Primer on the Physics of the Cosmic Microwave Background. için kapak resmi
Primer on the Physics of the Cosmic Microwave Background.
Başlık:
Primer on the Physics of the Cosmic Microwave Background.
Yazar:
Giovannini, Massimo.
ISBN:
9789812791436
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (489 pages)
İçerik:
Contents -- Preface -- Part I -- 1. Why CMB Physics? -- 1.1 The blackbody spectrum and its physical implications -- 1.2 A bit of history of CMB observations -- 1.3 The entropy of the CMB and its implications -- 1.4 The time evolution of the CMB temperature -- 1.5 A quick glance to the Sunyaev-Zeldovich effect -- 1.6 Cosmological parameters -- 2. From CMB to the Standard Cosmological Model -- 2.1 The Standard Cosmological Model (SCM) -- 2.1.1 Homogeneity and isotropy -- 2.1.2 Perfect barotropic fluids -- 2.1.3 General Relativity -- 2.2 Friedmann-Lema^itre equations -- 2.3 Matter content of the SCM -- 2.4 The future of the Universe -- 2.5 The past of the Universe -- 2.5.1 Hydrogen recombination -- 2.5.2 Coulomb scattering: the baryon-electron fluid -- 2.5.3 Thompson scattering: the baryon-photon fluid -- 2.6 Simplified numerical estimates -- Part II -- 3. Problems with the SCM -- 3.1 The horizon problem -- 3.2 The spatial curvature problem -- 3.3 The entropy problem -- 3.4 The structure formation problem -- 3.5 The singularity problem -- 4. SCM and Beyond -- 4.1 The horizon and the atness problems -- 4.2 Classical and quantum uctuations -- 4.3 The entropy problem -- 4.4 The problem of geodesic incompleteness -- 5. Essentials of Inationary Dynamics -- 5.1 Fully inhomogeneous Friedmann-Lema^itre equations -- 5.2 Homogeneous evolution of a scalar field -- 5.3 Classification(s) of inationary backgrounds -- 5.4 Exact inationary backgrounds -- 5.5 Slow-roll dynamics -- 5.6 Slow-roll parameters -- Part III -- 6. Inhomogeneities in FRW Models -- 6.1 Decomposition of inhomogeneities in FRW Universes -- 6.2 Gauge issues for the scalar modes -- 6.3 Super-adiabatic amplification -- 6.4 Quantum mechanical description of the tensor modes -- 6.5 Spectra of relic gravitons -- 6.6 Quantum state of cosmological perturbations -- 6.7 Digression on different vacua.

6.8 Numerical estimates of the mixing coefficients -- 7. The First Lap in CMB Anisotropies -- 7.1 Tensor Sachs-Wolfe effect -- 7.2 Scalar Sachs-Wolfe effect -- 7.3 Scalar modes in the pre-decoupling phase -- 7.3.1 Scale crossing and CMB initial conditions -- 7.4 CDM-radiation system -- 7.5 Adiabatic and non-adiabatic modes: an example -- 7.6 Sachs-Wolfe plateau: mixture of initial conditions -- 8. Improved Fluid Description of Pre-Decoupling Physics -- 8.1 The general plasma with four components -- 8.2 CDM component -- 8.3 Tight-coupling between photons and baryons -- 8.4 Shear viscosity and silk damping -- 8.5 The adiabatic solution -- 8.6 Pre-equality non-adiabatic initial conditions -- 8.6.1 The CDM-radiation mode -- 8.6.2 The baryon-entropy mode -- 8.6.3 The neutrino-entropy mode -- 8.7 Numerics in the tight-coupling approximation -- 8.7.1 Interpretation of the numerical results -- 8.7.2 Numerical estimates of di usion damping -- 9. Kinetic Hierarchies -- 9.1 Collisionless Boltzmann equation -- 9.2 Boltzmann hierarchy for massless neutrinos -- 9.3 Brightness perturbations of the radiation field -- 9.4 Evolution equations for the brightness perturbations -- 9.4.1 Visibility function -- 9.5 Line of sight integrals -- 9.5.1 Angular power spectrum and observables -- 9.6 Tight-coupling expansion -- 9.7 Zeroth order in tight-coupling: acoustic oscillations -- 9.7.1 Solutions of the evolution of monopole and dipole -- 9.7.2 Estimate of the sound horizon at decoupling -- 9.8 First order in tight-coupling: polarization -- 9.8.1 Improved estimates of polarization -- 9.8.2 Polarization power spectra -- 9.9 Second order in tight-coupling: diffusion damping -- 9.10 Semi-analytical approach to Doppler oscillations -- 10. Early Initial Conditions? -- 10.1 Minimally coupled scalar field -- 10.1.1 Gauge-invariant description.

10.1.2 Curvature perturbations and scalar normal modes -- 10.2 Spectral relations -- 10.2.1 Some slow-roll algebra -- 10.2.2 Tensor power spectra -- 10.2.3 Scalar power spectra -- 10.2.4 Consistency relation -- 10.3 Curvature perturbations and density contrasts -- 10.4 Hamiltonians for the scalar problem -- 10.5 Trans-Planckian problems? -- 10.5.1 Minimization of canonically related Hamiltonians -- 10.5.2 Back-reaction effects -- 10.6 How many adiabatic modes? -- Part IV -- 11. Surfing on the Gauges -- 11.0.1 Generalities on scalar gauge transformations -- 11.1 The longitudinal gauge -- 11.1.1 Gauge-invariant generalizations -- 11.2 The synchronous gauge -- 11.2.1 Evolution equations in the synchronous gauge -- 11.2.2 The adiabatic mode in the synchronous gauge -- 11.2.3 Entropic modes in the synchronous gauge -- 11.3 Comoving orthogonal hypersurfaces -- 11.4 Uniform density hypersurfaces -- 11.5 The off-diagonal gauge -- 11.5.1 Evolution equations in the off-diagonal gauge -- 11.6 Mixed gauge-invariant treatments -- 12. Interacting Fluids -- 12.1 Interacting fluids with bulk viscous stresses -- 12.2 Evolution equations for the entropy fluctuations -- 12.3 Specific physical limits -- 12.4 Mixing between entropy and curvature perturbations -- 13. Spectator Fields -- 13.1 Spectator fields in a fluid background -- 13.2 Unconventional inflationary models -- 13.3 Conventional inflationary models -- Appendix A The Concept of Distance in Cosmology -- A.1 The proper coordinate distance -- A.2 The redshift -- A.3 The distance measure -- A.4 Angular diameter distance -- A.5 Luminosity distance -- A.6 Horizon distances -- A.7 Few simple applications -- Appendix B Kinetic Description of Hot Plasmas -- B.1 Generalities on thermodynamic systems -- B.2 Fermions and bosons -- B.3 Thermal, kinetic and chemical equilibrium -- B.4 An example of primordial plasma.

B.5 Electron-positron annihilation and neutrino decoupling -- B.6 Big-bang nucleosynthesis (BBN) -- Appendix C Scalar Modes of the Geometry -- C.1 Fluctuations of the Einstein tensor -- C.2 Fluctuations of the energy-momentum tensor(s) -- C.3 Fluctuations of the covariant conservation equations -- C.4 Some algebra with the scalar modes -- Appendix D Metric Fluctuations: Gauge-Independent Treatment -- D.1 The scalar problem -- D.2 The vector problem -- D.3 The tensor problem -- D.4 Inhomogeneities of the sources -- Bibliography -- Index.
Özet:
In the last fifteen years, various areas of high energy physics, astrophysics and theoretical physics have converged on the study of cosmology so that any graduate student in these disciplines today needs a reasonably self-contained introduction to the Cosmic Microwave Background (CMB). This book presents the essential theoretical tools necessary to acquire a modern working knowledge of CMB physics. The style of the book, falling somewhere between a monograph and a set of lecture notes, is pedagogical and the author uses the typical approach of theoretical physics to explain the main problems in detail, touching on the main assumptions and derivations of a fascinating subject. Sample Chapter(s). Chapter 1: Why CMB Physics? (297 KB). Contents: Why CMB Physics?; From CMB to the Standard Cosmological Model; Problems with the SCM; SCM and Beyond; Essentials of Inflationary Dynamics; Inhomogeneities in FRW Models; The First Lap in CMB Anisotropies; Improved Fluid Description of Pre-Decoupling Physics; Kinetic Hierarchies; Early Initial Conditions?; Surfing on the Gauges; Interacting Fluids; Spectator Fields; Appendices: The Concept of Distance in Cosmology; Kinetic Description of Hot Plasmas; Scalar Modes of the Geometry; Metric Fluctuations: Gauge Independent Treatment. Readership: PhD students and researchers in physics, astrophysics and astronomy.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: