Quantum Dots : Research, Technology and Applications. için kapak resmi
Quantum Dots : Research, Technology and Applications.
Başlık:
Quantum Dots : Research, Technology and Applications.
Yazar:
Knoss, Randolf W.
ISBN:
9781607419327
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (709 pages)
İçerik:
QUANTUM DOTS: RESEARCH,TECHNOLOGY AND APPLICATIONS -- NOTICE TO THE READER -- CONTENTS -- PREFACE -- FEW-ELECTRON SEMICONDUCTOR QUANTUMDOTS IN MAGNETIC FIELD:THEORY AND METHODS -- Abstract -- 1. Introduction -- 2. 2D Semiconductor Quantum Dots -- 3. Parabolic Confinement Potential -- 4. Other Confinement Potentials -- 5. Theory -- 6. General Methods -- 7. Quantum Monte Carlo methods -- 7.1. Variational Monte Carlo Method -- 7.2. Diffusion Monte Carlo Method -- 8. The Simplest 2D Semiconductor Quantum Dot (N=2) -- 8.1. Exact Numerical Diagonalization -- 8.2. Variational Theory -- 9. Quantum Hall Limit -- 10. Generalized Description of Few-Electron SemiconductorQuantum Dots in an Arbitrary Perpendicular MagneticField -- 11. Conclusion -- References -- INVESTIGATIONS OF ELECTRONIC STATESIN SELF-ASSEMBLED INAS/GAASQUANTUM-DOT STRUCTURES -- Abstract -- 1. Introduction -- 2. Space-Charge Techniques -- 2.1. Capacitance-Voltage Spectroscopy -- 2.2. Deep-Level Transient Spectroscopy -- 2.3. Laplace-Transform Deep-Level Transient Spectroscopy -- 3. Coexistence of Deep Levels with Optically Active QuantumDots -- 3.1. Characterization of Electronic Structure by CV Spectroscopy -- 3.2. DLTS Characterization of Electronic Structure in Quantum-DotStructures -- 3.3. Fine Structures of the Deep Levels Probed with LDLTS -- 4. Effects of Rapid Thermal Annealing on QD Structures -- 4.1. Postgrowth Rapid Thermal Annealing -- 4.2. Effects of Annealing on PL Spectra -- 4.3. Effects of Annealing on DLTS Spectra -- 5. Electron Emissions from QD Intrinsic States -- 5.1. Preliminary Investigation of Carrier Emission from the Electronic Statesof Self-assembled InAs QDs by LDLTS -- 5.2. Electron Emission from QD Intrinsic States -- 6. Conclusion -- References.

CHEMICALLY DEPOSITED THIN FILMS OF CLOSEPACKED CADMIUM SELENIDE QUANTUM DOTS:PHOTOPHYSICS, OPTICAL AND ELECTRICALPROPERTIES -- Abstract -- 1. Introduction -- 2. The Chemical Synthetic Route to Nanostructured CdSe in ThinFilm Form -- 3. Structural Characterization of Close Packed CdSe QDs in ThinFilm Form -- 3.1. Identification and Estimation of the Average Crystal Size of theNanostructured CdSe Thin Films -- 4. Electronic Transitions and Optical Properties of theSynthesized Thin Films Composed by 3D Arrays of CdSeQuantum Dots -- 4.1. Band Structure Considerations for Macrocrystalline Cubic CdSe -- 4.2. The Influence of Size Quantization. A Simple Picture -- 4.3. Experimental Electronic Spectra of Nanostructured CdSe Thin Films.The Fundamental "Band-to-Band" Electronic Transitions -- 4.4. Size Evolution of the Fundamental "Interband" Electronic Transitions:Analysis of the Three-Dimensional Charge Carrier ConfinementEffects (Quantum Size Effects) -- 4.5. A Simple Explanation of Electronic Transitions Accounting for the Spin-Orbit Splitting of the Valence Band -- 4.6. The More Profound Physical Picture of Electronic Transitions,Accounting for the Hole Energy Levels Mixing -- 5. Charge-Carrier Transport Properties in Close Packed CdSeQuantum Dots Deposited as Thin Films Under EquilibriumConditions -- 5.1. Electrical Contact with the Nanostructured CdSe QD Thin Films -- 5.2. Determination of Type of Electrical Conductivity in Thin FilmsComposed of Close Packed Cadmium Selenide QDs -- 5.3. Temperature Dependence of the Equilibrium Conductivity of theNanostructured CdSe QD Thin Films -- 6. Photophysical Properties and Relaxation Dynamics inPhotoexcited CdSe Quantum Dots in Thin Film Form -- 6.1. The Spectral Dependence of Stationary Photoconductivity inNanostructured CdSe QD Thin Films.

6.2. Relaxation Dynamics of Non-equilibrium Charge Carriers inPhotoexcited CdSe Quantum Dots Deposited in Thin Film Form -- 6.3. Lux-Ampere Characteristics of the Photoconductive Thin Films. -- References -- NUMERICAL MODELLING OF SEMICONDUCTORQUANTUM DOT LIGHT EMITTERS FOR FIBEROPTIC COMMUNICATION AND SENSING -- Abstract -- 1. Introduction -- 2. Numerical Model -- 2.1. Description and Definitions -- 2.2. Multi-population Rate Equations for QD Lasers -- 2.3. Multi-population Rate Equations for QD SLDs -- 3. Numerical Results: QD Lasers -- 3.1. Static Characteristics of QD Lasers -- 3.2. Small Signal Analysis -- 3.3. Large Signal Analysis -- 4. Numerical Results: QD SLD -- 5. Limitations of the Model -- 6. Conclusion -- Acknowledgements -- References -- QUANTUM DOT TECHNOLOGY FORSEMICONDUCTOR BROADBAND LIGHT SOURCES -- Abstract -- 1. Introduction -- 1.1. Applications of Broadband Light Sources -- 1.2. Types of Broadband Light Sources -- 1.3. Quantum dots (QDs) vs. Higher Dimensional Systems -- 2. Methods to Increase the Spectral Bandwidth -- 2.1. Utilization of Ground and Excited QD Transitions -- 2.2. Quantum Dot (QD) Intermixing -- 2.3. Bandgap Engineering -- 2.4. Active Layer Optimization -- 3. Theoretical Calculation -- 3.1. Analytical Derivation - QD with Infinite Potential Barriers -- 3.2. Numerical Formulation - QD with Finite Potential Barriers -- 3.3. Results and Discussion -- 4. Optimization for High Quantum Dot Areal Density andWideband Emission -- 4.1. Experimental Details -- 4.2. Effect of Growth Conditions on QD Surface Morphology and OpticalProperties -- 4.3. Origins of High Radiative Efficiency and Wideband Emission -- 5. Potential Challenges -- 6. Conclusions -- Acknowledgements -- References -- QUANTUM DOTS IN MEDICINAL CHEMISTRYAND DRUG DEVELOPMENT -- Abstract -- Introduction -- An Introduction to Quantum Dots.

Quantum Dot Surface Chemistry -- Bioactivation of Quantum Dots -- Antibody Conjugated Quantum Dots -- 1. Quantum Dot Based Fluorescent Assays -- 2. Quantum Dot-Antibody Based Live Cell Assays -- Peptide Conjugated Quantum Dots -- Small Molecule Conjugated Quantum Dots -- Future Applications of Quantum Dots in Drug Development andMedicinal Chemistry -- Conclusion -- References -- STRAIN RELIEF AND NUCLEATION MECHANISMSOF INN QUANTUM DOTS -- Abstract -- I. Introduction -- II. Experimental -- III. Morphological Characterization -- IV. Nucleation -- V. Determination of the Degree of Plastic Relaxation -- III.1. Determination by Moiré Fringes -- III.2. Determination of the Density of Misfit Dislocations by High ResolutionTEM -- VI. Characterization of the Misfit Dislocations Network -- VII. Effect of the Growth of the GaN Capping Layer -- VII.1. Effect on the Morphology -- VII.2. Effect on the Strain State -- VIII. Conclusion -- References -- ELECTRONIC STRUCTURE AND PHYSICALPROPERTIES OF SEMICONDUCTOR QUANTUM DOTS -- Abstract -- I. Introduction -- II. Effective-Mass Envelope Function Model -- 2.1. Hole Effective-Mass Hamiltonian -- 2.2. Effective-Mass Theory in the Spherical Coordinate [27,28] -- 2.3. Effective-Mass Theory of Quantum Ellipsoids (Rods) [30] -- 2.5. Effective-Mass Theory of Narrow Gap Semiconductor Quantum Dots[31] -- 2.5. Effective-Mass Theory of Quantum Rods in the Electric Field [33,34] -- 2.6. Effective-Mass Theory of Quantum Dots in Magnetic Field [35] -- III. Polarization Properties of Emission -- IV. g Factors of Quantum Dots -- 4.1. g Factors of CdSe [37] and InSb [38] Quantum Dots -- 4.2. Electric Field Tunable Electron g Factor and Highly Anisotropic StarkEffect -- V. Giant Zeeman Splitting in DMS Quantum Dots -- 5.1. Giant Zeeman Splitting in ZnMnSe Quantum Spheres [40].

5.2. Anisotropic Giant Zeeman Splitting in InMnAs Quantum Dots [42] -- 5.3. Giant and Size-Sensitive g Factor in HgMnTe Quantum Spheres [43] -- VI. Curie Temperature of DMS Quantum Dots -- 6.1. Curie Temperature of ZnO Quantum Dots [46] -- 6.2. Anisotropic Curie Temperature of InMnAs Quantum Dots [49] -- VII. Summary -- Acknowledgments -- Appendix -- References -- GE NANOCLUSTERS IN GEO2 FILMS:SYNTHESIS, STRUCTURAL RESEARCHAND OPTICAL PROPERTIES -- Abstract -- Introduction -- Experimental -- Results and Discussion -- 1. Quantum Size Effects in Ge:GeO2 Films Visible by the Naked Eye -- 2. Transmittance Spectroscopy, Raman and Photoluminescence Studies -- 3. Thin (2D) Massifs of Ge NCs - HREM Studies -- 4. Elliposmetry Studies of Ge:GeO2 Films -- 5. Studies of Annealed Ge:GeO2 Films -- 6. Some Aspects of "Band Gap Engineering" of Ge:GeO2 Based Films and ItsPossible Applications -- Summary -- Acknowledgements -- References -- MODEL FOR THE COHERENT OPTICALMANIPULATION OF A SINGLE SPIN STATEIN A CHARGED QUANTUM DOT -- Abstract -- 1. Introduction -- 2. Dynamical Model -- 2.1. Theoretical Background -- 2.2. FDTD Numerical Implementation -- 3. Conclusion -- References -- SUB-DIFFRACTION QUANTUM DOT WAVEGUIDES -- Abstract -- Introduction -- Quantum Dot Waveguide Model -- Quantum Dot Gain Model -- Inter-Dot Coupling -- Waveguide Transmission -- Fabrication Methods -- DNA-Mediated Assembly Technique -- Two-Layer Assembly Technique -- Experimental Results -- Loss and Crosstalk Measurements -- Conclusion -- References -- THREE-DIMENSIONAL IMAGINGS OF THEINTRACELLULAR LOCALIZATION OF MRNA AND ITSTRANSCRIPT USING NANOCRYSTAL (QUANTUMDOT) AND CONFOCAL LASER SCANNINGMICROSCOPY TECHNIQUES -- Abstract -- Introduction -- Materials and Methods -- Tissue Preparation -- Biotinylation of Synthesized Oligonucleotide Probes for ISH.

Combined ISH and IHC Using HRP-DAB for the Detection of mRNA andQdot for the Detection of Protein.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Konu Başlığı:

Elektronik Erişim:
Click to View
Ayırtma: Copies: