Electric Power Principles : Sources, Conversion, Distribution and Use. için kapak resmi
Electric Power Principles : Sources, Conversion, Distribution and Use.
Başlık:
Electric Power Principles : Sources, Conversion, Distribution and Use.
Yazar:
Kirtley, James L.
ISBN:
9780470667170
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (405 pages)
İçerik:
ELECTRIC POWER PRINCIPLES -- Contents -- Preface -- 1 Electric Power Systems -- 1.1 Electric Utility Systems -- 1.2 Energy and Power -- 1.2.1 Basics and Units -- 1.3 Sources of Electric Power -- 1.3.1 Heat Engines -- 1.3.2 Power Plants -- 1.3.3 Nuclear Power Plants -- 1.3.4 Hydroelectric Power -- 1.3.5 Wind Turbines -- 1.3.6 Solar Power Generation -- 1.4 Electric Power Plants and Generation -- 1.5 Problems -- 2 AC Voltage, Current and Power -- 2.1 Sources and Power -- 2.1.1 Voltage and Current Sources -- 2.1.2 Power -- 2.1.3 Sinusoidal Steady State -- 2.1.4 Phasor Notation -- 2.1.5 Real and Reactive Power -- 2.2 Resistors, Inductors and Capacitors -- 2.2.1 Reactive Power and Voltage -- 2.2.2 Reactive Power Voltage Support -- 2.3 Problems -- 3 Transmission Lines -- 3.1 Modeling: Telegrapher's Equations -- 3.1.1 Traveling Waves -- 3.1.2 Characteristic Impedance -- 3.1.3 Power -- 3.1.4 Line Terminations and Reflections -- 3.1.5 Sinusoidal Steady State -- 3.2 Problems -- 4 Polyphase Systems -- 4.0.1 Two-Phase Systems -- 4.1 Three-Phase Systems -- 4.2 Line-Line Voltages -- 4.2.1 Example: Wye and Delta Connected Loads -- 4.2.2 Example: Use of Wye-Delta for Unbalanced Loads -- 4.3 Problems -- 5 Electrical and Magnetic Circuits -- 5.1 Electric Circuits -- 5.1.1 Kirchoff 's Current Law (KCL) -- 5.1.2 Kirchoff 's Voltage Law (KVL) -- 5.1.3 Constitutive Relationship: Ohm's Law -- 5.2 Magnetic Circuit Analogies -- 5.2.1 Analogy to KCL -- 5.2.2 Analogy to KVL: Magnetomotive Force -- 5.2.3 Analogy to Ohm's Law: Reluctance -- 5.2.4 Simple Case -- 5.2.5 Flux Confinement -- 5.2.6 Example: C-Core -- 5.2.7 Example: Core with Different Gaps -- 5.3 Problems -- 6 Transformers -- 6.1 Single-phase Transformers -- 6.1.1 Ideal Transformer -- 6.1.2 Deviations from Ideal Transformer -- 6.2 Three-Phase Transformers -- 6.2.1 Example -- 6.3 Problems.

7 Polyphase Lines and Single-Phase Equivalents -- 7.1 Polyphase Transmission and Distribution Lines -- 7.1.1 Example -- 7.2 Introduction To Per-Unit Systems -- 7.2.1 Normalization Of Voltage and Current -- 7.2.2 Three-Phase Systems -- 7.2.3 Networks with Transformers -- 7.2.4 Transforming from one base to another -- 7.2.5 Example: Fault Study -- 7.3 Appendix: Inductances of Transmission Lines -- 7.3.1 Single Wire -- 7.3.2 Mutual Inductance -- 7.3.3 Bundles of Conductors -- 7.3.4 Transposed Lines -- 7.4 Problems -- 8 Electromagnetic Forces and Loss Mechanisms -- 8.1 Energy Conversion Process -- 8.1.1 Principle of Virtual Work -- 8.1.2 Coenergy -- 8.2 Continuum Energy Flow -- 8.2.1 Material Motion -- 8.2.2 Additional Issues in Energy Methods -- 8.2.3 Electric Machine Description -- 8.2.4 Field Description of Electromagnetic Force: The Maxwell Stress Tensor -- 8.2.5 Tying the MST and Poynting Approaches together -- 8.3 Surface Impedance of Uniform Conductors -- 8.3.1 Linear Case -- 8.3.2 Iron -- 8.3.3 Magnetization -- 8.3.4 Saturation and Hysteresis -- 8.3.5 Conduction, Eddy Currents and Laminations -- 8.3.6 Eddy Currents in Saturating Iron -- 8.4 Semi-Empirical Method of Handling Iron Loss -- 8.5 Problems -- 9 Synchronous Machines -- 9.1 Round Rotor Machines: Basics -- 9.1.1 Operation with a Balanced Current Source -- 9.1.2 Operation with a Voltage Source -- 9.2 Reconciliation of Models -- 9.2.1 Torque Angles -- 9.3 Per-Unit Systems -- 9.4 Normal Operation -- 9.4.1 Capability Diagram -- 9.4.2 Vee Curve -- 9.5 Salient Pole Machines: Two-Reaction Theory -- 9.6 Synchronous Machine Dynamics -- 9.7 Synchronous Machine Dynamic Model -- 9.7.1 Electromagnetic Model -- 9.7.2 Park's Equations -- 9.7.3 Power and Torque -- 9.7.4 Per-Unit Normalization -- 9.7.5 Equivalent Circuits -- 9.7.6 Transient Reactances and Time Constants -- 9.8 Statement of Simulation Model.

9.8.1 Example: Transient Stability -- 9.8.2 Equal Area Transient Stability Criterion -- 9.9 Appendix: Transient Stability Code -- 9.10 Appendix: Winding Inductance Calculation -- 9.10.1 Pitch Factor -- 9.10.2 Breadth Factor -- 9.11 Problems -- 10 System Analysis and Protection -- 10.1 The Symmetrical Component Transformation -- 10.2 Sequence Impedances -- 10.2.1 Balanced Transmission Lines -- 10.2.2 Balanced Load -- 10.2.3 Possibly Unbalanced Loads -- 10.2.4 Unbalanced Sources -- 10.2.5 Rotating Machines -- 10.2.6 Transformers -- 10.3 Fault Analysis -- 10.3.1 Single Line-neutral Fault -- 10.3.2 Double Line-neutral Fault -- 10.3.3 Line-Line Fault -- 10.3.4 Example of Fault Calculations -- 10.4 System Protection -- 10.4.1 Fuses -- 10.5 Switches -- 10.6 Coordination -- 10.6.1 Ground Overcurrent -- 10.7 Impedance Relays -- 10.7.1 Directional Elements -- 10.8 Differential Relays -- 10.8.1 Ground Fault Protection for Personnel -- 10.9 Zones of System Protection -- 10.10 Problems -- 11 Load Flow -- 11.1 Two Ports and Lines -- 11.1.1 Power Circles -- 11.2 Load Flow in a Network -- 11.3 Gauss-Seidel Iterative Technique -- 11.4 Bus Admittance -- 11.4.1 Bus Incidence -- 11.4.2 Alternative Assembly of Bus Admittance -- 11.5 Example: Simple Program -- 11.5.1 Example Network -- 11.6 MATLAB Script for the Load Flow Example -- 11.7 Problems -- 12 Power Electronics and Converters in Power Systems -- 12.1 Switching Devices -- 12.1.1 Diode -- 12.1.2 Thyristor -- 12.1.3 Bipolar Transistors -- 12.2 Rectifier Circuits -- 12.2.1 Full-Wave Rectifier -- 12.3 DC-DC Converters -- 12.3.1 Pulse Width Modulation -- 12.3.2 Boost Converter -- 12.4 Canonical Cell -- 12.4.1 Bidirectional Converter -- 12.4.2 H-Bridge -- 12.5 Three-Phase Bridge Circuits -- 12.5.1 Rectifier Operation -- 12.5.2 Phase Control -- 12.5.3 Commutation Overlap -- 12.5.4 AC Side Current Harmonics.

12.6 High-Voltage DC Transmission -- 12.7 Basic Operation of a Converter Bridge -- 12.7.1 Turn-On Switch -- 12.7.2 Inverter Terminal -- 12.8 Achieving High Voltage -- 12.9 Problems -- 13 Induction Machines -- 13.1 Introduction -- 13.2 Induction Machine Transformer Model -- 13.2.1 Operation: Energy Balance -- 13.2.2 Example of Operation -- 13.2.3 Motor Performance Requirements -- 13.3 Squirrel-Cage Machines -- 13.4 Single-Phase Induction Motors -- 13.4.1 Rotating Fields -- 13.4.2 Power Conversion in the Single-Phase Induction Machine -- 13.4.3 Starting of Single-Phase Induction Motors -- 13.4.4 Split Phase Operation -- 13.5 Induction Generators -- 13.6 Induction Motor Control -- 13.6.1 Volts/Hz Control -- 13.6.2 Field Oriented Control -- 13.6.3 Elementary Model -- 13.6.4 Simulation Model -- 13.6.5 Control Model -- 13.6.6 Field-Oriented Strategy -- 13.7 Doubly Fed Induction Machines -- 13.7.1 Steady State Operation -- 13.8 Appendix 1: Squirrel-Cage Machine Model -- 13.8.1 Rotor Currents and Induced Flux -- 13.8.2 Squirrel-Cage Currents -- 13.9 Appendix 2: Single-Phase Squirrel Cage Model -- 13.10 Appendix 3: Induction Machine Winding Schemes -- 13.10.1 Winding Factor for Concentric Windings -- 13.11 Problems -- 14 DC (Commutator) Machines -- 14.1 Geometry -- 14.2 Torque Production -- 14.3 Back Voltage -- 14.4 Operation -- 14.4.1 Shunt Operation -- 14.4.2 Separately Excited -- 14.4.3 Machine Capability -- 14.5 Series Connection -- 14.6 Universal Motors -- 14.7 Commutator -- 14.7.1 Commutation Interpoles -- 14.7.2 Compensation -- 14.8 Compound Wound DC Machines -- 14.9 Problems -- 15 Permanent Magnets in Electric Machines -- 15.1 Permanent Magnets -- 15.1.1 Permanent Magnets in Magnetic Circuits -- 15.1.2 Load Line Analysis -- 15.2 Commutator Machines -- 15.2.1 Voltage -- 15.2.2 Armature Resistance -- 15.3 Brushless PM Machines -- 15.4 Motor Morphologies.

15.4.1 Surface Magnet Machines -- 15.4.2 Interior Magnet, Flux Concentrating Machines -- 15.4.3 Operation -- 15.4.4 A Little Two-Reaction Theory -- 15.4.5 Finding Torque Capability -- 15.5 Problems -- Index.
Özet:
This innovative approach to the fundamentals of electric power provides the most rigorous, comprehensive and modern treatment available. To impart a thorough grounding in electric power systems, it begins with an informative discussion on per-unit normalizations, symmetrical components and iterative load flow calculations. Covering important topics within the power system, such as protection and DC transmission, this book looks at both traditional power plants and those used for extracting sustainable energy from wind and sunlight. With classroom-tested material, this book also presents: the principles of electromechanical energy conversion and magnetic circuits synchronous machines; the most important generators of electric power power electronics induction and direct current electric motors. This book includes MATLAB and homework problems with varying levels of difficulty are included at the end of each chapter, and an online solutions manual for tutors. A useful appendix contains a review of elementary network theory. For senior undergraduate and postgraduate students studying advanced electric power systems as well as engineers re-training in this area, this textbook will be an indispensable resource. It will also benefit engineers in electronic power systems, power electronic systems, electric motors and generators, robotics and mechatronics. www.wiley.com/go/kirtley_electric.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: