Nanoparticulate Drug Delivery Systems : Strategies, Technologies, and Applications. için kapak resmi
Nanoparticulate Drug Delivery Systems : Strategies, Technologies, and Applications.
Başlık:
Nanoparticulate Drug Delivery Systems : Strategies, Technologies, and Applications.
Yazar:
Yeo, Y.
ISBN:
9781118570548
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (326 pages)
İçerik:
Nanoparticulate Drug Delivery Systems: Strategies, Technologies, and Applications -- Contents -- Preface -- Contributors -- 1 Tumor-Targeted Nanoparticles: State-of-the-Art and Remaining Challenges -- 1.1 INTRODUCTION -- 1.2 FUNCTIONS OF NANOPARTICLES -- 1.3 TUMOR-TARGETED NANOPARTICLES -- 1.3.1 Passive Targeting -- 1.3.2 Active Targeting -- 1.3.3 Target-Activated Systems -- 1.4 REMAINING CHALLENGES IN THE DEVELOPMENT OF TUMOR-TARGETED NANOPARTICLES -- 1.4.1 NP Stability -- 1.4.2 Heterogeneous Tumor Vasculature -- 1.4.3 NP Distribution in Tumors -- 1.4.4 Regulatory Considerations -- 1.5 FUTURE PERSPECTIVES -- 1.5.1 In Vitro Models -- 1.5.2 In Vivo Models -- 1.5.3 New Targets -- 1.5.4 New Therapeutic Agents -- Acknowledgments -- REFERENCES -- 2 Applications of Ligand-Engineered Nanomedicines -- 2.1 INTRODUCTION -- 2.1.1 Nanoparticulate Drug Delivery -- 2.1.2 Engineered Nanoparticulate Drug Delivery -- 2.2 LIGAND-MEDIATED DELIVERY -- 2.2.1 Antibodies -- 2.2.2 Peptides and Proteins -- 2.2.3 Sugars and Polysaccharides -- 2.2.4 Small Molecule Chemicals -- 2.3 CURRENT CHALLENGES IN CLINICAL DEVELOPMENT OF LIGAND-MODIFIED NANOMEDICINE -- 2.3.1 Nonclinical and Clinical Studies -- 2.3.2 Challenges and Future Perspectives -- 2.4 CONCLUSIONS -- Acknowledgments -- REFERENCES -- 3 Lipid Nanoparticles for the Delivery of Nucleic Acids -- 3.1 INTRODUCTION -- 3.2 BARRIERS TO SYSTEMIC GENE DELIVERY -- 3.2.1 Extracellular Barriers -- 3.2.2 Intracellular Barriers -- 3.3 COMPONENTS OF LNPs -- 3.3.1 Cationic Lipid -- 3.3.2 Neutral Lipid -- 3.3.3 Anionic Lipid -- 3.3.4 PEG-Lipid Conjugates -- 3.4 FORMULATIONS OF THE LNP FOR NUCLEIC ACIDS ENCAPSULATION -- 3.4.1 Self-Assembly -- 3.4.2 Detergent Dialysis -- 3.4.3 Nanometric Calcium Phosphate/siRNA Precipitation -- 3.5 ORGAN-SPECIFIC DELIVERY OF NUCLEIC ACIDS WITH LNPs -- 3.5.1 Brain-Targeted Delivery.

3.5.2 Liver-Targeted Delivery -- 3.5.3 Lung-Targeted Delivery -- 3.5.4 Kidney-Targeted Delivery -- 3.6 CURRENT CHALLENGES TO THE DEVELOPMENT OF LNPs -- 3.7 FUTURE PERSPECTIVES -- Acknowledgments -- REFERENCES -- 4 Photosensitive Liposomes as Potential Targeted Therapeutic Agents -- 4.1 INTRODUCTION -- 4.2 EXPERIMENTAL PROCEDURES -- 4.2.1 Materials -- 4.2.2 Synthesis of 1-Bromo-3-hexadecylthiobenzene (1) -- 4.2.3 Synthesis of 9-[3-Hexadecylthiophenyl] anthracene (2) -- 4.2.4 Synthesis of 9-[3-Hexadecyl-3'-cyanobenzylsulfonium] phenylanthracene Trifluoromethanesulfonate (C16-An-PAG) (3) -- 4.2.5 Liposome Preparation -- 4.2.6 Dynamic Light Scattering -- 4.2.7 Photoexcitation Method -- 4.2.8 Calcium Ion Release Assay -- 4.2.9 Negative Stain Transmission Electron Microscopy -- 4.2.10 Animal Studies -- 4.3 RESULTS AND DISCUSSION -- 4.3.1 DOPE:LysoPlsC Liposomes Using C16-An-PAG as a Photosensitizer -- 4.3.2 PPlsC Liposomes Using Bchl a as a Photosensitizer -- 4.3.3 Folate Receptor (FR)-Targeted DPPlsC Liposomes Using AlPcS4-4 as a Photosensitizer -- 4.4 CONCLUSIONS -- 4.5 PROSPECTS FOR LIGHT-ACTIVATED LIPOSOMAL DRUG DELIVERY -- Acknowledgments -- REFERENCES -- 5 Multifunctional Dendritic Nanocarriers: The Architecture and Applications in Targeted Drug Delivery -- 5.1 RECENT ADVANCES IN DENDRITIC NANOMATERIALS -- 5.2 EFFECTS OF DENDRITIC ARCHITECTURES ON BIOLOGICAL SYSTEMS -- 5.2.1 Structure-Related Toxicity and Biodistribution -- 5.2.2 Mechanisms for Cell Entry of Dendrimers -- 5.2.3 Multivalent Interactions -- 5.3 FUNCTIONALIZATION OF DENDRITIC STRUCTURES VIA SURFACE MODIFICATION -- 5.4 DENDRIMER-BASED THERAPEUTIC AND DIAGNOSTIC APPROACHES -- 5.4.1 Delivery of Anticancer Drugs -- 5.4.2 Gene Delivery -- 5.4.3 Imaging -- 5.5 DENDRON-BASED HYBRID NANOMATERIALS -- 5.6 FUTURE PERSPECTIVES -- REFERENCES.

6 Chitosan-Based Nanoparticles for Biomedical Applications -- 6.1 CHITOSAN AS A BIOPOLYMER -- 6.2 CHITOSAN NANOPARTICLES FOR IMAGING -- 6.2.1 Optical Imaging -- 6.2.2 Magnetic Resonance (MR) Imaging -- 6.2.3 Computed Tomography (CT) Imaging -- 6.2.4 Positron Emission Tomography (PET) Imaging -- 6.2.5 Ultrasound (US) Imaging -- 6.3 CHITOSAN NANOPARTICLES FOR THERAPY -- 6.3.1 Drug Delivery -- 6.3.2 Gene Delivery -- 6.3.3 Photodynamic Therapy -- 6.4 PROMISES, LIMITATIONS, AND FUTURE PERSPECTIVES OF CHITOSAN NANOPARTICLES -- REFERENCES -- 7 Polymer-Drug Nanoconjugates -- 7.1 INTRODUCTION -- 7.2 CURRENT STATUS OF NANOENCAPSULATES AND POLYMER-DRUG CONJUGATES -- 7.2.1 Nanoencapsulates -- 7.2.2 Polymer-Drug Conjugates -- 7.3 NANOCONJUGATES: DESIGN AND SYNTHESIS -- 7.3.1 Design and General Consideration -- 7.3.2 Synthesis of Cpt-PLA Nanoconjugates -- 7.3.3 Synthesis of Ptxl-PLA (Dtxl-PLA) Nanoconjugates -- 7.3.4 Synthesis of Doxo-PLA Nanoconjugates -- 7.4 NANOCONJUGATES: FORMULATION AND POTENTIAL APPLICATION -- 7.4.1 Formulation -- 7.4.2 Theranostic Nanoconjugates -- 7.4.3 Nanoconjugates Against Other Diseases -- 7.5 CONCLUSIONS AND OUTLOOK -- Acknowledgments -- REFERENCES -- 8 Nanocrystals Production, Characterization, and Application for Cancer Therapy -- 8.1 INTRODUCTION -- 8.2 NANOCRYSTAL PRODUCTION -- 8.2.1 Top-Down Approach -- 8.2.2 Bottom-Up Approach -- 8.2.3 Combined Approach -- 8.3 PARTICLE STABILIZATION -- 8.4 PARTICLE CHARACTERIZATION -- 8.4.1 Particle Size -- 8.4.2 Surface Charge -- 8.4.3 Crystallinity -- 8.4.4 Dissolution -- 8.5 NANOCRYSTALS FOR CANCER THERAPY -- 8.6 FUTURE PERSPECTIVES -- Acknowledgments -- REFERENCES -- 9 Clearance of Nanoparticles During Circulation -- 9.1 INTRODUCTION -- 9.2 NANOPARTICLE-BASED DRUG CARRIERS IN CANCER THERAPY -- 9.2.1 Nanoparticle-Based Drug Carriers -- 9.2.2 Tumor Targeting Strategies.

9.3 BIOLOGICAL CLEARANCE OF NANOPARTICLES -- 9.3.1 Blood Clearance -- 9.3.2 Organ Filtrations -- 9.4 STRATEGIES TO MINIMIZE THE BIOLOGICAL CLEARANCE OF NANOPARTICLES -- 9.4.1 Chemical Cross-Linking -- 9.4.2 Surface Modification -- 9.4.3 Control of the Size, Shape, and Deformability of Nanoparticles -- 9.5 FUTURE PERSPECTIVES -- REFERENCES -- 10 Drug Delivery Strategies for Combating Multiple Drug Resistance -- 10.1 INTRODUCTION -- 10.2 PATHWAYS TO DRUG RESISTANCE -- 10.2.1 Resistance of the Tumor Microenvironment -- 10.2.2 Cellular Resistance -- 10.2.3 Perspective on Drug Resistance -- 10.3 COMBATING MDR -- 10.3.1 Bypassing MDR by Endocytosis -- 10.3.2 Co-Delivery of Drugs with Other Compounds -- 10.3.3 Stimuli-Based Methods -- 10.4 FUTURE PERSPECTIVES -- Acknowledgments -- REFERENCES -- 11 Intracellular Trafficking of Nanoparticles: Implications for Therapeutic Efficacy of the Encapsulated Drug -- 11.1 INTRODUCTION -- 11.2 PATHWAYS OF CELLULAR ENTRY -- 11.2.1 Endocytosis: Many Different Versions -- 11.2.2 Factors Affecting Nanoparticle Uptake into Cells -- 11.2.3 Targeting Ligand-Mediated Cellular Entry of Nanoparticles -- 11.3 INTRACELLULAR FATE OF INTERNALIZED NANOPARTICLES -- 11.3.1 Organelle Targeting -- 11.3.2 Exocytosis of Nanoparticles -- 11.4 IN-DEPTH ELUCIDATION OF INTRACELLULAR TRAFFICKING EVENTS ENTAILS HIGH RESOLUTION IMAGING TECHNIQUES -- 11.5 FUTURE PERSPECTIVES -- REFERENCES -- 12 Toxicological Assessment of Nanomedicine -- 12.1 INTRODUCTION -- 12.2 SAFETY OF COMMONLY USED NANOCONSTRUCTS IN NANOMEDICINE -- 12.2.1 Liposomes -- 12.2.2 Polymer Conjugates and Polymeric Micelles -- 12.2.3 Dendrimers -- 12.2.4 Carbon Nanotubes -- 12.2.5 Silica NPs -- 12.2.6 Metal-Based NPs -- 12.3 EVALUATION OF NANOMATERIAL TOXICITY -- 12.3.1 Characterization -- 12.3.2 Absorption, Distribution, Metabolism, and Excretion (ADME).

12.3.3 Acute and Chronic Toxicity -- 12.3.4 Genotoxicity -- 12.3.5 Carcinogenicity -- 12.3.6 Reproductive and Developmental Toxicity -- 12.4 CONCLUSIONS -- Acknowledgments -- REFERENCES -- Index.
Özet:
YOON YEO, PhD, is Assistant Professor of Industrial and Physical Pharmacy at the College of Pharmacy at Purdue University. She also holds a joint appointment as Assistant Professor at Purdue's Weldon School of Biomedical Engineering. Her research focuses on nanoparticle surface engineering for drug delivery to solid tumors, inhalable drug/gene delivery for cystic fibrosis therapy, and functional biomaterials based on carbohydrates. Dr. Yeo is the recipient of the NSF CAREER Award as well as New Investigator awards from both the American Association of Pharmaceutical Scientists and the American Association of Colleges of Pharmacy.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: