Handbook of Silicon Based MEMS Materials and Technologies. için kapak resmi
Handbook of Silicon Based MEMS Materials and Technologies.
Başlık:
Handbook of Silicon Based MEMS Materials and Technologies.
Yazar:
Tilli, Markku.
ISBN:
9780815519881
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (669 pages)
Seri:
Micro and Nano Technologies
İçerik:
Front Cover -- Handbook of Silicon Based MEMS Materials and Technologies -- Copyright Page -- Contents -- Preface -- List of Contributors -- Overview -- Impact of Silicon MEMS-30 years after -- Introduction -- Towards Mass Volumes of MEMS Devices -- Ink Jet Printer Nozzles Create the Industry -- Automotive Applications Drive the Reliability and the Quality -- Leaps Towards a Generic Manufacturing Platform -- Towards Every Pocket -- Mobile Phones and Mobile Multimedia Computers -- Ubiquitous Sensing, Computing and Communication -- Future of MEMS Technologies -- Conclusions -- Acknowledgements -- References -- PART I: Silicon as MEMS Material -- Chapter 1 Properties of Silicon -- 1.1 Properties of Silicon -- References -- Chapter 2 Czochralski Growth of Silicon Crystals -- 2.1 The CZ Crystal-Growing Furnace -- 2.2 Stages of Growth Process -- 2.3 Issues of Crystal Growth -- 2.4 Improved Thermal and Gas Flow Designs -- 2.5 Heat Transfer -- 2.6 Melt Convection -- 2.7 Magnetic Fields -- 2.8 Hot Recharging -- References -- Further reading -- Chapter 3 Properties of Silicon Crystals -- 3.1 Dopants and Impurities -- 3.2 Typical Impurity Concentrations -- 3.3 Concentration of Dopants and Impurities in Axial Direction -- 3.4 Resistivity -- 3.5 Radial Variation of Impurities and Resistivity -- 3.6 Thermal Donors -- 3.7 Defects in Silicon Crystals -- 3.8 Control of Vacancies, Interstitials, and the OISF Ring -- 3.9 Conclusion -- Acknowledgments -- References -- Chapter 4 Oxygen in Silicon -- 4.1 Oxygen in Solid Solution -- 4.2 Formation of Small Oxygen Aggregates -- 4.3 Precipitation of Oxygen -- 4.4 Precipitate-Induced Defects -- 4.5 Behavior of Oxygen in Basic Heat Treatment Procedures -- References -- Chapter 5 Silicon Wafers: Preparation and Properties -- 5.1 Silicon Wafer Manufacturing Process -- 5.2 Standard Measurements of Polished Wafers.

5.3 Sample Specifications of MEMS Wafers -- 5.4 Standards of Silicon Wafers -- References -- Chapter 6 Epi Wafers: Preparation and Properties -- 6.1 Silicon Epitaxy-The Basics -- 6.2 The Epi-Poly Process -- 6.3 Etch Stop Layers -- 6.4 Epi on SOI Substrates -- 6.5 Selective Epitaxy and Epitaxial Layer Overgrowth -- 6.6 Metrology -- 6.7 Commercially Available Epitaxy Systems -- 6.8 Summary -- References -- Chapter 7 Thick-Film SOI Wafers: Preparation and Properties -- 7.1 Introduction -- 7.2 Overview of SOI -- 7.3 Silicon Wafer Parameters for Direct Bonding -- 7.4 Fabrication of Thick-Film BSOI by Mechanical Grinding and Polishing -- 7.5 BESOI Process -- 7.6 Techniques Based on Thin-Film SOI and Silicon Epitaxy -- 7.7 Conclusion -- References -- Chapter 8 Silicon Dioxides -- 8.1 Introduction -- 8.2 Growth Methods of Silicon Dioxide -- 8.3 Structure and Properties of Silicon Dioxides -- 8.4 Processing of Silicon Dioxides -- References -- PART II: Modeling in MEMS Methods -- Chapter 9 Multiscale Modeling -- 9.1 Microscopic and Macroscopic Equations -- 9.2 Computational Methods -- References -- Chapter 10 Manufacture and Processing of MEMS Structures -- 10.1 Introduction -- 10.2 Requirements for Modeling Micromachining -- 10.3 Micromachining As a Front Propagation Problem -- 10.4 Anisotropic Etching: Geometrical Simulators -- 10.5 Anisotropic Etching: Atomistic Simulators -- 10.6 A Survey of Etching Simulators -- References -- Chapter 11 Mechanical Properties of Silicon Microstructures -- 11.1 Basic Structural Properties of Crystalline Silicon -- 11.2 Dislocations in Silicon -- 11.3 Physical Mechanisms of Fracture in Silicon -- 11.4 Physical Mechanisms of Fatigue of Silicon -- References -- Additional References -- Chapter 12 Electrostatic and RF-Properties of MEMS Structures -- 12.1 Introduction -- 12.2 Model System for a Dynamic Micromechanical Device.

12.3 Electrical Equivalent Circuit -- 12.4 Electrostatic Force -- 12.5 Electromechanical Coupling -- 12.6 Sensing of Motion -- 12.7 Pull-in Phenomenon -- 12.8 Parasitic Capacitance -- 12.9 Effect of Built-in Potential on Capacitively Coupled MEMS-Devices -- 12.10 Further Effects of Electrostatic Nonlinearities from Applications Point of View -- 12.11 RF-Properties -- Acknowledgments -- References -- Chapter 13 Optical Modeling of MEMS -- 13.1 Optical Properties of Silicon and Related Materials -- 13.2. Theoretical Background -- 13.3 Numerical Modeling Methods for Optical MEMS -- References -- Chapter 14 Gas Damping in Vibrating MEMS Structures -- 14.1 Introduction -- 14.2 Damping Dominated by Gas Viscosity -- 14.3 First-Order Frequency Dependencies -- 14.4 Viscoacoustic Models -- 14.5 Simulation Tools -- References -- PART III: Measuring MEMS -- Chapter 15 Introduction to Measuring MEMS -- 15.1 On MEMS Measurements -- 15.2 Variation and Mapping -- 15.3 MEMS Measurement Challenges -- References -- Chapter 16 Silicon Wafer and Thin Film Measurements -- 16.1 Important Measurements -- 16.2 Wafer Shape -- 16.3 Resistivity -- 16.4 Thickness of Thin Films -- References -- Chapter 17 Optical Measurement of Static and Dynamic Displacement in MEMS -- 17.1 Camera-Based Measurements -- References -- Chapter 18 MEMS Residual Stress Characterization: Methodology and Perspective -- 18.1 Introduction -- 18.2 MEMS residual stress characterization techniques -- 18.3 Perspective and Conclusion -- References -- Chapter 19 Strength of Bonded Interfaces -- 19.1 Solid Mechanics -- 19.2 Double Cantilever Beam Test Method -- 19.3 Tensile Test Method -- 19.4 Blister Test Method -- 19.5 Chevron Test Structures -- 19.6 Summary and Outlook -- References -- Chapter 20 Focused Ion and Electron Beam Techniques -- 20.1 Brief Introduction to DualBeam Instrumentation.

20.2 FIB for Direct Milling and Deposition of Structures -- 20.3 SEM for Direct Deposition or Lithography of Structures -- 20.4 DualBeam Applications of FA and Characterization of MEMS Devices -- Reference -- Chapter 21 Oxygen and Bulk Microdefects in Silicon -- 21.1 Measuring Oxygen in Silicon -- 21.2 Measuring Bulk Microdefects -- References -- PART IV: Micromachining Technologies in MEMS -- Chapter 22 MEMS Lithography -- 22.1 Lithography Considerations Before Wafer Processing -- 22.2 Wafers in Lithography Process -- 22.3 Processing After Lithography -- 22.4 Thick Photoresist Lithography -- References -- Chapter 23 Deep Reactive Ion Etching -- 23.1 Etch Chemistries -- 23.2 Equipment -- 23.3 DRIE Processes -- 23.4 DRIE Advanced Issues and Challenges -- 23.5 DRIE Applications -- 23.6 Post-DRIE Etch Treatments -- 23.7 Choosing between Wet and Dry Etching -- References -- Chapter 24 Wet Etching of Silicon -- 24.1 Basic Description of Anisotropic Etching: Faceting -- 24.2 Beyond Faceting: Atomistic Phenomena -- 24.3 Beyond Atomistics: Electrochemistry -- 24.4 Typical Surface Morphologies (I. Zubel and M.A. Gosálvez) -- 24.5 Effects from Silicon Wafer Features (E. Viinikka) -- 24.6 Convex Corner Undercutting -- 24.7 Examples of Wet Etching -- 24.8 Popular Wet Etchants -- 24.9 Temperature Dependence of the Etch Rate -- 24.10. Concentration Dependence of the Etch Rate -- 24.11 Other Variables Affecting the Etch-Rate Values -- 24.12 Experimental Determination of Etch Rates -- 24.13 Converting Between Different Measures of Concentration -- References -- Chapter 25 Porous Silicon Based MEMS -- 25.1 Porous Silicon Background -- 25.2 PS Sacrificial Layer Technologies -- 25.3 PS Fabrication Technology -- 25.4 Microscopic Processes Underlying PS Formation -- 25.5 Formation of Silicon Microstructures -- 25.6 Application Examples -- 25.7 Summary and Conclusions.

References -- Chapter 26 Atomic Layer Deposition in MEMS Technology -- 26.1 Atomic Layer Deposition: An Introduction -- 26.2 Operation Principles of ALD -- 26.3 ALD Processes -- 26.4 Characteristics of ALD Processes and Films -- 26.5 ALD Reactors -- 26.6 Applications for ALD in MEMS -- 26.7 Outlook -- References -- Chapter 27 Metallic Glass -- 27.1 Introduction -- 27.2 Glassy/Amorphous Metals -- 27.3 Properties of Metallic Glasses -- 27.4 Microfabrication Ability of BMGs -- 27.5 Nanoforming Ability of Glassy Metals (Below 100 nm) -- 27.6 Applications of BMGs in MEMS -- 27.7 Metallic Glass Thin Films: A Pathway to Integrated MEMS -- 27.8 Micro/Nanofabrication Ability of Glassy Thin Films -- References -- Chapter 28 Surface Micromachining -- 28.1 Polycrystalline Silicon-Based Micromachining -- 28.2 Integration Concepts -- 28.3 Metallic MEMS -- 28.4 SOI-Wafer-Based Surface Micromachining -- References -- Chapter 29 Silicon Based BioMEMS: Micromachining Technologies -- 29.1 Introduction to Silicon Based BioMEMS Devices -- 29.2 Silicon BioMEMS for Health Care -- 29.3 Silicon BioMEMS for Biological Detection -- 29.4 Conclusions and Future Research Areas -- References -- PART V: Encapsulation of MEMS Components -- Chapter 30 Introduction to Encapsulation of MEMS -- 30.1 Early Work on Bulk-MEMS Devices -- 30.2 Encapsulation in Surface Micromachining -- 30.3 Protection of the MEMS Device -- 30.4 Controlled Atmosphere -- 30.5 Structural Functions -- 30.6 Wafer Bonding Methods -- 30.7 Sealing by Film Deposition -- 30.8 Via Technologies -- References -- Chapter 31 Silicon Direct Bonding -- 31.1 Hydrophilic High-Temperature Wafer Bonding -- 31.2 Hydrophobic High-Temperature Bonding of Silicon -- 31.3 Low-Temperature Direct Bonding of Silicon -- 31.4 Direct Bonding of CVD Oxides -- 31.5 Direct Bonding of CVD Silicon -- References -- Chapter 32 Anodic Bonding.

32.1 Introduction.
Özet:
A comprehensive guide to MEMS materials, technologies and manufacturing, examining the state of the art with a particular emphasis on current and future applications. Key topics covered include: Silicon as MEMS material Material properties and measurement techniques Analytical methods used in materials characterization Modeling in MEMS Measuring MEMS Micromachining technologies in MEMS Encapsulation of MEMS components Emerging process technologies, including ALD and porous silicon Written by 73 world class MEMS contributors from around the globe, this volume covers materials selection as well as the most important process steps in bulk micromachining, fulfilling the needs of device design engineers and process or development engineers working in manufacturing processes. It also provides a comprehensive reference for the industrial R&D and academic communities. Veikko Lindroos is Professor of Physical Metallurgy and Materials Science at Helsinki University of Technology, Finland. Markku Tilli is Senior Vice President of Research at Okmetic, Vantaa, Finland. Ari Lehto is Professor of Silicon Technology at Helsinki University of Technology, Finland. Teruaki Motooka is Professor at the Department of Materials Science and Engineering, Kyushu University, Japan. Provides vital packaging technologies and process knowledge for silicon direct bonding, anodic bonding, glass frit bonding, and related techniques Shows how to protect devices from the environment and decrease package size for dramatic reduction of packaging costs Discusses properties, preparation, and growth of silicon crystals and wafers Explains the many properties (mechanical, electrostatic, optical, etc), manufacturing, processing, measuring (incl. focused beam techniques), and multiscale modeling methods of MEMS structures.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: