Theory of Lift : Introductory Computational Aerodynamics in MATLAB/Octave. için kapak resmi
Theory of Lift : Introductory Computational Aerodynamics in MATLAB/Octave.
Başlık:
Theory of Lift : Introductory Computational Aerodynamics in MATLAB/Octave.
Yazar:
McBain, G. D.
ISBN:
9781118346297
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (343 pages)
Seri:
Aerospace Series ; v.66

Aerospace Series
İçerik:
Theory of Lift: Introductory Computational Aerodynamics in MATLAB®/Octave -- Contents -- Preface -- Acknowledgements -- References -- Series Preface -- PART ONE: PLANE IDEAL AERODYNAMICS -- 1 Preliminary Notions -- 1.1 Aerodynamic Force and Moment -- 1.1.1 Motion of the Frame of Reference -- 1.1.2 Orientation of the System of Coordinates -- 1.1.3 Components of the Aerodynamic Force -- 1.1.4 Formulation of the Aerodynamic Problem -- 1.2 Aircraft Geometry -- 1.2.1 Wing Section Geometry -- 1.2.2 Wing Geometry -- 1.3 Velocity -- 1.4 Properties of Air -- 1.4.1 Equation of State: Compressibility and the Speed of Sound -- 1.4.2 Rheology: Viscosity -- 1.4.3 The International Standard Atmosphere -- 1.4.4 Computing Air Properties -- 1.5 Dimensional Theory -- 1.5.1 Alternative methods -- 1.5.2 Example: Using Octave to Solve a Linear System -- 1.6 Example: NACA Report No. 502 -- 1.7 Exercises -- 1.8 Further Reading -- References -- 2 Plane Ideal Flow -- 2.1 Material Properties: The Perfect Fluid -- 2.2 Conservation of Mass -- 2.2.1 Governing Equations: Conservation Laws -- 2.3 The Continuity Equation -- 2.4 Mechanics: The Euler Equations -- 2.4.1 Rate of Change of Momentum -- 2.4.2 Forces Acting on a Fluid Particle -- 2.4.3 The Euler Equations -- 2.4.4 Accounting for Conservative External Forces -- 2.5 Consequences of the Governing Equations -- 2.5.1 The Aerodynamic Force -- 2.5.2 Bernoulli's Equation -- 2.5.3 Circulation, Vorticity, and Irrotational Flow -- 2.5.4 Plane Ideal Flows -- 2.6 The Complex Velocity -- 2.6.1 Review of Complex Variables -- 2.6.2 Analytic Functions and Plane Ideal Flow -- 2.6.3 Example: the Polar Angle Is Nowhere Analytic -- 2.7 The Complex Potential -- 2.8 Exercises -- 2.9 Further Reading -- References -- 3 Circulation and Lift -- 3.1 Powers of z -- 3.1.1 Divergence and Vorticity in Polar Coordinates -- 3.1.2 Complex Potentials.

3.1.3 Drawing Complex Velocity Fields with Octave -- 3.1.4 Example: k = 1, Corner Flow -- 3.1.5 Example: k = 0, Uniform Stream -- 3.1.6 Example: k = -1, Source -- 3.1.7 Example: k = -2, Doublet -- 3.2 Multiplication by a Complex Constant -- 3.2.1 Example: w = const., Uniform Stream with Arbitrary Direction -- 3.2.2 Example: w = i/z, Vortex -- 3.2.3 Example: Polar Components -- 3.3 Linear Combinations of Complex Velocities -- 3.3.1 Example: Circular Obstacle in a Stream -- 3.4 Transforming the Whole Velocity Field -- 3.4.1 Translating the Whole Velocity Field -- 3.4.2 Example: Doublet as the Sum of a Source and Sink -- 3.4.3 Rotating the Whole Velocity Field -- 3.5 Circulation and Outflow -- 3.5.1 Curve-integrals in Plane Ideal Flow -- 3.5.2 Example: Numerical Line-integrals for Circulation and Outflow -- 3.5.3 Closed Circuits -- 3.5.4 Example: Powers of z and Circles around the Origin -- 3.6 More on the Scalar Potential and Stream Function -- 3.6.1 The Scalar Potential and Irrotational Flow -- 3.6.2 The Stream Function and Divergence-free Flow -- 3.7 Lift -- 3.7.1 Blasius's Theorem -- 3.7.2 The Kutta-Joukowsky Theorem -- 3.8 Exercises -- 3.9 Further Reading -- References -- 4 Conformal Mapping -- 4.1 Composition of Analytic Functions -- 4.2 Mapping with Powers of ζ -- 4.2.1 Example: Square Mapping -- 4.2.2 Conforming Mapping by Contouring the Stream Function -- 4.2.3 Example: Two-thirds Power Mapping -- 4.2.4 Branch Cuts -- 4.2.5 Other Powers -- 4.3 Joukowsky's Transformation -- 4.3.1 Unit Circle from a Straight Line Segment -- 4.3.2 Uniform Flow and Flow over a Circle -- 4.3.3 Thin Flat Plate at Nonzero Incidence -- 4.3.4 Flow over the Thin Flat Plate with Circulation -- 4.3.5 Joukowsky Aerofoils -- 4.4 Exercises -- 4.5 Further Reading -- References -- 5 Flat Plate Aerodynamics -- 5.1 Plane Ideal Flow over a Thin Flat Plate.

5.1.1 Stagnation Points -- 5.1.2 The Kutta-Joukowsky Condition -- 5.1.3 Lift on a Thin Flat Plate -- 5.1.4 Surface Speed Distribution -- 5.1.5 Pressure Distribution -- 5.1.6 Distribution of Circulation -- 5.1.7 Thin Flat Plate as Vortex Sheet -- 5.2 Application of Thin Aerofoil Theory to the Flat Plate -- 5.2.1 Thin Aerofoil Theory -- 5.2.2 Vortex Sheet along the Chord -- 5.2.3 Changing the Variable of Integration -- 5.2.4 Glauert's Integral -- 5.2.5 The Kutta-Joukowsky Condition -- 5.2.6 Circulation and Lift -- 5.3 Aerodynamic Moment -- 5.3.1 Centre of Pressure and Aerodynamic Centre -- 5.4 Exercises -- 5.5 Further Reading -- References -- 6 Thin Wing Sections -- 6.1 Thin Aerofoil Analysis -- 6.1.1 Vortex Sheet along the Camber Line -- 6.1.2 The Boundary Condition -- 6.1.3 Linearization -- 6.1.4 Glauert's Transformation -- 6.1.5 Glauert's Expansion -- 6.1.6 Fourier Cosine Decomposition of the Camber Line Slope -- 6.2 Thin Aerofoil Aerodynamics -- 6.2.1 Circulation and Lift -- 6.2.2 Pitching Moment about the Leading Edge -- 6.2.3 Aerodynamic Centre -- 6.2.4 Summary -- 6.3 Analytical Evaluation of Thin Aerofoil Integrals -- 6.3.1 Example: the NACA Four-digit Wing Sections -- 6.4 Numerical Thin Aerofoil Theory -- 6.5 Exercises -- 6.6 Further Reading -- References -- 7 Lumped Vortex Elements -- 7.1 The Thin Flat Plate at Arbitrary Incidence, Again -- 7.1.1 Single Vortex -- 7.1.2 The Collocation Point -- 7.1.3 Lumped Vortex Model of the Thin Flat Plate -- 7.2 Using Two Lumped Vortices along the Chord -- 7.2.1 Postprocessing -- 7.3 Generalization to Multiple Lumped Vortex Panels -- 7.3.1 Postprocessing -- 7.4 General Considerations on Discrete Singularity Methods -- 7.5 Lumped Vortex Elements for Thin Aerofoils -- 7.5.1 Panel Chains for Camber Lines -- 7.5.2 Implementation in Octave -- 7.5.3 Comparison with Thin Aerofoil Theory.

7.6 Disconnected Aerofoils -- 7.6.1 Other Applications -- 7.7 Exercises -- 7.8 Further Reading -- References -- 8 Panel Methods for Plane Flow -- 8.1 Development of the CUSSSP Program -- 8.1.1 The Singularity Elements -- 8.1.2 Discretizing the Geometry -- 8.1.3 The Influence Matrix -- 8.1.4 The Right-hand Side -- 8.1.5 Solving the Linear System -- 8.1.6 Postprocessing -- 8.2 Exercises -- 8.2.1 Projects -- 8.3 Further Reading -- References -- 8.4 Conclusion to Part I: The Origin of Lift -- PART TWO: THREE-DIMENSIONAL IDEAL AERODYNAMICS -- 9 Finite Wings and Three-Dimensional Flow -- 9.1 Wings of Finite Span -- 9.1.1 Empirical Effect of Finite Span on Lift -- 9.1.2 Finite Wings and Three-dimensional Flow -- 9.2 Three-Dimensional Flow -- 9.2.1 Three-dimensional Cartesian Coordinate System -- 9.2.2 Three-dimensional Governing Equations -- 9.3 Vector Notation and Identities -- 9.3.1 Addition and Scalar Multiplication of Vectors -- 9.3.2 Products of Vectors -- 9.3.3 Vector Derivatives -- 9.3.4 Integral Theorems for Vector Derivatives -- 9.4 The Equations Governing Three-Dimensional Flow -- 9.4.1 Conservation of Mass and the Continuity Equation -- 9.4.2 Newton's Law and Euler's Equation -- 9.5 Circulation -- 9.5.1 Definition of Circulation in Three Dimensions -- 9.5.2 The Persistence of Circulation -- 9.5.3 Circulation and Vorticity -- 9.5.4 Rotational Form of Euler's Equation -- 9.5.5 Steady Irrotational Motion -- 9.6 Exercises -- 9.7 Further Reading -- References -- 10 Vorticity and Vortices -- 10.1 Streamlines, Stream Tubes, and Stream Filaments -- 10.1.1 Streamlines -- 10.1.2 Stream Tubes and Stream Filaments -- 10.2 Vortex Lines, Vortex Tubes, and Vortex Filaments -- 10.2.1 Strength of Vortex Tubes and Filaments -- 10.2.2 Kinematic Properties of Vortex Tubes -- 10.3 Helmholtz's Theorems -- 10.3.1 'Vortex Tubes Move with the Flow'.

10.3.2 'The Strength of a Vortex Tube is Constant' -- 10.4 Line Vortices -- 10.4.1 The Two-dimensional Vortex -- 10.4.2 Arbitrarily Oriented Rectilinear Vortex Filaments -- 10.5 Segmented Vortex Filaments -- 10.5.1 The Biot-Savart Law -- 10.5.2 Rectilinear Vortex Filaments -- 10.5.3 Finite Rectilinear Vortex Filaments -- 10.5.4 Infinite Straight Line Vortices -- 10.5.5 Semi-infinite Straight Line Vortex -- 10.5.6 Truncating Infinite Vortex Segments -- 10.5.7 Implementing Line Vortices in Octave -- 10.6 Exercises -- 10.7 Further Reading -- References -- 11 Lifting Line Theory -- 11.1 Basic Assumptions of Lifting Line Theory -- 11.2 The Lifting Line, Horseshoe Vortices, and the Wake -- 11.2.1 Deductions from Vortex Theorems -- 11.2.2 Deductions from the Wing Pressure Distribution -- 11.2.3 The Lifting Line Model of Air Flow -- 11.2.4 Horseshoe Vortex -- 11.2.5 Continuous Trailing Vortex Sheet -- 11.2.6 The Form of the Wake -- 11.3 The Effect of Downwash -- 11.3.1 Effect on the Angle of Incidence: Induced Incidence -- 11.3.2 Effect on the Aerodynamic Force: Induced Drag -- 11.4 The Lifting Line Equation -- 11.4.1 Glauert's Solution of the Lifting Line Equation -- 11.4.2 Wing Properties in Terms of Glauert's Expansion -- 11.5 The Elliptic Lift Loading -- 11.5.1 Properties of the Elliptic Lift Loading -- 11.6 Lift-Incidence Relation -- 11.6.1 Linear Lift-Incidence Relation -- 11.7 Realizing the Elliptic Lift Loading -- 11.7.1 Corrections to the Elliptic Loading Approximation -- 11.8 Exercises -- 11.9 Further Reading -- References -- 12 Nonelliptic Lift Loading -- 12.1 Solving the Lifting Line Equation -- 12.1.1 The Sectional Lift-Incidence Relation -- 12.1.2 Linear Sectional Lift-Incidence Relation -- 12.1.3 Finite Approximation: Truncation and Collocation -- 12.1.4 Computer Implementation -- 12.1.5 Example: a Rectangular Wing.

12.2 Numerical Convergence.
Özet:
Starting from a basic knowledge of mathematics and mechanics gained in standard foundation classes, Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave takes the reader conceptually through from the fundamental mechanics of lift  to the stage of actually being able to make practical calculations and predictions of the coefficient of lift for realistic wing profile and planform geometries. The classical framework and methods of aerodynamics are covered in detail and the reader is shown how they may be used to develop simple yet powerful MATLAB or Octave programs that accurately predict and visualise the dynamics of real wing shapes, using lumped vortex, panel, and vortex lattice methods. This book contains all the mathematical development and formulae required in standard incompressible aerodynamics as well as dozens of small but complete working programs which can be put to use immediately using either the popular MATLAB or free Octave computional modelling packages. Key features: Synthesizes the classical foundations of aerodynamics with hands-on computation, emphasizing interactivity and visualization. Includes complete source code for all programs, all listings having been tested for compatibility with both MATLAB and Octave. Companion website (www.wiley.com/go/mcbain) hosting codes and solutions. Theory of Lift: Introductory Computational Aerodynamics in MATLAB/Octave is an introductory text for graduate and senior undergraduate students on aeronautical and aerospace engineering courses and also forms a valuable reference for engineers and designers.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: