Advanced Circuits for Emerging Technologies. için kapak resmi
Advanced Circuits for Emerging Technologies.
Başlık:
Advanced Circuits for Emerging Technologies.
Yazar:
Iniewski, Krzysztof.
ISBN:
9781118181492
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (633 pages)
İçerik:
Advanced Circuits FOR Emerging Technologies -- CONTENTS -- Preface -- Contributors -- PART I: DIGITAL DESIGN AND POWER MANAGEMENT -- 1 DESIGN IN THE ENERGY-DELAY SPACE -- 1.1 Introduction -- 1.2 Energy and Delay Modeling -- 1.2.1 Delay: the Logical Effort as a Modeling Approach -- 1.2.2 Delay: the Logical Effort as an Optimization Approach -- 1.2.3 Energy: A Comprehensive Model -- 1.3 Energy-Delay Space Analysis and Hardware-Intensity -- 1.3.1 The Energy-Efficient Curve -- 1.3.2 Energy-Delay Metrics and Hardware Intensity -- 1.3.3 Voltage Intensity and Generalization of the Sensitivity Criterion -- 1.4 Energy-Efficient Design of Digital Circuits -- 1.4.1 The Role of the Input Capacitance -- 1.4.2 Definition of Design Space Bounds -- 1.4.3 Simulations-Based Optimization of Small Size Circuits -- 1.4.4 Nonlinear and Convex Optimization of Large Size Circuits -- 1.5 Design of Energy-Efficient Pipelined Systems -- 1.5.1 Zyuban and Strenski's Hardware-Voltage Intensity Criteria -- 1.5.1.1 A Composite Pipeline Stage -- 1.5.1.2 A Multistage Pipeline -- 1.5.1.3 A Multistage Pipeline with Composite Stages -- 1.5.2 Practical Guidelines to Design Energy-Efficient Pipelines -- 1.6 Conclusion -- References -- 2 SUBTHRESHOLD SOURCE-COUPLED LOGIC -- 2.1 Introduction -- 2.2 Ultralow Power CMOS Logic: Design and Tradeoffs -- 2.2.1 Conventional Design Approach -- 2.2.2 Static Power Dissipation -- 2.2.3 Process Variation -- 2.2.3.1 Noise Margin -- 2.2.3.2 Reducing Supply Voltage Versus Using High-VT Devices -- 2.3 Subthreshold Source-Coupled Logic -- 2.3.1 Introduction -- 2.3.2 Circuit Topology -- 2.3.2.1 Conventional SCL -- 2.3.2.2 Subthreshold SCL -- 2.3.2.3 Power-Delay Performance -- 2.4 Power-Frequency Scaling -- 2.4.1 Introduction -- 2.4.2 Tuning System -- 2.5 Conclusions -- References.

3 ULTRALOW-VOLTAGE DESIGN OF NANOMETER CMOS CIRCUITS FOR SMART ENERGY-AUTONOMOUS SYSTEMS -- 3.1 Introduction -- 3.2 Impact of Technology Scaling on Subthreshold MOSFET Characteristics -- 3.2.1 Subthreshold Current -- 3.2.2 Subthreshold Variability -- 3.2.3 Subthreshold Gate Capacitance -- 3.3 Scaling Trend of the Minimum-Energy Point -- 3.3.1 Theory of the Minimum-Energy Point -- 3.3.2 Minimum-Energy Point in Nanometer CMOS Technologies -- 3.3.2.1 DIBL Effect -- 3.3.2.2 Gate Leakage -- 3.3.2.3 Cycle Time Guardband Due to WID Variability -- 3.3.2.4 Leakage Overhead Due to WID Variability -- 3.3.3 Technology/Circuit Solutions to Keep Minimum-Energy Under Control -- 3.3.3.1 Optimum MOSFET Selection for Circuit Designers -- 3.3.3.2 Fully Depleted SOI for Technology Developers -- 3.4 Practical Energy of Nanometer ULV Circuits under Robustness and Timing Constraints -- 3.4.1 Functional Limit on the Supply Voltage -- 3.4.1.1 Noise Margin Violations -- 3.4.1.2 Hold Time Violations -- 3.4.2 Process Flavor Selection for Minimum Energy Under Timing Constraints -- 3.4.3 Circuit Adaptation for Minimization of Cycle Time Guardband -- 3.5 Technology/Circuit Methodology and Roadmap for ULV Design in the Nanometer Era -- 3.5.1 Reducing Emin -- 3.5.2 Reaching Emin -- 3.5.3 Technology/Circuit Roadmap -- 3.6 Conclusion -- References -- 4 IMPAIRMENT-AWARE ANALOG CIRCUIT DESIGN BY RECONFIGURING FEEDBACK SYSTEMS -- 4.1 Introduction -- 4.2 Theorem of Impairment-Aware Analog Design in Feedback Systems -- 4.3 Practical Implementations -- 4.3.1 Design of Impairment-Aware Loop Gain in Charge Pump PLL -- 4.3.2 Design of Impairment-Aware Stability in Digital Controlled Oscillator-Based CDR -- 4.3.3 Calibration of DCO Gain in ADPLL -- 4.3.4 Design of Impairment-Aware Two-Point Modulator -- 4.3.5 Impairment-Aware DAC in Sigma-Delta ADC -- 4.4 Measured Results.

4.4.1 Impairment-Aware Loop Gain in Pre-Emphasis Transmitter -- 4.4.2 Impairment-Aware Two-Point Modulator -- 4.5 Conclusions -- References -- 5 ROM-BASED LOGIC DESIGN: A LOW-POWER DESIGN PERSPECTIVE -- 5.1 Introduction -- 5.2 RBL Design -- 5.2.1 Fast Single Transistor ROM Cell -- 5.2.2 ROM Size Reduction -- 5.2.3 Dynamic ROM-Based Design -- 5.3 RBL Adder -- 5.3.1 RBL Carry Select Adder -- 5.3.2 RBL Conditional Sum Adder -- 5.4 RBL Multiplier -- 5.4.1 4 × 4 ROM Multiplier Design: the Basic Block -- 5.4.2 Carry Save Adder Design -- 5.4.3 Analysis -- 5.5 Conclusions -- References -- 6 POWER MANAGEMENT: ENABLING TECHNOLOGY -- 6.1 Macroeconomic Drivers for Power Technologies -- 6.1.1 Energy Conservation -- 6.1.2 Power-Conversion Efficiency -- 6.1.3 Portable Power -- 6.2 Market Trends -- 6.2.1 Power Management Semiconductors Compound Annual Growth -- 6.3 Application Examples -- 6.3.1 Energy Conservation -- 6.3.2 Power Conversion and Efficiency -- 6.4 Technology Implications and Trends -- 6.4.1 System Partitioning-Discrete Devices versus Integrated Circuits and Other Considerations -- 6.5 Current Technologies and Capabilities -- 6.5.1 Discrete Power Technologies and Trends -- 6.5.1.1 IGBT -- 6.5.1.2 Power MOSFET -- 6.5.2 Integrated Circuit Power Technology and Trends -- 6.5.2.1 Power Processes -- 6.5.2.2 Digital Logic Technology -- 6.6 Specific Application Example -- 6.7 Emerging Technologies -- 6.8 Conclusion -- References -- 7 ULTRALOW POWER MANAGEMENT CIRCUIT FOR OPTIMAL ENERGY HARVESTING IN WIRELESS BODY AREA NETWORK -- 7.1 Introduction -- 7.2 Wireless Body Area Network -- 7.2.1 Wireless Sensor Node in WBAN -- 7.2.2 Embedded System -- 7.2.3 Design Challenges of WBAN -- 7.2.4 Potential Applications of WBAN -- 7.2.5 Other Group's Work -- 7.2.6 An Ultralow Power ECG Acquisition and Monitoring ASIC System for WBAN Application.

7.3 Optimal Energy Harvesting System -- 7.3.1 Energy Harvesting Basics -- 7.3.2 Solar Energy Harvesting Technique -- 7.3.3 Maximum Power Point Tracking (MPPT) Based Power Management Circuit -- 7.4 Ultralow Power Management Integrated Circuit for Solar Energy Harvesting System -- 7.5 Conclusions -- References -- PART II: ANALOG AND RF DESIGN -- 8 ANALOG CIRCUIT DESIGN FOR SOI -- 8.1 SOI Devices -- 8.2 Partially Depleted SOI -- 8.3 FDSOI and FinFET -- 8.4 Device Considerations (FDSOI AND PDSOI) -- 8.4.1 Self-Heating and Dissipation within a Device -- 8.4.1.1 DC Heating from Elsewhere on the Same Chip -- 8.4.1.2 Transient or AC Thermal Coupling -- 8.4.2 Design Choice: SOI or Bulk? -- 8.4.3 Benefits of SOI for Analog Design -- 8.4.4 Drawbacks of Analog Design on SOI -- 8.5 Analog Circuit Building Blocks -- 8.5.1 Current Mirrors -- 8.5.2 Global Variation -- 8.5.3 Cascoded Current Mirrors -- 8.5.4 Wilson Current Mirror -- 8.5.5 Circuit Effects of High Temperature Leakage -- 8.5.6 Circuit Thermal Coupling Effects -- 8.5.6.1 DC Thermal Coupling in Current Mirrors -- 8.5.6.2 Transient Thermal Coupling in Current Mirrors -- 8.6 Operational Amplifiers -- 8.6.1 Common Mode Gain -- 8.6.2 Reducing the Common Mode Effect -- 8.7 Operational Transconductance Amplifier -- 8.7.1 Analog Circuits -- 8.7.1.1 Bandgap -- 8.7.1.2 Charge Pump Circuitry -- 8.7.1.3 Output Stages/Buffers -- 8.7.2 High Voltage and Power Applications -- 8.7.3 Sample and Hold Circuitry -- 8.7.4 Circuits for RF/Wireless Applications -- 8.8 Radio Frequency Low-Noise Amplifier -- 8.9 Mixers and Analog Multipliers -- 8.9.1 Delay Locked Loop and Phase Locked Loop -- 8.9.2 Oscillators -- 8.9.3 Voltage Regulation -- 8.9.3.1 Series Regulator -- 8.9.3.2 LDO Regulator -- 8.10 Analog to Digital and Digital to Analog Converters -- 8.10.1 Sigma Delta Modulation -- 8.11 Summary -- References.

9 FREQUENCY GENERATION AND CONTROL WITH SELF-REFERENCED CMOS OSCILLATORS -- 9.1 Introduction -- 9.1.1 Critical Performance Metrics -- 9.1.2 Application Requirements -- 9.2 Self-Referenced CMOS Oscillators -- 9.2.1 Noise -- 9.2.2 Native Frequency Drift Mechanisms -- 9.2.3 Frequency-Trimming and Temperature-Compensation -- 9.2.4 Spread-Spectrum Clock Generation -- 9.2.5 Design Considerations -- 9.2.6 Production Test and Built-In Test Circuitry -- 9.2.7 State-of-the-Art Performance of the Native Silicon -- 9.3 Packaging -- 9.3.1 Package-Induced Frequency Drift -- 9.3.2 A Wafer-Scale Post-Processes to Contain Package-Induced Frequency Drift -- 9.3.3 Quality and Reliability -- 9.3.4 Embodiments -- 9.4 Conclusion -- References -- 10 SYNTHESIS OF STATIC AND DYNAMIC TRANSLINEAR CIRCUITS -- 10.1 Translinear Circuits: What Is In a Name? -- 10.2 The Scope of Translinear Circuits -- 10.3 Static and Dynamic Translinear Circuit Synthesis -- 10.4 Static Translinear Circuit Synthesis Examples -- 10.4.1 Square-Rooting Circuit -- 10.4.2 Two-Quadrant Squaring Circuit -- 10.4.2.1 Class-A Two-Quadrant Squaring Circuit -- 10.4.2.2 Class-AB Two-Quadrant Squaring Circuit -- 10.4.2.3 Sinh/Cosh Two-Quadrant Squaring Circuit -- 10.4.2.4 Discussion -- 10.4.3 Four-Quadrant Pythagorator -- 10.5 Dynamic Translinear Circuit Synthesis Examples -- 10.5.1 First-Order Low-Pass Filter -- 10.5.1.1 Inverting Output Structure -- 10.5.1.2 Noninverting Output Structures -- 10.5.1.3 Discussion -- 10.5.2 Second-Order Low-Pass Filter -- 10.5.3 RMS-to-DC Converter -- References -- 11 MICROWATT POWER CMOS ANALOG CIRCUIT DESIGNS: ULTRALOW POWER LSIs FOR POWER-AWARE APPLICATIONS -- 11.1 Introduction -- 11.2 Subthreshold Characteristics in a MOSFET -- 11.2.1 The Basics -- 11.2.1.1 Current in the Subthreshold Region -- 11.2.1.2 Current in the Strong Inversion Region -- 11.2.2 Temperature Dependence.

11.2.2.1 T.C. of the Current in the Subthreshold Region.
Özet:
The book will address the-state-of-the-art in integrated circuit design in the context of emerging systems. New exciting opportunities in body area networks, wireless communications, data networking, and optical imaging are discussed. Emerging materials that can take system performance beyond standard CMOS, like Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP) are explored. Three-dimensional (3-D) CMOS integration and co-integration with sensor technology are described as well. The book is a must for anyone serious about circuit design for future technologies. The book is written by top notch international experts in industry and academia. The intended audience is practicing engineers with integrated circuit background. The book will be also used as a recommended reading and supplementary material in graduate course curriculum. Intended audience is professionals working in the integrated circuit design field. Their job titles might be : design engineer, product manager, marketing manager, design team leader, etc. The book will be also used by graduate students. Many of the chapter authors are University Professors.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: