Evaluation of effective stiffness procedures in seismic design of reinforced concrete frames için kapak resmi
Evaluation of effective stiffness procedures in seismic design of reinforced concrete frames
Başlık:
Evaluation of effective stiffness procedures in seismic design of reinforced concrete frames
Yazar:
Şenol, Duygu, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xii, 103 leaves: charts;+ 1 computer laser
Özet:
This study investigates the success of the effective stiffness procedures defined for the design of reinforced concrete frames in seismic design regulations. The emphasis will be on the effort to model success relations. The origins of the effective stiffness approach could be identified in the effort to use the equal displacement rule for seismic design purposes. The equal displacement rules dictate that if a system's effective stiffness at the sustained drift levels could be identified, the linear and nonlinear system deflection demands are approximately equal. The nonlinear displacement response of a system could be obtained using this “estimated” stiffness value at the sustained displacement levels from the elastic analysis of the system. Hence, there is no consensus about defining the effective stiffness, and different approaches exist for its calculation. In this study, the effective stiffness approaches of the Turkish Earthquake Code (2018), Canadian Standards Association Design of Concrete Structures (CSA A.23.3-14), New Zealand Concrete Structures Standard (NZS3101-2006), Eurocode 8 (EN 1998-3), Building Code Requirement for Structural Concrete of American Concrete Institute (ACI318-19) and Sozen’s Method are investigated in terms of effort in their execution to the success of the result. In order to provide a comparison in reference to measured values, the evaluation is based on the shaking table tests of a ten-story-three-bay reinforced concrete frame model. The numerical analysis is performed using the OpenSees platform. The model is formed by defining nonlinear rotational springs at the element ends. The effective stiffness definitions are performed per each regulation, and the results are compared with the test results. Also, a suite of ground motions is selected, and time history analyses are performed using each effective stiffness approach. Results are compared in terms of the maximum and envelope drift levels of the frames obtained by each approach.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology:Civil Engineering.

İzmir Institute of Technology:Civil Engineering. --Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: