Ionic Liquids Further UnCOILed : Critical Expert Overviews. için kapak resmi
Ionic Liquids Further UnCOILed : Critical Expert Overviews.
Başlık:
Ionic Liquids Further UnCOILed : Critical Expert Overviews.
Yazar:
Seddon, Kenneth R.
ISBN:
9781118839614
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (360 pages)
İçerik:
Cover -- Title page -- Copyright page -- Contents -- COIL Conferences -- Preface -- Acknowledgements -- Contributors -- Abbreviations -- 1: Ionic Liquid and Petrochemistry: A Patent Survey -- 1.1 Introduction -- 1.2 New Formulations and Methods of Fabrication for an Improved Use of Ionic Liquids -- 1.2.1 Alkyl Sulfate Ionic Liquids -- 1.2.2 Other Ionic Liquids -- 1.2.3 High-Purity Ionic Liquids -- 1.2.4 Production of Ionic Liquids under Ultrasonication -- 1.2.5 Immobilised Ionic Liquids -- 1.3 Separation Processes Using Ionic Liquids -- 1.3.1 Introduction -- 1.3.2 Separation of Olefins -- 1.3.3 Close-Boiling Mixtures Treatment -- 1.3.4 Acid Removal from Organic Mixtures -- 1.3.5 Sulfur Compound Elimination from Hydrocarbon Streams -- 1.3.6 Natural Gas Purification -- 1.3.7 Oxygen- or Nitrogen-Containing Polar Compound Separation -- 1.3.8 Other Applications -- 1.4 Use of Ionic Liquids as Additives with Specific Properties -- 1.4.1 Ionic Liquids as Lubricants -- 1.4.2 Ionic Liquids as Antistatic Agents in Polymers -- 1.4.3 Ionic Liquids as Additives for Oil Drilling/Oil Wells -- 1.4.4 Carbon Nanotubes -- 1.4.5 Fine Particles Recovery -- 1.4.6 Anionic Surfactants -- 1.4.7 Pressure-Sensitive Compositions -- 1.5 Use of Ionic Liquids as Both Acidic Catalysts and Solvents -- 1.5.1 Introduction -- 1.5.2 Economical Preparation of Chloroaluminate(III) Ionic Liquids -- 1.5.3 Applications of Acidic Ionic Liquids: Catalysts and Solvents -- 1.5.4 Regeneration of Chloroaluminate(III) Ionic Liquids -- 1.6 Applications of Ionic Liquids as Solvents for Catalytic Systems -- 1.6.1 Introduction -- 1.6.2 Transition-Metal Catalysed Olefin Oligomerisation -- 1.6.3 Hydroformylation -- 1.6.4 Carbonylation of Alcohols -- 1.6.5 Metathesis -- 1.6.6 Hydrosilylation -- 1.6.7 Synthesis of Polymers -- 1.6.8 Microwave-Assisted Chemical Transformations with Ionic Liquids.

1.6.9 Methane to Methanol -- 1.6.10 Fluorination -- 1.6.11 Aldol Condensation -- 1.6.12 Acylation -- 1.6.13 Hydrocarbon Stream Drying -- 1.6.14 Photolysis -- 1.6.15 Preparation of Alkoxyamines -- 1.7 Ionic Liquids and Biopolymers -- 1.7.1 Dissolution and Processing of Cellulose -- 1.7.2 Starch and Ionic Liquids -- 1.7.3 Other Biopolymers -- 1.8 Conclusions and Perspectives -- References -- 2: Supercritical Fluids in Ionic Liquids -- 2.1 Introduction -- 2.2 Phase Behaviour of (Ionic Liquid + Supercritical Fluid) Systems -- 2.2.1 Experimental Methods -- 2.2.2 Phase Behaviour of Binary (Ionic Liquid + Supercritical Fluid) Systems -- 2.2.3 Phase Behaviour of Ternary (Ionic Liquid + Supercritical Fluid) Systems -- 2.3 Chemical Processing in (Ionic Liquid + Supercritical Fluid) Systems -- 2.3.1 Separations in Ionic Liquid + Supercritical Fluid Systems -- 2.3.2 Combined Reactions and Separations in Ionic Liquid + Supercritical Fluid Systems -- 2.4 Conclusions and Outlook -- References -- 3: The Phase Behaviour of 1-Alkyl-3-Methylimidazolium Ionic Liquids -- 3.1 Phase Transitions Linked with Conformational Changes of Cations -- 3.1.1 Conformers of 1-Alkyl-3-Methylimidazolium Cations -- 3.1.2 DSC Measurements of the Bromides of [C2mim]+, [iC3mim]+, and [C4mim]+ -- 3.2 Suitable Equipment for the Thermal Analysis of Ionic Liquids -- 3.3 The Phase Behaviour of [C4mim][PF6] -- 3.3.1 Phase Transitions -- 3.3.2 Cation Structure in Each Phase -- 3.4 Novel Phase Transition Behaviours of Room Temperature Ionic Liquids -- 3.4.1 A Model for Melting and Crystallisation -- 3.4.2 Rhythmic Melting and Crystallisation -- 3.4.3 Intermittent Crystallisation -- 3.5 Concluding Remarks -- References -- 4: Ionic Liquid Membrane Technology -- 4.1 Ionic Liquids: Definitions and Properties -- 4.2 Structure and Morphology of Ionic Liquid Membranes.

4.2.1 Supported Liquid Membranes (SLMs) and Contactors -- 4.2.2 Polymer Ionic Liquid Membranes -- 4.2.3 Gelled Ionic Liquids -- 4.3 Characterisation of Ionic Liquid Membranes -- 4.4 Recent Applications of Ionic Liquid Membranes -- 4.4.1 Separation of Gases and Vapours: CO2 Separation -- 4.4.2 Barrier Materials -- 4.4.3 Separations in the Liquid Phase -- 4.4.4 Fuel Cells and Electrochemical Applications -- 4.5 Future Directions -- 4.5.1 Bioreactive Systems -- 4.5.2 Ionic Liquid Systems with Enhanced Selectivity -- 4.5.3 Stimuli-Responsive Ionic Liquid Systems -- References -- 5: Engineering Simulations -- 5.1 Introduction -- 5.2 Engineering Computations for Process Design using Ionic Liquids -- 5.3 Thermodynamic Models for Ionic Liquids -- 5.3.1 Gibbs Excess GE Models -- 5.3.2 EoS Models -- 5.3.3 Quantum Chemical Calculations -- 5.4 Conclusions -- References -- 6: Molecular Simulation of Ionic Liquids: Where We Are and the Path Forward -- 6.1 Introduction -- 6.2 Goals of a Molecular Simulation -- 6.2.1 Properties -- 6.2.2 Trends and Insight -- 6.3 Property Predictions -- 6.3.1 Setting the Force Field -- 6.3.2 Thermodynamic Properties -- 6.3.3 Transport Properties -- 6.4 Gas-Liquid, Liquid-Liquid, and Solid-Liquid Interfaces -- 6.4.1 Ionic Liquid-Gas Interface -- 6.4.2 Ionic Liquid-Liquid Interface -- 6.4.3 Ionic Liquid-Solid Interface -- 6.5 Multi-Component Systems -- 6.6 Solubility in Ionic Liquids -- 6.7 What Needs to Be Done (and What Does Not) -- 6.7.1 VLE of Pure Ionic Liquids -- 6.7.2 LLE -- 6.7.3 SLE -- 6.7.4 Force Fields -- 6.7.5 What Is Not Needed? -- 6.8 Summary -- Acknowledgements -- References -- 7: Biocatalytic Reactions in Ionic Liquids -- 7.1 Introduction -- 7.2 Enzymes in Ionic Liquids -- 7.3 Single-Phase and Multiphase Systems for Biocatalysis in Ionic Liquids -- 7.4 Influence of Ionic Liquids on Enzyme and Substrate.

7.5 Water Content and Water Activity -- 7.6 Impurities -- 7.7 Biocatalysis in Whole-Cell Systems -- 7.8 Environmental Impact of Ionic Liquids -- 7.9 Concluding Remarks and Future Aspects -- References -- 8: Ionicity in Ionic Liquids: Origin of Characteristic Properties of Ionic Liquids -- 8.1 Introduction -- 8.2 Methodology -- 8.2.1 Synthesis -- 8.2.2 Thermal Analysis -- 8.2.3 Density -- 8.2.4 Conductivity -- 8.2.5 Viscosity -- 8.2.6 Self-Diffusion Coefficients -- 8.2.7 Solvent Polarity Parameter -- 8.3 Physicochemical, Properties of [C2mim]+-Based Ionic Liquids -- 8.4 Transference Number and Ionicity -- 8.5 Correlation of Ionicity with Ionic Structures and Physicochemical Properties -- 8.6 Conclusions -- Acknowledgement -- References -- 9: Dielectric Properties of Ionic Liquids: Achievements So Far and Challenges Remaining -- 9.1 Introduction -- 9.2 A Glance at Dielectric Theory of Electrically Conducting Systems -- 9.3 Phenomenological Description of Dielectric Spectra of Ionic Liquids -- 9.3.1 Microwave Spectra -- 9.3.2 Terahertz Spectra -- 9.4 Molecular Processes Affecting the Dielectric Response -- 9.4.1 Dipolar Processes -- 9.4.2 Ionic Processes -- 9.5 Relation to Solvation Dynamics -- 9.6 The Static Dielectric Constant of Ionic Liquids -- 9.7 Conclusions -- Acknowledgements -- References -- 10: Ionic Liquid Radiation Chemistry -- 10.1 Introduction: What Is Radiation Chemistry? -- 10.2 The Relevance of Radiation Chemistry to Ionic Liquid Science and Applications -- 10.3 A Brief Description of Fundamental Radiation Chemistry and Ionic Liquids -- 10.4 Would Ionic Liquids Be Stable Enough for Spent Nuclear Fuel Recycling? -- 10.5 Suitability of Ionic Liquid Preparations for Radiation Chemistry Studies -- 10.6 Practical Importance: Applying Fundamental Ionic Liquid Radiation Chemistry to Nanoparticle Synthesis -- 10.7 Future Prospects.

Acknowledgements -- References -- 11: Physicochemical Properties of Ionic Liquids -- 11.1 Introduction -- 11.2 Melting Point -- 11.3 Density -- 11.4 Viscosity -- 11.5 Surface Tension -- 11.6 Conclusions -- Acknowledgements -- References -- Index.
Özet:
DR. NATALIA V. PLECHKOVA attained her BSc and MSc in chemical engineering at the Russian Mendeleev University of Chemical Technology, Moscow, and her PhD in chemistry, under the guidance of Professor Seddon. Since then she has been a research fellow and project manager in the QUILL (Queen's University Ionic Liquid Laboratories) Research Centre, focussing on various aspects of ionic liquids, including their synthesis, characterisation, and applications. PROF. KENNETH R. SEDDON is Chair of Inorganic Chemistry at the Queen's University of Belfast, and director of the QUILL Research Centre, a world-leading industrial-academic consortium that was awarded the 2006 Queen's Anniversary Prize for Higher and Further Education and has just been involved with implementing a full-scale process for removing mercury from natural gas streams with Petronas Chemicals, for which an unprecedented three global IChemE awards were presented in November 2013.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: