Magnetic Cell Separation. için kapak resmi
Magnetic Cell Separation.
Başlık:
Magnetic Cell Separation.
Yazar:
Zborowski, Maciej.
ISBN:
9780080553504
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (473 pages)
Seri:
Laboratory Techniques in Biochemistry and Molecular Biology ; v.32

Laboratory Techniques in Biochemistry and Molecular Biology
İçerik:
Front Cover -- Magnetic Cell Separation -- Copyright Page -- Contents -- Preface -- Chapter 1: Magnetic susceptibility -- 1.1. Mass and volume magnetic susceptibilities -- 1.2. Molar magnetic susceptibility -- 1.3. Magnetic susceptibilities in CGS and SI systems of units -- 1.4. Bulk magnetic susceptibility of a mixture -- 1.5. Volume magnetic susceptibility and Bohr magneton -- 1.6. Multiphase magnetic suspensions -- 1.7. Magnetic phase separation -- 1.7.1. Stationary fluid -- 1.7.2. Laminar flow -- References -- Chapter 2: Magnetic formulary -- 2.1. Langevin theory of paramagnetism -- 2.2. Paramagnetic substances: lanthanide solutions -- 2.3. Paramagnetic substances: hemoglobin and its derivatives -- 2.4. Superparamagnetic particles and ferrofluids -- 2.5. Ferromagnetism and magnetic properties of iron -- 2.6. Diamagnetism -- 2.7. Magnetic field vectors -- 2.8. Magnetic field magnitude -- 2.9. Magnetic field sources -- 2.10. Field gradients -- 2.11. Magnetic field lines -- 2.12. Magnetic field in matter -- References -- Chapter 3: Maxwell stress and magnetic force -- 3.1. Introduction -- 3.2. Magnetic force density and the body force -- 3.3. Magnetic force acting on a small, magnetically susceptible particle (diamagnetic and paramagnetic materials) -- 3.4. Magnetic force on a small particle acting as a permanent magnetic dipole (ferromagnetic materials) -- 3.5. Potential energy of an elementary magnetic dipole -- 3.6. Magnetic field-induced particle motion -- 3.7. Magnetic pathlines -- 3.8. Cell deposition contour surfaces -- References -- Chapter 4: Basic magnetic field configurations -- 4.1. Introduction -- 4.2. Infinite cylinder -- 4.3. Sphere and a stack of spheres -- 4.4. Interpolar gap -- 4.5. Isodynamic field -- 4.6. Quadrupole field -- 4.7. Other magnet configurations -- References -- Chapter 5: Magnetophoresis.

5.1. Magnetophoretic mobility -- 5.1.1. Cross-section for magnetic capture -- References -- Chapter 6: Synthesis and characterization of nano- and micron-sized iron oxide and iron particles for biomedic -- 6.1. Introduction -- 6.2. Maghemite nanoparticles of narrow size distribution -- 6.2.1. Synthesis and characterization -- 6.2.2. Surface modification -- 6.2.3. Biomedical applications -- 6.2.4. MRI contrast agents -- 6.2.5. X-ray contrast agents -- 6.3. Air-stable iron nanocrystalline particles -- 6.3.1. Conclusions -- 6.4. Solid and hollow maghemite/polystyrene and silica/maghemite/polystyrene micron-sized composite particles of narro -- 6.4.1. Synthesis and characterization of solid and hollow microspheres -- 6.4.2. Synthesis of immunomagnetic microspheres for specific removal of ASA and sperm cells -- 6.5. Magnetic/nonmagnetic polystyrene/poly(methyl methacrylate) hemispherical composite micron-sized particles -- Summary -- References -- Chapter 7: The biocompatibility and toxicity of magnetic particles -- 7.1. Introduction -- 7.2. Definition of toxicity and biocompatibility -- 7.2.1. Biomaterials classifications -- 7.3. Particle characteristics that influence toxicity -- 7.3.1. Particle size -- 7.3.2. Particle surface properties -- 7.3.3. Promotion of oxidative processes -- 7.3.4. Leachables -- 7.4. Testing for particle toxicity and biocompatibility -- 7.4.1. Toxicity testing in vitro, in vivo and in silico -- 7.4.2. In vitro biocompatibility and toxicity testing procedures -- 7.4.3. In vivo biocompatibility and toxicity testing procedures -- 7.5. Immunogenicity of biological targeting reagents -- 7.5.1. Immune response system elements -- 7.5.2. Types of hypersensitivity reactions -- 7.6. Legal standards for toxicity testing -- 7.6.1. Efforts to develop risk-based safety evaluations for nanomaterials in the United States.

7.6.2. Efforts to develop risk-based safety evaluations for nanomaterials in Europe -- 7.6.3. Efforts to develop risk-based safety evaluations for nanomaterials in Japan -- 7.7. Conclusions -- References -- Chapter 8: Analytical magnetic techniques in biology -- 8.1. Introduction -- 8.2. Measurements of magnetic susceptibility -- 8.3. Measurements of magnetophoretic mobility: cell-tracking velocimetry (CTV) -- 8.4. Simultaneous measurements of sedimentation rate and magnetophoretic mobility -- 8.5. Magnetophoretic mobility and antibody binding capacity (ABC) -- 8.6. Antibody-magnetic nanoparticle binding to cells -- 8.7. Effect of antibody labeling concentration (antibody titration) on magnetophoretic mobility -- References -- Chapter 9: Preparative applications of magnetic separation in biology and medicine -- 9.1. Introduction -- 9.1.1. Types of methodologies used in magnetic cell separation -- 9.1.2. Types of entities targeted for magnetic cell separation -- 9.1.3. Measures of performance -- 9.2. Examples of positive selection -- 9.3. Depletion of undesirable cells -- 9.4. Enrichment of rare cells by depletion of normal cells -- References -- Chapter 10: Commercial magnetic cell separation instruments and reagents -- 10.1. Invitrogen DYNAL Magnetic Particle Concentrator -- 10.2. R&D Systems Immunicon MagCellect TM Ferrofluid -- 10.3. Miltenyi Biotec GmbH -- 10.4. StemCell Technologies, Inc. -- 10.4.1. Positive cell selection -- 10.4.2. Negative selection -- 10.5. Immunicon Corporation -- 10.6. BD Biosciences -- References -- Chapter 11: Worked examples of cell sample preparation and magnetic separation procedures -- 11.1. Dynalreg T Cell Negative Isolation Kit -- 11.1.1. Principle of isolation -- 11.1.2. Description of materials -- 11.1.3. Protocols -- 11.2. Dynal CD34 Progenitor Cell Selection System -- 11.2.1. Principle of isolation.

11.2.2. Description of materials -- 11.2.3. Protocols -- 11.3. Miltenyi Biotec MACSreg T Cell Isolation Kit II (human) -- 11.3.1. Principle of MACSreg separation -- 11.3.2. Background and product applications -- 11.3.3. Reagent and instrument requirements -- 11.3.4. Protocols -- 11.4. Miltenyi Biotec Direct CD34 Progenitor Cell Isolation Kit -- 11.4.1. Research applications of CD34 progenitor cells -- 11.4.2. Isolation strategy -- 11.4.3. Components -- 11.4.4. Equipment required -- 11.4.5. Protocols -- 11.5. MACS Progenitor Cell Kit performance evaluation -- 11.5.1. Materials and methods -- 11.5.2. Results -- 11.6. Post-separation analyses in other magnetic separation systems -- 11.6.1. Progenitor cell purity analysis by flow cytometry -- 11.6.2. Progenitor cell yield (recovery) and nonprogenitor cells retention frequency analysis by cell counter -- 11.6.3. Progenitor cell morphology analysis by cytospin and microscope -- 11.6.4. Progenitor cell function analysis by cell colony forming unit (CFU) assay -- 11.7. Companies and brand names mentioned in Chapters 11 and 12 -- References -- Chapter 12: New challenges and opportunities -- 12.1. Introduction -- 12.2. Magnetophoresis and magnetic capture of malaria-infected erythrocytes -- 12.3. Magnetic flow cell sorting -- 12.3.1. Continuous cell sorting in the quadrupole field -- 12.3.2. Predicted sorter output based on cell magnetophoresis -- 12.3.3. Calculation of cell recovery and purity of QMS separation -- 12.3.4. Determination of the flow rate parameters for high resolving power and throughput separation -- 12.3.5. The cell model system -- 12.3.6. Analysis of cell fluorescence intensity distribution by FCM -- 12.3.7. Analysis of the cell magnetophoretic mobility distribution by CTV -- 12.3.8. Comparison of magnetic and fluorescent cell fractions -- 12.3.9. Flow rate optimization.

12.3.10. Sorted cell assay by both FCM and CTV -- 12.3.11. Experimental verification of the predicted decrease of CD34+ cell recovery with the increasing Q(a)/Q -- 12.3.12. CD34- cell nonspecific crossover decreases with the increasing Q(a)/Q -- 12.3.13. CD34+ cell purity increases with the increasing Q(a)/Q -- 12.3.14. Mean CD34+ cell fluorescence intensity increases with the increasing Q(a)/Q -- 12.4. Magnetic field-flow fractionation -- 12.4.1. Field-flow fractionation -- 12.4.2. Separation in parallel plate channels -- 12.4.3. Separation in cylindrical and annular channels -- 12.4.4. Earlier implementations of magnetic FFF -- 12.4.5. Interaction of particles with fields -- 12.4.6. Force on particles in a magnetic field -- 12.4.7. Theory for retention in quadrupole MgFFF -- References -- Appendix A: Nomenclature, abbreviations, units, and conversion factors -- A.1. Nomenclature -- A.2. Abbreviations -- A.3. Selected units and conversion factors. -- Appendix B: Vector notation -- References -- Appendix C: Magnetic body force and the Maxwell stresses -- C.1. Magnetic body force and the Maxwell stresses -- C.2. Maxwell stress on a sphere -- C.3. Magnetic force on a particle in the limit of small particle size -- C.4. Elastic body, discrete surface magnetization -- References -- Appendix D: Volume magnetic susceptibilities of selected substances -- References -- Index.
Özet:
Cell separation is at the core of current methods in experimental biology and medicine. Its importance is illustrated by the large number of physical and biochemical principles that have been evaluated for application to cell separation. The development of cell separation methods is driven by the needs of biological and medical research, and the ever-increasing demands for sensitivity, selectivity, yield, timeliness and economy of the process. The interdisciplinary nature of research in this area and the volume of information available in research publications and conferences necessitates a basic description of the fundamental processes involved in magnetic cell separation that may help the user in navigating this wealth of information available online and in scientific publications. This book will appeal to researchers in many areas utilizing this technique, including those working in cell biology, clinical research, inorganic chemistry, biochemistry, chemical engineering, materials science, physics and electrical engineering. Provides examples of how to calculate the volume magnetic susceptibility, a fundamental quantity for calculating the magnetic force acting on a cell, from various types of magnetic susceptibilities available in literature Introduces the elements of magnetostatics as they apply to cell magnetization and the magnetization of magnetic micro- and nano- particles used for cell separation Describes the parameters used to determine cell magnetophoresis.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: