Functional Properties of Bio-Inspired Surfaces : Characterization and Technological Applications. için kapak resmi
Functional Properties of Bio-Inspired Surfaces : Characterization and Technological Applications.
Başlık:
Functional Properties of Bio-Inspired Surfaces : Characterization and Technological Applications.
Yazar:
Favret, Eduardo A.
ISBN:
9789812837028
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (413 pages)
İçerik:
Contents -- Preface -- List of Contributors -- About the Editors -- I Functional Properties of Biological Surfaces -- Chapter 1. Biomimetics of Skins Julian F. V. Vincent -- Abstract -- 1. Introduction -- 2. Surface Hardening -- 3. Strain Sensors -- 4. Water Repellence -- 5. Color -- 6. Envoi -- References -- Chapter 2. The Shark Skin Effect AmyW. Lang -- Abstract -- 1. Introduction -- 2. Shark Skin Structure -- 3. Drag Reduction -- 3.1. Marine Animal Locomotion -- 3.2. Skin-Friction Reduction -- 3.3. Separation Control -- 4. Drag-Reducing Capabilities of the Skin on Fast-Swimming Sharks -- 5. Summary With Technological Applications -- Acknowledgments -- References -- Chapter 3. Lotus Effect: Superhydrophobicity and Self-Cleaning Michael Nosonovsky and Edward Bormashenko -- Abstract -- 1. Introduction -- 2. Superhydrophobic Surfaces in Nature -- 2.1. Leaves ofWater-Repellent Plants -- 2.2. Insect and BirdsWings -- 2.3. Insect Legs -- 3. Modeling Superhydrophobicity -- 3.1. Wetting of Flat and Rough Surfaces: The Governing Equations -- 3.1.1. The Young equation -- 3.1.2. The Wenzel and Cassie equations -- 3.2. Contact Angle Hysteresis -- 3.2.1. Definition of contact angle hysteresis -- 3.2.2. Empirical models of contact angle hysteresis -- 3.2.3. Simulation and semi-empirical models -- 3.3. Stability and the Cassie-Wenzel Transition -- 3.3.1. Vibration-induced transition -- 3.3.2. Transition during evaporation -- 3.3.3. Reversible superhydrophobicity -- 3.4. Role of Hierarchical Roughness -- 3.5. Dynamic Effects: Bouncing Drops -- 3.6. A Drop on an Inclined Surface -- 4. Self-Cleaning -- 5. Biomimetics: Artificial Superhydrophobic Surfaces -- 5.1. Micropatterned Surfaces Produced by Lithography and Other Methods -- 5.2. Evaporation Induced Honeycomb Polymer Surfaces -- 5.3. Commercially Available Lotus-Effect Products -- 6. Closure -- References.

Chapter 4. The Moth-Eye Effect - From Fundamentals to Commercial Exploitation Andreas Gombert and Benedikt Bläsi -- Abstract -- 1. Introduction -- 2. Theory -- 2.1. Effective Medium Theories (EMTs) for Subwavelength Gratings -- 3. Design Considerations -- 4. Manufacturing -- 4.1. Origination by Interference Lithography -- 4.2. Choice of Laser and Photoresist -- 4.3. Replication -- 5. Applications -- 6. Summary -- References -- Chapter 5. The Gecko Effect: Design Principles of the Gekkotan Adhesive System Across Scales of Organization Anthony P. Russell and Megan K. Johnson -- Abstract -- 1. Introduction -- 2. The Gecko Effect - How is Attachment Achieved? -- 3. Structure of the Setal Fields and the Anatomical Hierarchy on Which They Depend -- 4. Performance Aspects - Real-World Functional Demands in Relation to the Gecko Effect -- 5. Biomimetics - The Application of Design Principles to Exploitation of the Gecko Effect -- 6. Conclusions -- References -- II Characterization of Surfaces -- Chapter 6. Micro- and Nano-Scopic Observation of Biological Surfaces Zhaojie Zhang and Qun Ren -- Abstract -- 1. Introduction -- 2. Surface Observation Using Optical Microscopy -- 2.1. Light Microscopy -- 2.2. Laser Scanning Confocal Microscopy (LSCM) -- 3. Surface Observation Using Scanning Probe Microscopy (SPM) -- 3.1. AFM in Biological Surface Study and Topographic Analysis -- 3.2. Combination of AFMWith Confocal Microscopy -- 4. Surface Observation Using Electron Microscopy -- 4.1. SEM of Biological Surface -- 4.2. Environmental SEM (ESEM) ofWet Biological Samples -- 4.3. TEM Observation of the Inside of the Biological Surfaces -- Acknowledgments -- References -- Chapter 7. RIMAPS and Variogram Characterization of Micro-Nano Topography Néstor O. Fuentes and Eduardo A. Favret -- Abstract -- 1. Introduction to RIMAPS and Variogram Analysis.

1.1. Basic Concepts of RIMAPS Technique -- 1.1.1. Theory -- 1.1.2. Examples of using RIMAPS for ideal geometrical forms -- 1.1.3. Characterization of simple experimental surfaces using RIMAPS -- 1.2. Basic Concepts of Variogram Method -- 1.2.1. Variogram analysis -- 1.2.2. Examples of using Variogram for ideal geometrical forms -- 1.2.3. Characterization of simple experimental surfaces using Variogram -- 2. Micro-Nano Topography Characterization -- 2.1. Biological Surfaces -- 2.2. Technological Surfaces -- 3. Conclusions -- Acknowledgments -- References -- Chapter 8. Capillary Phenomena Gerardo Callegari and Adriana Calvo -- Abstract -- 1. Introduction -- 2. Wetting Properties: Surface Energy and Tension -- 2.1. Molecular Interactions -- 2.2. Adhesion and Cohesion -- 2.3. Wettability and Contact Angle -- 2.4. Liquid vs Solid Surface Energy: Measurement Techniques -- 2.4.1. Drop weight or drop detachment -- 2.4.2. Shape of the droplet -- 2.4.3. Ring -- 2.4.4. Fiber or plate -- 2.5. Components -- 2.6. Hysteresis of the Contact Angle -- 2.6.1. Classical approach: roughness and chemical heterogeneities -- 2.6.2. Metastable configurations -- 2.6.3. Vibrations and the global energy minimum (GEM) -- 2.6.4. Other sources of hysteresis: smooth and homogeneous surfaces -- 3. Capillarity -- 3.1. Dynamic Contact Angle -- 3.1.1. Hydrodynamic model -- 3.2. Molecular Approach -- 4. Liquid Films -- 4.1. Film Formation -- 4.2. Stability Criteria -- 4.2.1. Nanoscopic films (h < 10 nm) and spinodal dewetting -- 4.2.2. Macroscopic films -- 4.3. Dewetting of Planar Films -- 4.4. Cylindrical Films -- 4.4.1. Rayleigh instability -- 4.5. Annular Films Dewetting -- References -- Chapter 9. Chemical Characterization of Biological and Technological Surfaces Peter Kruse -- Abstract -- 1. Introduction -- 2. Sample Preparation -- 2.1. Freezing -- 2.2. Polishing -- 2.3. Sputtering.

3. Optical Spectroscopies (Photon Based) -- 3.1. Photon Sources -- 3.2. Infrared Spectroscopy -- 3.3. Surface Plasmon Resonance (SPR) -- 3.4. Raman Spectroscopy -- 3.5. Second Harmonic and Sum Frequency Generation (SHG and SFG) -- 3.6. X-ray Absorption Spectroscopy (XAS, NEXAFS, STXM, PEEM) -- 4. Electron Spectroscopies -- 4.1. UV Photoelectron Spectroscopy (UPS) -- 4.2. X-ray Photoelectron Spectroscopy (XPS, ESCA) -- 4.3. Auger Electron Spectroscopy (AES, SAM, PAES) -- 4.4. X-ray Fluorescence (EDS, EDX, WDX, XRF) -- 4.5. Electron Energy Loss Spectroscopy (EELS) -- 5. Particle Beams -- 5.1. Small Angle Neutron Scattering (SANS) -- 5.2. Positron Spectroscopy -- 5.3. Rutherford Backscattering Spectrometry (RBS) -- 5.4. Medium Energy Ion Scattering (MEIS) -- 5.5. Nuclear Reaction Analysis (NRA) -- 5.6. Particle-induced X-ray Emission (PIXE) -- 5.7. Mass Spectrometry -- 5.7.1. Dynamic secondary ion mass spectrometry (SIMS) -- 5.7.2. Static secondary ion mass spectrometry (SIMS) -- 5.7.3. Self-assembled monolayer desorption ionization mass spectrometry (SAMDI) -- 6. Proximity Probes -- 6.1. Elastic and Inelastic Tunneling Spectroscopy -- 6.2. Force and Chemical Force Spectroscopy -- 6.3. Scanning Electrochemical Microscopy (SECM) -- 6.4. Locally Enhanced Raman Effect -- 6.5. Nearfield Optical Methods -- 7. Summary -- Acknowledgment -- References -- III Methods for Modifying Man-Made Surfaces -- Chapter 10. Laser Interference Metallurgy Frank Mücklich and Andrés Fabián Lasagni -- Abstract -- 1. Introduction -- 2. Interference Principle -- 3. Design of Periodical Structures -- 4. Laser Interference Patterning System -- 5. Thermal Simulation -- 6. Practical Examples -- 6.1. Topographic Design in Bulk Metallic Substrates -- 6.2. Microstructure Design in Thin Metallic Films -- 6.2.1. Grain-size distribution and texture.

6.2.2. Long-range order intermetallic formation -- 6.3. Pattering of Polymeric Substrates -- 6.4. In Vitro Cell Response of Micropatterned Polymer Surface -- Acknowledgments -- References -- Chapter 11. Electrodeposition - Fundamental Aspects and Methods Stanko R. Brankovic -- Abstract -- 1. Introduction -- 2. Electrodeposition Kinetics -- 3. Overpotential Co-Deposition (OPCD) - Electrodeposition of Alloys -- 4. Underpotential Deposition (UPD) -- 5. Underpotential Co-Deposition (UPCD) -- 6. Metal Deposition by Galvanic Displacement of UPD ML (MLS) -- 7. Spontaneous Noble Metal on Noble Metal (NMonNM) Deposition -- 8. Pulse Current Deposition -- 9. Additive Effect -- 10. Specific Aspects of Electrodeposition into Nanotemplate Electrodes -- 11. Electrodeposition vs Surface Hydrophobicity -- Acknowledgment -- References -- Chapter 12. Surface Modification by Plasma-Based Processes Evangelina De Las Heras, Gabriel Ybarra, Iñigo Braceras and Pablo Corengia -- Abstract -- 1. Introduction -- 2. Classification of Plasmas -- 2.1. DC Discharges -- 2.2. RF Discharges -- 3. Modification of Functional Surface Properties by Plasma-Based Processes -- 3.1. Plasma Grafting and Polymerization -- 3.1.1. Grafting -- 3.1.2. Plasma polymerization -- 3.2. Physical Vapor Deposition (PVD) and Chemical Vapor Deposition (CVD) -- 3.3. Ion Beam Processes -- 4. Biomimetics -- 5. Applications -- 5.1. Surfaces with Improved Mechanical Properties -- 5.2. Antireflective Surfaces -- 5.3. Hydrophobic and Hydrophilic Surfaces -- 5.4. Biomolecule Immobilization -- 5.5. Biosensors -- 5.6. Sterilization -- 5.7. Antimicrobial Surfaces -- 5.8. Interaction with Living Tissue -- 5.9. Therapies and Drug Release -- 5.10. Treating Living Organisms -- 6. Conclusions -- Acknowledgment -- References -- Index.
Özet:
Many good books have been written recently on this new field called biomimetics or bionics, but few exploring simultaneously the characterization and technological processes to produce man-made surfaces with similar properties as the biological ones. Bio-inspired surface structures offer significant commercial potential for the creation of antireflective, self-cleaning and drag reducing surfaces, as well as new types of adhesive systems. This review volume explores how the current knowledge of the biological structures occurring on the surface of moth eyes, leaves, sharkskin, and the feet of reptiles can be transferred to functional technological materials. It analyses how such surfaces can be described and characterized using microscopic techniques and thus reproduced. It also encompasses the important areas of current surface replication techniques and the associated acquisition of good master structures. The book is divided in three sections: an introduction of the skin functions and four functional properties of biological surfaces; physical, chemical and microscopy techniques for describing and characterizing the surfaces; and replication techniques for modifying non-natural surfaces. Sample Chapter(s). Chapter 1: Biomimetics of Skins (1,776 KB). Contents: Biomimetics of Skins (J F V Vincent); The Shark Skin Effect (A W Lang); Lotus Effect: Superhydrophobicity and Self-Cleaning (M Nosonovsky & E Bormashenko); The Moth-Eye Effect - From Fundamentals to Commercial Exploitation (A Gombert & B Bläsi); The Gecko Effect: Design Principles of the Gekkotan Adhesive System Across Scales of Organization (A P Russel & M K Johnson); Micro- and Nano-Scopic Observation of Biological Surfaces (Z-J Zhang & Q Ren); RIMAPS and Variogram Characterization of Micro-Nano Topography (N O Fuentes & E A Favret); Capillary Phenomena (G Callegari & A Calvo); Chemical

Characterization of Biological and Technological Surfaces (P Kruse); Laser Interference Metallurgy (F Mücklich & A F Lasagni); Electrodeposition - Fundamental Aspects and Methods (S R Brankovic); Surface Modification by Plasma-Based Processes (E De Las Heras et al.). Readership: Academics and professionals in biomimetism and materials science.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: