Functional Nanostructured Materials and Membranes for Water Treatment. için kapak resmi
Functional Nanostructured Materials and Membranes for Water Treatment.
Başlık:
Functional Nanostructured Materials and Membranes for Water Treatment.
Yazar:
Duke, Mikel.
ISBN:
9783527668496
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (349 pages)
Seri:
New Materials for Sustainable Energy and Development Ser.
İçerik:
Functional Nanostructured Materials and Membranes for Water Treatment -- Contents -- Foreword -- Series Editor Preface -- Acknowledgments -- About the Series Editor -- About the Volume Editors -- List of Contributors -- 1 Target Areas for Nanotechnology Development for Water Treatment and Desalination -- 1.1 The Future of Water Treatment: Where Should We Target Our Efforts? -- 1.2 Practical Considerations for Nanotechnology Developers -- 1.3 The Water Treatment Market for New Nanotechnology -- 1.4 Purpose of This Book -- 1.5 Concluding Remarks -- References -- 2 Destruction of Organics in Water via Iron Nanoparticles -- 2.1 Introduction -- 2.2 Nanoparticles as Catalysts -- 2.2.1 Colloidal Nanoparticles -- 2.2.2 Supported Nanoparticles -- 2.3 Advanced Oxidation Processes -- 2.3.1 Fenton-Like Reactions -- 2.3.1.1 Iron Oxide as Heterogeneous Nanocatalyst -- 2.3.2 Photo-Fenton Reactions -- 2.3.3 Nanocatalytic Wet Oxidation -- 2.4 Nano Zero-Valent Iron (nZVI) -- 2.4.1 Synthesizing Methods -- 2.4.1.1 Emulsified Zero-Valent Iron -- 2.4.2 Degradation Mechanism -- 2.4.3 Field Application of nZVI -- 2.5 Bimetallic nZVI Nanoparticles -- 2.6 Summary -- References -- 3 Photocatalysis at Nanostructured Titania for Sensing Applications -- 3.1 Background -- 3.1.1 Photocatalysis at TiO2 Nanomaterials -- 3.1.2 Photoelectrocatalysis at TiO2 Nanomaterials -- 3.2 Fabrication of TiO2 Photoanodes -- 3.2.1 Common Fabrication Techniques and Substrates for Photoanodes -- 3.2.2 TiO2/BDD Photoanode -- 3.2.3 TiO2 Mixed-Phase Photoanode -- 3.2.4 CNTs/TiO2 Composite Photoanode -- 3.3 The Sensing Application of TiO2 Photocatalysis -- 3.3.1 Photocatalytic Determination of TOC -- 3.3.2 Photocatalytic Determination of COD -- 3.4 The Sensing Application of TiO2 Photoelectrocatalysis -- 3.4.1 Probe-Type TiO2 Photoanode for Determination of COD.

3.4.2 Exhaustive Degradation Mode for Determination of COD -- 3.4.3 Partial Oxidation Mode for Determination of COD -- 3.4.4 UV-LED for Miniature Photoelectrochemical Detectors -- 3.4.5 Photoelectrochemical Universal Detector for Organic Compounds -- 3.5 Photocatalytic Gas Sensing -- 3.5.1 The Photoelectrocatalytic Generation of Analytical Signal -- 3.5.2 Photocatalytic Surface Self-Cleaning for Enhancement of Analytical Signal -- 3.6 Conclusions -- References -- 4 Mesoporous Materials for Water Treatment -- 4.1 Adsorption of Heavy Metal Ions -- 4.2 Adsorption of Anions -- 4.3 Adsorption of Organic Pollutants -- 4.4 Multifunctional Modification of Sorbents -- 4.5 Photocatalytic Degradation of Organic Pollutants -- 4.6 Conclusions and Outlook -- Acknowledgments -- References -- 5 Membrane Surface Nanostructuring with Terminally Anchored Polymer Chains -- 5.1 Introduction -- 5.2 Membrane Fouling -- 5.3 Strategies for Mitigation of Membrane Fouling and Scaling -- 5.4 Membrane Surface Structuring via Graft Polymerization -- 5.4.1 Overview -- 5.4.2 Reaction Schemes for Graft Polymerization -- 5.4.3 Surface Activation with Vinyl Monomers -- 5.4.4 Surface Activation with Chemical Initiators -- 5.4.5 Irradiation-Induced Graft Polymerization -- 5.4.5.1 Gamma-Induced Graft Polymerization -- 5.4.5.2 UV-Induced Graft Polymerization -- 5.4.6 Plasma-Initiated Graft Polymerization -- 5.5 Summary -- References -- 6 Recent Advances in Ion Exchange Membranes for Desalination Applications -- 6.1 Introduction -- 6.2 Fundamentals of IEMs and Their Transport Phenomena -- 6.2.1 Ion Transport through IEMs -- 6.2.2 Concentration Polarization and Limiting Current Density -- 6.2.2.1 The Overlimiting Current Density -- 6.2.2.2 Water Dissociation -- 6.2.2.3 Gravitational Convection -- 6.2.2.4 Electroconvection -- 6.2.3 Structure and Surface Heterogeneity of IEMs.

6.3 Material Development -- 6.3.1 The Development of Polymer-Based IEMs -- 6.3.1.1 Direct Modification of Polymer Backbone -- 6.3.1.2 Direct Polymerization from Monomer Units -- 6.3.1.3 Charge Induced on the Film Membranes -- 6.3.2 Composite Ion Exchange Membranes -- 6.3.3 Membranes with Specific Properties -- 6.3.3.1 Improving Antifouling Property -- 6.4 Future Perspectives of IEMs -- 6.4.1 Hybrid System -- 6.4.2 Small-Scale Seawater Desalination -- 6.5 Conclusions -- References -- 7 Thin Film Nanocomposite Membranes for Water Desalination -- 7.1 Introduction -- 7.2 Fabrication and Characterization of Inorganic Fillers -- 7.3 Fabrication and Characterization of TFC/TFN Membranes -- 7.3.1 Interfacial Polymerization -- 7.3.2 Interfacial Polymerization with Inorganic Fillers -- 7.3.3 Characterization of TFN or TFC Membranes -- 7.4 Membrane Properties Tailored by the Addition of Fillers -- 7.4.1 Water Permeability and Salt Rejection -- 7.4.2 Fouling Resistance, Chlorine Stability, and Other Properties -- 7.5 Commercialization and Future Developments of TFN Membranes -- 7.6 Summary -- References -- 8 Application of Ceramic Membranes in the Treatment of Water -- 8.1 Introduction -- 8.2 Membrane Preparation -- 8.2.1 Extrusion -- 8.2.2 Sol-Gel Process -- 8.3 Clarification of Surface Water and Seawater Using Ceramic Membranes -- 8.3.1 Ceramic Membrane Microfiltration of Surface Water -- 8.3.1.1 Pretreatment with Flocculation/Coagulation -- 8.3.1.2 Effect of Transmembrane Pressure (TMP) and Cross-Flow Velocity (CFV) -- 8.3.1.3 Ultrasound Cleaning -- 8.3.1.4 Hybrid Ozonation-Ceramic Ultrafiltration -- 8.3.1.5 Ceramic Membrane Applications for Industrial-Scale Waterworks -- 8.3.2 Pretreatment of Seawater RO Using Ceramic Membranes -- 8.3.2.1 Effect of Operational Parameters -- 8.3.2.2 Ceramic Membrane Application for the Industrial-Scale SWRO Plant.

8.4 Ceramic Membrane Application in the Microfiltration and Ultrafiltration of Wastewater -- 8.4.1 Microstructure of the Membranes -- 8.4.2 Surface Properties of Ceramic Membranes -- 8.4.2.1 Wettability -- 8.4.2.2 Surface Charge Properties -- 8.4.2.3 Technical Process -- 8.4.2.4 Cost -- 8.5 Conclusions and Prospects -- References -- 9 Functional Zeolitic Framework Membranes for Water Treatment and Desalination -- 9.1 Introduction -- 9.2 Preparation of Zeolite Membranes -- 9.2.1 Direct In situ Crystallization -- 9.2.2 Seeded Secondary Growth -- 9.2.3 Microwave Synthesis -- 9.2.4 Postsynthetic Treatment -- 9.3 Zeolite Membranes for Water Treatment -- 9.3.1 Zeolite Membranes for Desalination -- 9.3.2 Zeolite Membranes for Wastewater Treatment -- 9.3.3 Zeolite Membrane-Based Reactors for Wastewater Treatment -- 9.4 Conclusions and Future Perspectives -- Acknowledgments -- References -- 10 Molecular Scale Modeling of Membrane Water Treatment Processes -- 10.1 Introduction -- 10.2 Molecular Simulations of Polymeric Membrane Materials for Water Treatment Applications -- 10.2.1 RO Membranes: Synthesis, Structure, and Properties -- 10.2.2 Strategies for Modeling Polymer Membranes -- 10.2.3 Simulation of Water and Solute Transport Behaviors -- 10.2.4 Concluding Remarks -- 10.3 Molecular Simulation of Inorganic Desalination Membranes -- 10.3.1 Modeling of Zeolites -- 10.3.2 Behavior of Water within Zeolites -- 10.3.3 Zeolites and Salt Ions -- 10.3.4 Concluding Remarks -- 10.4 Molecular Simulation of Membrane Fouling -- 10.4.1 Molecular Modeling of Potential Organic Foulants -- 10.4.2 Modeling of Membrane Fouling -- 10.4.3 Future Directions -- 10.4.4 Concluding Remarks -- References -- 11 Conclusions: Some Potential Future Nanotechnologies for Water Treatment -- 11.1 Nanotubes -- 11.1.1 Fast Molecular Flow -- 11.1.2 CNTs as High Strength Fibers.

11.1.3 High Aspect Ratio -- 11.1.4 Electrical Conductivity -- 11.2 Graphene -- 11.2.1 Graphene Barrier Material -- 11.2.2 Desalination and Heavy Metal Adsorption -- 11.2.3 Catalytic Assistance -- 11.3 Aquaporins -- 11.4 Metal-Organic, Zeolitic Imidazolate, and Polymer Organic Frameworks -- 11.5 Conclusions -- References -- Index.
Özet:
Membranes have emerged over the last 30 years as a viable water treatment technology. Earth's population is growing and the need for alternative ways to generate potable water is rising. The recent advent of nanotechnology opens the door to improving processes in membrane technology, which is a promising step on the way to solving the earth's potable water problem. Current performance is enhanced and new concepts are possible by engineering on the nanoscale. This book presents key areas of nanotechnology such as fouling tolerant and robust membranes, enhanced destruction of pollutants and faster monitoring of water quality. 'Functional Nanostructured Materials and Membranes for Water Treatment' is part of the series on Materials for Sustainable Energy and Development edited by Prof. G.Q. Max Lu. The series covers advances in materials science and innovation for renewable energy, clean use of fossil energy, and greenhouse gas mitigation and associated environmental technologies.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: