Lithium extraction from geothermal brine by adsorption method with electrolytic y-MnO2 sorbent için kapak resmi
Lithium extraction from geothermal brine by adsorption method with electrolytic y-MnO2 sorbent
Başlık:
Lithium extraction from geothermal brine by adsorption method with electrolytic y-MnO2 sorbent
Yazar:
Toprak, Seyra, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
x, 64 leaves: charts;+ 1 computer laser optical dis
Özet:
In recent years, studies on the recovery of lithium metal have attracted great attention due to its wide application areas, especially in lithium-ion batteries. Recovery of lithium from brines is preferred considering the environmental impacts in mining. The application of manganese oxide sorbents to recover lithium from geothermal brines has been extensively studied as it is a potential source of lithium. In this thesis, adsorption was performed in Tuzla Geothermal Power Plant (TGPP) at 87 °C and 2 bar using a mini-pilot system in the reactor near the reinjection well of the plant to investigate the adsorption performance in field conditions. As a new approach, electrolytic manganese dioxide (γ-MnO2), which is widely used as cathode material in batteries, was used as the sorbent material for lithium and its adsorption/desorption performance was investigated. Batch adsorption experiments were performed in synthetic lithium solution and the optimum working conditions were determined as pH 12, adsorbent concentration of 3 g/L, and initial lithium-ion concentration of 200 mg/L. The highest adsorption capacity of the sorbent in the Langmuir model was found as 9.74 mg/g. The maximum adsorption performance was obtained at 1h adsorption in Tuzla GPP. In the continuation of the study, desorption was carried out in acidic medium with the brine-treated sorbent. Lithium concentration was enriched to around 250 ppm with repetitive desorption studies. Reusability of the sorbent was investigated and the reused sorbent showed almost 40% performance compared to virgin powder. γ-MnO2 was found as a promising sorbent for the separation of lithium from geothermal brines.
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Materials Science and Engineering.

İzmir Institute of Technology: Materials Science and Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: