1.5 Processing of microelectronic structures -- 1.5.1 Lithography -- 1.5.2 The damascene process for copper interconnects -- 1.6 Processing of MEMS structures -- 1.6.1 Bulk micromachining -- 1.6.2 Surface micromachining -- 1.6.3 Molding processes -- 1.6.4 NEMS structures -- 1.6.5 Example: Vibrating beam bacterium detector -- 1.7 Origins of film stress -- 1.7.1 Classification of film stress -- 1.7.2 Stress in epitaxial films -- 1.8 Growth stress in polycrystalline films -- 1.8.1 Compressive stress prior to island coalescence -- 1.8.2 Example: Influence of areal coverage -- 1.8.3 Tensile stress due to island contiguity -- 1.8.4 Compressive stress during continued growth -- 1.8.5 Correlations between final stress and grain structure -- 1.8.6 Other mechanisms of stress evolution -- 1.9 Consequences of stress in films -- 1.10 Exercises -- 2 Film stress and substrate curvature -- 2.1 The Stoney formula -- 2.1.1 Example: Curvature due to epitaxial strain -- 2.1.2 Example: Curvature due to thermal strain -- 2.2 Influence of film thickness on bilayer curvature.

2.2.1 Substrate curvature for arbitrary film thickness -- 2.2.2 Example: Maximum thermal stress in a bilayer -- 2.2.3 Historical note on thermostatic bimetals -- 2.3 Methods for curvature measurement -- 2.3.1 Scanning laser method -- 2.3.2 Multi-beam optical stress sensor -- 2.3.3 Grid reflection method -- 2.3.4 Coherent gradient sensor method -- 2.4 Layered and compositionally graded films -- 2.4.1 Nonuniform mismatch strain and elastic properties -- 2.4.2 Constant gradient mismatch strain -- 2.4.3 Example: Stress in compositionally graded films -- 2.4.4 Periodic multilayer film -- 2.4.5 Example: Overall thermoelastic response of a multilayer -- 2.4.6 Multilayer film with small total thickness -- 2.4.7 Example: Stress in a thin multilayer film -- 2.5 Geometrically nonlinear deformation range -- 2.5.1 Limit to the linear range -- 2.5.2 Axially symmetric deformation in the nonlinear range -- 2.6 Bifurcation in equilibrium shape -- 2.6.1 Bifurcation analysis with uniform curvature -- 2.6.2 Visualization of states of uniform curvature -- 2.6.3 Bifurcation for general curvature variation -- 2.6.4 A substrate curvature deformation map -- 2.6.5 Example: A curvature map for a Cu/Si system -- 2.7 Exercises -- 3 Stress in anisotropic and patterned films -- 3.1 Elastic anisotropy -- 3.2 Elastic constants of cubic crystals -- 3.2.1 Directional variation of effective modulus -- 3.2.2 Isotropy as a special case -- 3.3 Elastic constants of non-cubic crystals -- 3.4 Elastic strain in layered epitaxial materials -- 3.5 Film stress for a general mismatch strain -- 3.5.1 Arbitrary orientation of the film material -- 3.5.2 Example: Cubic thin film with a (111) orientation -- 3.6 Film stress from x-ray diffraction measurement -- 3.6.1 Relationship between stress and d-spacing -- 3.6.2 Example: Stress implied by measured d-spacing.

3.6.3 Stress-free d-spacing from asymmetric diffraction -- 3.6.4 Example: Determination of reference lattice spacing -- 3.7 Substrate curvature due to anisotropic films -- 3.7.1 Anisotropic thin film on an isotropic substrate -- 3.7.2 Aligned orthotropic materials -- 3.8 Piezoelectric thin film -- 3.8.1 Mismatch strain due to an electric field -- 3.8.2 Example: Substrate curvature due to an electric field -- 3.9 Periodic array of parallel film cracks -- 3.9.1 Plane strain curvature change due to film cracks -- 3.9.2 Biaxial curvature due to film cracks -- 3.10 Periodic array of parallel lines or stripes -- 3.10.1 Biaxial curvature due to lines -- 3.10.2 Volume averaged stress in terms of curvature -- 3.10.3 Volume averaged stress in a damascene structure -- 3.11 Measurement of stress in patterned thin films -- 3.11.1 The substrate curvature method -- 3.11.2 The x-ray diffraction method -- 3.11.3 Micro-Raman spectroscopy -- 3.12 Exercises -- 4 Delamination and fracture -- 4.1 Stress concentration near a film edge -- 4.1.1 A membrane film -- 4.1.2 Example: An equation governing interfacial shear stress -- 4.1.3 More general descriptions of edge stress -- 4.2 Fracture mechanics concepts -- 4.2.1 Energy release rate and the Griffith criterion -- 4.2.2 Example: Interface toughness of a laminated composite -- 4.2.3 Crack edge stress fields -- 4.2.4 Phase angle of the local stress state -- 4.2.5 Driving force for interface delamination -- 4.3 Work of fracture -- 4.3.1 Characterization of interface separation behavior -- 4.3.2 Effects of processing and interface chemistry -- 4.3.3 Effect of local phase angle on fracture energy -- 4.3.4 Example: Fracture resistance of nacre -- 4.4 Film delamination due to residual stress -- 4.4.1 A straight delamination front -- 4.4.2 Example: Delamination due to thermal strain.

4.4.3 An expanding circular delamination front -- 4.4.4 Phase angle of the stress concentration field -- 4.4.5 Delamination approaching a film edge -- 4.5 Methods for interface toughness measurement -- 4.5.1 Double cantilever test configuration -- 4.5.2 Four-point flexure beam test configuration -- 4.5.3 Compression test specimen configurations -- 4.5.4 The superlayer test configuration -- 4.6 Film cracking due to residual stress -- 4.6.1 A surface crack in a film -- 4.6.2 A tunnel crack in a buried layer -- 4.6.3 An array of cracks -- 4.6.4 Example: Cracking of an epitaxial film -- 4.7 Crack deflection at an interface -- 4.7.1 Crack deflection out of an interface -- 4.7.2 Crack deflection into an interface -- 4.8 Exercises -- Film buckling, bulging and peeling -- 5.1 Buckling of a strip of uniform width -- 5.1.1 Post-buckling response -- 5.1.2 Driving force for growth of delamination -- 5.1.3 Phase angle of local stress state at interface -- 5.1.4 Limitations for elastic-plastic materials -- 5.2 Buckling of a circular patch -- 5.2.1 Post-buckling response -- 5.2.2 Example: Temperature change for buckling of a debond -- 5.2.3 Driving force for delamination -- 5.2.4 Example: Buckling of an oxide film -- 5.3 Secondary buckling -- 5.4 Experimental observations -- 5.4.1 Edge delamination -- 5.4.2 Initially circular delamination -- 5.4.3 Effects of imperfections on buckling delamination -- 5.4.4 Example: Buckling instability of carbon films -- 5.5 Film buckling without delamination -- 5.5.1 Soft elastic substrate -- 5.5.2 Viscous substrate -- 5.5.3 Example: Buckling wavelength for a glass substrate -- 5.6 Pressurized bulge of uniform width -- 5.6.1 Small deflection bending response -- 5.6.2 Large deflection response -- 5.6.3 Membrane response -- 5.6.4 Mechanics of delamination -- 5.7 Circular pressurized bulge -- 5.7.1 Small deflection bending response.

5.7.2 Membrane response -- 5.7.3 Large deflection response -- 5.7.4 The influence of residual stress -- 5.7.5 Delamination mechanics -- 5.7.6 Bulge test configurations -- 5.8 Example: MEMS capacitive transducer -- 5.9 Film peeling -- 5.9.1 The driving force for delamination -- 5.9.2 Mechanics of delamination -- 5.10 Exercises -- 6 Dislocation formation in epitaxial systems -- 6.1 Dislocation mechanics concepts -- 6.1.1 Dislocation equilibrium and stability -- 6.1.2 Elastic field of a dislocation near a free surface -- 6.2 Critical thickness of a strained epitaxial film -- 6.2.1 The critical thickness criterion -- 6.2.2 Dependence of critical thickness on mismatch strain -- 6.2.3 Example: Critical thickness of a SiGe film on Si(001) -- 6.2.4 Experimental results for critical thickness -- 6.2.5 Example: Influence of crystallographic orientation on hcr -- 6.3 The isolated threading dislocation -- 6.3.1 Condition for advance of a threading dislocation -- 6.4 Layered and graded films -- 6.4.1 Uniform strained layer capped by an unstrained layer -- 6.4.2 Strained layer superlattice -- 6.4.3 Compositionally graded film -- 6.5 Model system based on the screw dislocation -- 6.5.1 Critical thickness condition for the model system -- 6.5.2 The influence of film-substrate modulus difference -- 6.5.3 Example: Modulus difference and dislocation formation -- 6.6 Nonplanar epitaxial systems -- 6.6.1 A buried strained quantum wire -- 6.6.2 Effect of a free surface on quantum wire stability -- 6.7 The influence of substrate compliance -- 6.7.1 A critical thickness estimate -- 6.7.2 Example: Critical thickness for a compliant substrate -- 6.7.3 Misfit strain relaxation due to a viscous underlayer -- 6.7.4 Force on a dislocation in a layer -- 6.8 Dislocation nucleation -- 6.8.1 Spontaneous formation of a surface dislocation loop.

6.8.2 Dislocation nucleation in a perfect crystal.
Özet:
This graduate textbook provides a comprehensive coverage of the mechanical properties of thin films, with practical examples and homework problems.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı:
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: