Importance of database normalization for reliable protein identification in mass spectrometry-based proteomics için kapak resmi
Importance of database normalization for reliable protein identification in mass spectrometry-based proteomics
Başlık:
Importance of database normalization for reliable protein identification in mass spectrometry-based proteomics
Yazar:
Mungan, Mehmet Direnç, author.
Fiziksel Tanımlama:
xi, 37 leaves:+ 1 computer laser optical disc.
Özet:
One of the revolutionary steps towards proteomics, was introducing mass spectrometry to protein inference analysis. Its powerful aspects such as speed, and accuracy towards identifying and quantifying proteins have made it the first choice to obtain highthroughput data. Due to development of a variety of fragmentation techniques, mass spectrometry-based analysis even made it possible to acquire knowledge about single polymorphisms and modifications of amino acids of a peptide. Although this technology provides enormous amounts of data, identification of the proteins is still a hard challenge to overcome due to the shortcomings of computational methods. Herein a novel methodology is offered to better analyze mass spectrometry data and overcome the deficiency of protein identification algorithms in terms of speed and accuracy. When the spectral data is acquired from an organism by mass spectrometry, database search algorithms are used for protein identification if the protein sequences of the organism are known. These algorithms compare the experimental data from mass spectrometry analysis to theoretical data gathered from known databases of organism to try and find the best match by ranking the PSMs via scoring functions. Since the databases can be too large to search and multiple databases with different sizes can contain the peptides of experimental data, database search algorithms may fail to produce fair, fast or complete results. In this work a methodology is presented to overcome unfair scoring of peptides in different size databases and enable database search algorithms to utilize relatively big sized entries such as human chromosome six frame translations. In terms of speed and accuracy the method is found to be better than some of the existing methods.
Yazar Ek Girişi:
Tek Biçim Eser Adı:
Thesis (Master)--İzmir Institute of Technology: Biotechnology and Bioengineering.

İzmir Institute of Technology: Biotechnology and Bioengineering--Thesis (Master).
Elektronik Erişim:
Access to Electronic Versiyon.
Ayırtma: Copies: