Two dimensional material based field effect transistor for biosensing applications için kapak resmi
Two dimensional material based field effect transistor for biosensing applications
Başlık:
Two dimensional material based field effect transistor for biosensing applications
Yazar:
İnanç, Dilce, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xviii, 105 leaves: charts;+ 1 computer laser optical disc.
Özet:
This thesis presents research on the use of two-dimensional material graphene as an area-effective transistor and its application in biological fields. The formation of wrinkled and flat structures on the surface of a single-layer graphene area-effective transistor, epitaxially grown for determining the bio-membrane dynamics of graphene, was examined using two different methods of deposition (thermal evaporation and pulsed electron accumulation) of a silicon dioxide (SiO2) layer. The investigation aimed to evaluate the pH and lipid bilayer formation performance of both wrinkled and flat GFETs. Increased sensitivity was determined through electrical measurements, as the oxide layer becomes thinner due to the existence of wrinkles, thus providing electrostatic coating on graphene. A sensor platform of chemiresistor type was developed for the differential determination of volatile organic compounds (VOCs) by synthesizing single-layer, bilayer, and multilayer graphene, enabling the analysis of ethanol (EtOH) and methanol (MetOH). Sensors produced using three different graphene morphologies demonstrated differential MeOH-EtOH responses attributed to the differential intercalation phenomenon in multilayer graphene morphologies when compared to ethanol. For the detection of VOCs such as acetone, ethanol, and hexane in human breath, a polymer nanofiber/multi-walled carbon nanotube or poly (3,4-ethylenedioxythiophene)/gold (Au) and iron oxide (Fe) hybrid bioelectronic interface was developed. Sensitivity studies were conducted by applying pure VOCs at different concentrations to the sensor platforms, and the behavior of the sensor platforms against interfering elements was evaluated by recharacterizing them under CO2 and humidity conditions. Considering the responses of MWCNT-PLLCL-Fe-based sensors to acetone, ethanol, and hexane, the tendency of water molecules to adhere to the Fe surface was shown to decrease water condensation on the conductive layer compared to other sensor configurations, indicating that the humidity effect was minimized in MWCNT-PLLCL-Fe-based sensors.
Tek Biçim Eser Adı:
Thesis (Doctoral)--İzmir Institute of Technology:Photonics Science and Engineering.

İzmir Institute of Technology: Photonics--Thesis (Doctoral).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: