Copper Zinc Tin Sulfide-Based Thin Film Solar Cells. için kapak resmi
Copper Zinc Tin Sulfide-Based Thin Film Solar Cells.
Başlık:
Copper Zinc Tin Sulfide-Based Thin Film Solar Cells.
Yazar:
Ito, Kentaro.
ISBN:
9781118437858
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (452 pages)
İçerik:
Title Page -- Copyright Page -- Contents -- Preface -- List of Contributors -- Part I Introduction -- Chapter 1 An Overview of CZTS-Based Thin-Film Solar Cells -- 1.1 Introduction -- 1.2 The Photovoltaic Effect -- 1.3 In Pursuit of an Optimal Semiconductor for Photovoltaics -- 1.4 Conclusions -- Acknowledgements -- References -- Chapter 2 Market Challenges for CZTS-Based Thin-Film Solar Cells -- 2.1 Introduction -- 2.2 Compound Thin-Film Technologies and Manufacturing -- 2.3 Challenges for CZTS Solar Cells in the Market -- 2.4 Conclusion -- References -- Part II The Physics and Chemistry of Quaternary Chalcogenide Semiconductors -- Chapter 3 Crystallographic Aspects of Cu2ZnSnS4 (CZTS) -- 3.1 Introduction: What Defines a Crystal Structure? -- 3.2 The Crystal Structure of CZTS -- 3.3 Point Defects in CZTS and the Role of Stoichiometry -- 3.4 Differentiation between Intergrown Kesterite- and Stannite-Type Phases: A Simulational Approach -- 3.5 Summary -- References -- Chapter 4 Electronic Structure and Optical Properties from First-Principles Modeling -- 4.1 Introduction -- 4.2 Computational Background -- 4.3 Crystal Structure -- 4.4 Electronic Structure -- 4.5 Optical Properties -- 4.6 Summary -- Acknowledgements -- References -- Chapter 5 Kesterites: Equilibria and Secondary Phase Identification -- 5.1 Introduction -- 5.2 Chemistry of the Kesterite Reaction -- 5.3 Phase Identification -- Acknowledgements -- References -- Chapter 6 Growth of CZTS Single Crystals -- 6.1 Introduction -- 6.2 Growth Process -- 6.3 Properties of CZTS Single Crystals -- 6.4 Conclusion -- Acknowledgements -- References -- Chapter 7 Physical Properties: Compiled Experimental Data -- 7.1 Introduction -- 7.2 Structural Properties -- 7.3 Thermal Properties -- 7.4 Mechanical and Lattice Dynamic Properties -- 7.5 Electronic Energy-Band Structure -- 7.6 Optical Properties.

7.7 Carrier Transport Properties -- References -- Part III Synthesis of Thin Films and Their Application to Solar Cells -- Chapter 8 Sulfurization of Physical Vapor-Deposited Precursor Layers -- 8.1 Introduction -- 8.2 First CZTS Thin-Film Solar Cells -- 8.3 ZnS as Zn-Source in Precursor -- 8.4 Influence of Absorber Thickness -- 8.5 New Sulfurization System -- 8.6 Influence of Morphology -- 8.7 Co-Sputtering System with Annealing Chamber -- 8.8 Active Composition -- 8.9 CZTS Compound Target -- 8.10 Conclusions -- References -- Chapter 9 Reactive Sputtering of CZTS -- 9.1 Introduction -- 9.2 The Reactive Sputtering Process -- 9.3 Properties of Sputtered Precursors -- 9.4 Annealing of Sputtered Precursors -- 9.5 Device Performance -- 9.6 Summary -- References -- Chapter 10 Coevaporation of CZTS Films and Solar Cells -- 10.1 Introduction -- 10.2 Basic Principles -- 10.3 Process Variations -- Acknowledgements -- References -- Chapter 11 Synthesis of CZTSSe Thin Films from Nanocrystal Inks -- 11.1 Introduction -- 11.2 Nanocrystal Synthesis -- 11.3 Nanocrystal Characterization -- 11.4 Sintering -- 11.5 Conclusion -- References -- Chapter 12 CZTS Thin Films Prepared by a Non-Vacuum Process -- 12.1 Introduction -- 12.2 Sol-Gel Sulfurization Method -- 12.3 Preparation of CZTS Thin Films by Sol-Gel Sulfurization Method -- 12.4 Chemical Composition Dependence -- 12.5 H2S Concentration Dependence -- 12.6 CZTS Solar Cell Prepared by Non-vacuum Processes -- References -- Chapter 13 Growth of CZTS-Based Monograins and Their Application to Membrane Solar Cells -- 13.1 Introduction -- 13.2 Monograin Powder Growths, Basics of the Process -- 13.3 Influence of Chemical Etching on the Surface Composition of Monograins -- 13.4 Thermal Treatment of CZTS-Based Monograins -- 13.5 Optoelectronic Properties of CZTS-Based Monograins and Polycrystals -- 13.6 Conclusion.

References -- Part IV Device Physics of Thin-Film Solar Cells -- Chapter 14 The Role of Grain Boundaries in CZTS-Based Thin-Film Solar Cells -- 14.1 Introduction -- 14.2 CIGSe and CdTe Solar Cells -- 14.3 CZTS-Based Thin-Film Solar Cells -- 14.4 Conclusion -- References -- Chapter 15 CZTS-Based Thin-Film Solar Cells Prepared via Coevaporation -- 15.1 Introduction -- 15.2 Preparation of CZTS and CZTSe Absorbers -- 15.3 Fundamental Properties of Coevaporated CZTS and CZTSe Absorbers -- 15.4 Device Characteristics of Full-Sulfide CZTS Thin-Film Solar Cells -- 15.5 Device Characteristics of Full-Selenide CZTSe Thin-Film Solar Cells -- 15.6 Summary -- References -- Chapter 16 Loss Mechanisms in Kesterite Solar Cells -- 16.1 Introduction -- 16.2 Current State-of-the-Art CZTS-Based Thin-Film Solar Cells -- 16.3 Dominant Recombination Path -- 16.4 Band-Gap Variations -- 16.5 Series Resistance and its Relation to Voc Losses -- 16.6 Conclusion -- Acknowledgements -- References -- Chapter 17 Device Characteristics of Hydrazine-Processed CZTSSe -- 17.1 Introduction -- 17.2 Device Characteristics -- 17.3 Summary -- Acknowledgements -- References -- Subject Index -- Supplemental Images -- EULA.
Özet:
Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: