Development of endosome disruptive peptide and PEG conjugate based doxorubicin delivery system için kapak resmi
Development of endosome disruptive peptide and PEG conjugate based doxorubicin delivery system
Başlık:
Development of endosome disruptive peptide and PEG conjugate based doxorubicin delivery system
Yazar:
Özkıyıcı, Selin, author.
Yazar Ek Girişi:
Fiziksel Tanımlama:
xiii, 63 leaves: charts;+ 1 computer laser optical disc.
Özet:
In this study, it was aimed to develop a drug carrier system including a TAT-derived cell penetrating peptide in order to provide fast transport of anticancer drugs from endosomal compartments to nucleus. The drug delivery system, denoted as mPEGpeptide- oxime-DOX, was based on polyethylene glycol, endosome disruptive peptide (G2RQR3QR3G2S), and doxorubicin (DOX) conjugate. Control drug delivery system, lack of the peptide (mPEG-oxime-DOX) was also synthesized to assess the effect of the peptide on the physiochemical and drug release properties of the drug carrier. As the first synthesis step, mPEG-OH was converted to mPEG-aldehyde form using DMSO-acetic anhydride oxidation reaction and aldehyde functionalization was determined by using FTIR and NMR spectroscopy. The peptide and mPEG-peptide were synthesized using solid phase synthesis protocol, and their purities were confirmed using HPLC and MALDI-TOF mass spectroscopy analyses. Prior to DOX conjugation, hydroxyl group of serine residue in the mPEG-peptide system was oxidized to aldehyde. The anticancer drug was attached to the carrier molecules via amine-aldehyde reaction forming an acid cleavable oxime bond. Drug release, size distribution, and stability of the PEG-peptideoxime- DOX system were evaluated and compared with those results of the control drug delivery system. For mPEG-oxime-DOX, a pH programmed DOX release with the respective % DOX release values of ~68 % and ~28 % at pH 5.0 and pH 7.4 was observed. For mPEG-peptide-oxime-DOX, on the other hand, quite low DOX release (~10-15 %) was obtained for both pH values suggesting possible interaction between DOX and the peptide. Mean size value of the mPEG-oxime-DOX was measured as ~24 nm. However, mPEG-peptide-oxime-DOX, had quite lower hydrodynamic diameter values (~3nm and ~6 nm at pH 5.0 and pH 7.4, respectively) possibly due to repulsions between the arginines in the peptide domain. Observation of the morphology and evaluation of the cytotoxicity of these drug delivery systems are underway.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Chemical Engineering.

İzmir Institute of Technology: Chemical Engineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: