Generation and characterization of three dimensional organotypic KID syndrome skin model için kapak resmi
Generation and characterization of three dimensional organotypic KID syndrome skin model
Başlık:
Generation and characterization of three dimensional organotypic KID syndrome skin model
Yazar:
Öztürk, Özgür, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
x, 54 leaves:+ 1 computer laser optical disc.
Özet:
Keratitis, ichthyosis, deafness (KID) syndrome is a rare genetic disorder caused by connexin 26 gene mutation that shows quite debilitating and horrific effects on patients. Syndrome itself is complex and 2D culture methods fail to provide complex and close to real conditions to investigate KID syndrome. Our goal is to construct organotypic 3D skin model for the KID syndrome. First of all, stable cell lines expressing wild type and D50Y mutant Cx26 protein were generated. Immunostaining, Western blot and qRT-PCR analysis confirmed Cx26 expression in stable cell lines, meaning these cell lines can be utilized to construct 3D skin model. In order to generate organotypic KID syndrome skin models, commercially available transwell inserts were used. Constructs were prepared by plating fibroblast-collagen mixture in inserts and then plating generated stable cell lines on top of the fibroblast-collagen layer. Then immunostaining was performed on generated skin constructs. Immunostaining of cytokeratin 14 confirmed that 3D model has basal layer of the epidermis. Also, KID skin model with Whatman paper was conducted as an alternative to transwell inserts. Phalloidin staining results showed that generated cell lines formed 3D structures within cellulose fibers. Furthermore; Cx43-Cx26 interaction and cell viability were investigated in stable HaCaT cells. Western blot results showed that increase in Cx26 protein, wild type or mutant, caused an increase in Cx43 levels. According to MTT assay, increase of wild type or D50Y mutant Cx26 did not change cell viability. Overall with these findings, provides a new point of view for KID syndrome mechanism and treatment.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Molecular Biology and Genetics.

İzmir Institute of Technology: Molecular Biology and Genetics--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: