Inkjet-based Micromanufacturing. için kapak resmi
Inkjet-based Micromanufacturing.
Başlık:
Inkjet-based Micromanufacturing.
Yazar:
Korvink, Jan G.
ISBN:
9783527647118
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (389 pages)
Seri:
Advanced Micro and Nanosystems
İçerik:
Inkjet-based Micromanufacturing -- Contents -- List of Contributors -- 1 Overview of Inkjet-Based Micromanufacturing -- 1.1 Introduction -- 1.2 Inkjet Technology -- 1.2.1 Continuous Mode Inkjet (CIJ) Technology -- 1.2.2 Demand Mode Inkjet Technology -- 1.3 Fluid Requirements -- 1.4 Pattern Formation: Fluid/Substrate Interaction -- 1.5 Micromanufacturing -- 1.5.1 Introduction -- 1.5.2 Limitations and Opportunities in Micromanufacturing -- 1.5.3 Benefits of Inkjet in Microfabrication -- 1.6 Examples of Inkjet in Micromanufacturing -- 1.6.1 Chemical Sensors -- 1.6.2 Optical MEMS Devices -- 1.6.3 Bio-MEMS Devices -- 1.6.4 Assembly and Packaging -- 1.7 Conclusions -- Acknowledgments -- References -- 2 Combinatorial Screening of Materials Using Inkjet Printing as a Patterning Technique -- 2.1 Introduction -- 2.2 Inkjet Printing - from Well-Defined Dots to Homogeneous Films -- 2.3 Thin-Film Libraries Prepared by Inkjet Printing -- 2.4 Combinatorial Screening of Materials for Organic Solar Cells -- 2.5 Conclusion and Outlook -- References -- 3 Thermal Inkjet -- 3.1 History of Thermal Inkjet Technology -- 3.2 Market Trends for Inkjet Products and Electrophotography -- 3.3 Structures of Various TIJ Heads -- 3.4 Research on Rapid Boiling and Principle of TIJ -- 3.5 Inkjetting Mechanism of TIJ -- 3.6 Basic Jetting Behavior of TIJ -- 3.6.1 Input Power Characteristics -- 3.6.2 Frequency Characteristics -- 3.6.3 Dependency on Temperature -- 3.7 TIJ Behavior Analysis Using Simulation -- 3.7.1 Cylindrical Thermal Propagating Calculation Based on the Finite Element Method (Software Name: Ansys) -- 3.7.2 Fluidic Free Boundary Calculation Based on the Finite Differentiation Method (Software name: Flow3D) -- 3.8 Issues with Reliability in TIJ -- 3.9 Present and Future Evolution in TIJ Technology -- References -- 4 High-Resolution Electrohydrodynamic Inkjet.

4.1 Introduction -- 4.2 Printing System -- 4.3 Control of Jet Motions -- 4.4 Drop-on-Demand Mode Printing -- 4.5 Versatility of Printable Materials and Resolutions -- 4.6 Applications in Electronics and Biotechnology -- 4.7 High-Resolution Printing of Charge -- References -- 5 Cross Talk in Piezo Inkjet -- 5.1 Introduction -- 5.2 Electrical Cross Talk -- 5.3 Direct Cross Talk -- 5.4 Pressure-Induced Cross Talk -- 5.5 Acoustic Cross Talk -- 5.6 Printhead Resonance -- 5.7 Residual Vibrations -- References -- 6 Patterning -- 6.1 Introduction -- 6.1.1 Droplet Impact and Final Droplet Radius -- 6.1.2 Evaporation of Inkjet-Printed Droplets at Room Temperature -- 6.1.3 Morphological Control for Ink Droplets, Lines, and Films -- 6.2 Conclusion -- References -- 7 Drying of Inkjet-Printed Droplets -- 7.1 Introduction -- 7.2 Modeling of Drying of a Droplet -- 7.2.1 Fluid Model -- 7.2.2 Lubrication Approximation -- 7.2.3 Solute Concentration -- 7.2.4 Evaporation Velocity -- 7.2.5 Numerical Method -- 7.3 Results -- 7.3.1 Droplet Shape Evolution -- 7.3.2 Layer Thickness -- 7.3.3 Effect of Diffusion -- Acknowledgments -- References -- 8 Postprinting Processes for Inorganic Inks for Plastic Electronics Applications -- 8.1 Introduction -- 8.1.1 Inkjet Printing -- 8.1.2 Printed Electronics -- 8.2 Inkjet Printing and Postprinting Processes of Metallic Inks -- 8.2.1 Choice of Metal -- 8.2.2 Postprinting Processes to Convert Inorganic Precursor Ink -- 8.2.3 Conventional Sintering Techniques -- 8.2.4 Alternative and Selective Sintering Methods -- 8.2.5 Room-Temperature Sintering -- 8.3 Conclusions and Outlook -- Acknowledgments -- References -- 9 Vision Monitoring -- 9.1 Introduction -- 9.2 Measurement Setup -- 9.3 Image Processing -- 9.4 Jetting Speed Measurement -- 9.5 Head Normalization and Condition Monitoring -- 9.6 Meniscus Motion Measurement and Its Application.

References -- 10 Acoustic Monitoring -- 10.1 Introduction -- 10.2 Self Sensing -- 10.3 Measuring Principle -- 10.4 Drop Formation, Refill, and Wetting -- 10.5 Dirt -- 10.6 Air Bubbles -- 10.7 Printhead Control -- References -- 11 Equalization of Jetting Performance -- 11.1 Equalization of the Droplet Volume on the Fly -- 11.1.1 Components of a Drop Watcher -- 11.1.2 Equalization through Volume Control -- 11.1.3 Results of the Droplet Volume Measurement and Equalization Process -- 11.1.4 Speed Equalization -- 11.1.5 Problems with the Droplet Equalization Methods on the Fly -- 11.1.5.1 Distortion of the Captured Droplet Images -- 11.1.5.2 Relation between Droplet Volume and Speed -- 11.2 Droplet Volume Equalization with Sessile Droplets -- 11.2.1 Equalizing the Droplet Volume with the Measurement of Sessile Droplets -- 11.2.2 Results of the Sessile Droplet Measurement and Equalization Process -- 11.2.3 Usefulness of the Sessile Droplet Measurement and Equalization Process -- 11.2.4 The Droplet Volume Equalization Process Using Light Transmittance -- 11.2.5 Result of the Droplet Volume Equalization Process Using Light Transmittance -- Further Reading -- 12 Inkjet Ink Formulations -- 12.1 Introduction -- 12.2 Ink Formulation -- 12.2.1 Functional Materials -- 12.2.2 Solvents -- 12.2.2.1 Solvent-Based Inks -- 12.2.2.2 Water-Based Inks -- 12.2.3 Hot-Melt (Phase-Change) Inks -- 12.2.4 UV-Curable Inks -- 12.3 Ink Parameters and Additives -- 12.3.1 Rheology Control -- 12.3.2 Surface Tension Modifiers -- 12.3.3 Electrolytes and pH -- 12.3.4 Foaming and Defoamers -- 12.3.5 Humectants -- 12.3.6 Binders -- 12.3.7 Biocides -- 12.3.8 Examples of Inkjet Ink Formulations -- 12.4 Jetting Performance -- 12.4.1 Drop Formation -- 12.4.2 Ink Latency -- 12.4.3 Recoverability -- 12.4.4 Ink Supply -- 12.5 Ink Interaction with Substrates -- 12.6 Nongraphic Applications.

12.7 Conclusions -- References -- 13 Issues in Color Filter Fabrication with Inkjet Printing -- 13.1 Introduction -- 13.2 Background -- 13.3 Comparison of Printing Technologies -- 13.4 Printing Swathe due to Droplet Volume Variation -- 13.5 Subpixel Filling with a Designed Surface Energy Condition -- 13.6 Other Technical Issues -- 13.7 Conclusion -- References -- 14 Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs -- 14.1 Introduction -- 14.2 Background -- 14.3 Experimental Procedure and Results -- 14.3.1 Role of Droplet Formation -- 14.3.2 Atomic Force Microscopy -- 14.3.3 Electroluminescence -- 14.4 Inkjet-Printed, High-Density RGB Pixel Matrix -- 14.5 Conclusion -- Acknowledgment -- References -- Further Reading -- 15 Inkjet Printing of Metal Oxide Thin-Film Transistors -- 15.1 Introduction -- 15.2 Materials for Metal Oxide Semiconductors -- 15.3 Inkjet Printing Issues -- 15.3.1 Ink Printability -- 15.3.2 Influence of Substrate Preheat Temperature -- 15.4 Solution-to-Solid Conversion by Annealing -- 15.5 All-Oxide Invisible Transistors -- 15.6 Summary -- References -- 16 Inkjet Fabrication of Printed Circuit Boards -- 16.1 Introduction -- 16.2 Traditional Printed Circuit Board Processes -- 16.3 Challenges for Inkjet in Printed Circuit Boards -- 16.4 Legend-Marking Processes -- 16.4.1 Cost Comparison -- 16.4.2 Materials for Legend Printing -- 16.5 Innerlayer Copper Circuit Patterning -- 16.5.1 Materials for Copper Etch Resists -- 16.5.2 Substrate Modification -- 16.6 Copper Plating Resist -- 16.7 Waste Reduction Using Inkjet Printing -- 16.8 Solder Mask Printing -- 16.9 Metallic Inks -- 16.10 Theoretical Printing Example for PCB Manufacturing -- 16.11 Digital Printing Alternatives to Inkjet Fabrication -- 16.12 Future Applications for Inkjet in Printed Circuit Boards -- References -- 17 Photovoltaics.

17.1 Introduction -- 17.2 Device Structures -- 17.3 Small- and Large-Area Printing for Photovoltaics -- 17.4 Commercial Inkjet for Photovoltaics -- 17.5 Summary and Perspective -- References -- 18 Inkjet Printed Electrochemical Sensors -- 18.1 Introduction -- 18.2 Printed Sensor Manufacturing -- 18.3 Inkjet Printing of Sensor Components -- 18.3.1 Substrates -- 18.3.2 Conducting Tracks -- 18.3.3 Transducer Materials -- 18.3.4 Biomolecules -- 18.4 Inkjet-Printed Sensor Applications -- 18.5 Future Commercial Projection -- Abbreviations -- References -- 19 Antennas for Radio Frequency Identification Tags -- 19.1 Introduction -- 19.1.1 Introduction to RFID -- 19.1.1.1 RFID Tag Classification -- 19.1.2 Applications of Printing to RFID Antenna Production -- 19.1.2.1 An Overview of RFID-HF versus UHF -- 19.1.2.2 Silicon-Based RFID Tag Construction - from Chip to Tag -- 19.2 Printed Antennas -- 19.2.1 HF Tag Antenna Considerations -- 19.2.2 UHF Tag Antenna Considerations -- 19.2.3 Application of Printing to Antenna Fabrication -- 19.2.4 Materials for Printed Antennas -- 19.2.4.1 Metallic Pastes -- 19.2.4.2 Particle-Based Inks -- 19.2.4.3 Organometallic Precursors -- 19.3 Summary of Status and Outlook for Printed Antennas -- References -- 20 Inkjet Printing for MEMS -- 20.1 Introduction -- 20.2 Photolithography and Etching -- 20.2.1 Photolithography -- 20.2.2 Etching -- 20.3 Direct Materials Deposition -- 20.4 Optical MEMS -- 20.5 MEMS Packaging -- 20.6 Functionalization and Novel Applications -- 20.7 Conclusion -- References -- 21 Inkjet Printing of Interconnects and Contacts Based on Inorganic Nanoparticles for Printed Electronic Applications -- 21.1 Introduction -- 21.2 Inkjet Printing of Metallic Inks for Contacts and Interconnects -- 21.2.1 Inkjet Printed Contacts and Interconnects for Microelectronic Applications.

21.3 Inkjet Printing in High Resolution.
Özet:
Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health surveillance. The book gives an introduction to inkjet-based micromanufacturing, followed by an overview of the underlying theories and models, which provides the basis for a full understanding and a successful usage of inkjet-based methods in current microsystems research and development Overview of Inkjet-based Micromanufacturing: Thermal Inkjet Theory and Modeling Post-Printing Processes for Inorganic Inks for Plastic Electronics Applications Inkjet Ink Formulations Inkjet Fabrication of Printed Circuit Boards Antennas for Radio Frequency Identification Tags Inkjet Printing for MEMS.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: