Wave generation and analysis in the laboratory wave channel to conduct experiments on the numerically modeled spar type floating wind turbine için kapak resmi
Wave generation and analysis in the laboratory wave channel to conduct experiments on the numerically modeled spar type floating wind turbine
Başlık:
Wave generation and analysis in the laboratory wave channel to conduct experiments on the numerically modeled spar type floating wind turbine
Yazar:
Aktaş, Kadir, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
x, 82 leaves: color illustrarions, charts;+ 1 computer laser optical disc.
Özet:
The oceans offer immense potential for harvesting sustainable wind energy, with stronger and steadier winds for locations further offshore. Since the feasibility of fixed-bottom offshore wind turbines decreases with increasing water depth, floating offshore wind turbines (FOWT) becomes a promising field of study. As part of a TÜBİTAK project (217M451) that investigates the dynamic performance of different FOWT designs under wind and wave loads, the necessary laboratory wave generation, analysis, and test set-up to conduct physical model experiments of a spar-type FOWT model is established in this study. An investigation of the wavemaker theory yielded that using first-order wavemaker solutions in the laboratory leads to the generation of spurious harmonic waves that do not appear in natural waves. Therefore, the second-order solutions are applied to the piston-type wave generator for a closer approximation of natural waves in laboratory conditions. A numerical model investigation of a reference spar-type FOWT is conducted to gain insights into spar design using ANSYS AQWA. The results indicate that the spar model dynamic responses are susceptible to low-frequency waves in pitch and surge degrees of freedom as its natural frequency lies in that region which further emphasizes the importance of generating laboratory waves using second-order wavemaker theory. Additionally, a spar-type floating platform is modeled at the 1/40 Froude scale, to use in the hydraulic model experiments. The wave measurement set-up is fully implemented and theoretically generated waves are measured for validation. In conclusion, regular and irregular wave generation and wave analysis in the time and the frequency domain could be possible in the wave channel of IZTECH Civil Engineering Hydraulic Laboratory.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Civil Engineering.

İzmir Institute of Technology: Civil Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: