Robotics : State of the Art and Future Trends. için kapak resmi
Robotics : State of the Art and Future Trends.
Başlık:
Robotics : State of the Art and Future Trends.
Yazar:
Giovanni, Legnani,.
ISBN:
9781621004783
Yazar Ek Girişi:
Fiziksel Tanımlama:
1 online resource (372 pages)
Seri:
Computer Science, Technology and Applications
İçerik:
ROBOTICS STATE OF THE ART AND FUTURE TRENDS -- ROBOTICS STATE OF THE ART AND FUTURE TRENDS -- CONTENTS -- PREFACE -- ROBOT IN INDUSTRIAL APPLICATIONS: STATE OF THE ART AND CURRENT TRENDS -- Abstract -- 1. Introduction -- 1.1 The Market -- 1.2. Robot Typologies -- 2. Performances and Criteria for Selection -- 2.1. Application Field -- 2.2. Payload -- 2.3. Working Space and Dimensions -- 2.4. Velocity -- 2.5. Repeatability and Accuracy -- 3. Manipulator Controllers -- 3.1. The architecture -- 3.2. Trajectories -- 3.3. Trajectories Interpolated with External Axes -- 3.4. Traditionlal Programming Versus sensor Guided Programming -- 3.5. Force Sensors -- 3.6. Vision Systems: 2D and 3D -- 3.7. Touch Sensing -- 3.8. On Line Correction of the Welding Path by Current Measurement -- 3.9. On Line Correction of the Welding Path by Laser Sensor -- 4. Programming -- 4.1 Teaching the task -- 4.1. Programming Languages -- 4.2. Programming by Teaching -- 4.3. Graphical Simulation and Programming -- 5. Other Advanced Applications -- 5.1 Vision based tasks -- 5.2. Remote Laser Welding -- 5.3. Other Emerging Applications -- 6. Conclusions -- References -- A PARTIALLY-DECOUPLED 4-DOF GENERAL 3SPS/PS PARALLEL MANIPULATOR -- Abstract -- Introduction -- The Manipulator -- Geometry Analysis -- Kinematic Analysis -- Inverse Kinematics -- Forward Kinematics -- Position of the moving platform -- Orientation of the moving platform -- Stage 1: Coordinate transformation in the fixed base -- Stage 2: Pure orientation between two tetrahedrons -- Numerical Example -- Singularity Analysis -- Inverse Kinematic Singularities -- Direct Kinematic Singularities -- Workspace Analysis -- Kinematic Limitations to Workspace -- Limited length of legs -- Limited motion range of the passive joints -- Leg interference -- Approach.

Orientation Workspace, Reachable Workspace, and Dexterous Workspace -- Orientation workspace -- Reachable workspace -- Dexterous workspace -- Conclusions -- References -- MANIPULATORS WORKSPACE ANALYSIS AS BASED ON A NUMERICAL APPROACH: THEORY AND APPLICATIONS -- Abstract -- Introduction -- Related Work on Workspace Evaluation -- A General Numerical Algorithm for the Workspace Analysis -- Workspace Analysis for Serial Chain Manipulators -- Workspace Analysis for Parallel Chain Manipulators -- Conclusions -- References -- ON THE MOBILITY OF 3-DOF PARALLEL MANIPULATORS VIA SCREW THEORY -- Abstract -- Introduction -- Mobility Analysis -- Screw Theory -- Mobility Analysis of the 3-RPC-Y and 3-RPC-T Parallel Mechanisms -- Mobility Analysis of the 3-RCC-Y Parallel Mechanism -- Mobility Analysis of the 3-PSP and 3-CUP Parallel Manipulators -- Mobility Analysis of the 3-PPS and 3-PCU Parallel Manipulators -- Motion Simulations -- Conclusions -- References -- AN APPLICATION OF SCREW ALGEBRA TO THE JERK ANALYSIS OF A CLASS OF SIX-DEGREES-OF-FREEDOM THREE-LEGGED PARALLEL MANIPULATORS -- Abstract -- 1.Notation -- 2.Introduction -- 3.PreliminaryConcepts -- 3.1.MotionPropertiesofaRigidBody -- 3.1.1.Velocity,AccelerationandJerkVectors -- 3.1.2.KinematicStatesofaRigidBody -- 3.2.FundamentalsofScrewTheory.NotAlltheScrewsareintheHardware -- 4.DescriptionoftheParallelManipulatorsunderStudy -- 5.FiniteKinematics -- 5.1.ForwardDisplacementAnalysis -- 5.2.InverseDisplacementAnalysis -- 6.InfinitesimalKinematics -- 6.1.VelocityAnalysis -- 6.2.AccelerationAnalysis -- 6.3.JerkAnalysis -- 7.NumericalExample -- 8.Conclusions -- Acknowledgments -- References -- DYNAMICS AND SYSTEM IDENTIFICATION OF PARALLEL ROBOTS -- Abstract -- Introduction -- Dynamic Modeling and Analysis of Parallel Robots -- System Description - Special 6-6 PKM -- Lumped Mass Parameter Model.

Coordinate System Assignment -- Global and Moving Platform Coordinate Systems -- Strut Coordinate System -- Equations of Motion -- Generalized Coordinates -- Kinematics -- Kane's Equation -- Equations of Motion (Force-Based Model) -- The Energy Method -- Parameter Identification Algorithms -- UKF Parameter Estimation -- UKF Parameter Estimation Procedure -- Implementation of UKF: PKM Dynamic Parameter Identification -- PKM Simulations (Force-Based) -- PKM Simulations (Energy-Based Model) -- Results of Simulated UKF -- Simulation Results (Force-Based, Without Friction) -- Simulation Results (Force-Based, With Friction) -- Simulation Results (Energy-Based, Without Friction) -- Simulation Results (Force-Based, Without Friction, Original/Random/Spread) -- Comparison between Force- and Energy-Based with Noisy Data -- Summary of PKM Dynamic Parameter Identification Results Using the UKF Method -- Experimental Validation of UKF for PKMs -- Experimental Setup -- Challenges to Experimental Validation and Reconciliation -- Friction Extraction and Estimation Stages -- Experimental PKM Dynamic System Identification Results Using UKF Method -- References -- FRACTIONAL-ORDER CONTROLLERS FOR ROBOT MANIPULATOR -- Abstract -- 1. Introduction -- 2. About Fractional Calculus -- 2.1. Geometric Interpretation of Fractional Integration: Shadows on the Wall -- 2.2. Fractional Derivative Operands -- 3. Robot Manipulator Dynamic Modeling -- 4. Adaptive Fractional-Order PID Controller -- 4.1. Definitions -- 4.2. Supervisory Controller Design -- 4.3. Adaptation Law Synthesis -- 5. Fractional - Order Sliding Mode Controller -- 5.1. FOSMC Design -- 6. Genetic Algorithm -- 7. Simulation Results -- 8. Conclusion -- References -- VISUAL CONTROL OF ROBOTIC MANIPULATORS: FUNDAMENTALS -- Abstract -- PARTI:FUNDAMENTALS -- 1.Introduction -- 2.ScrewTheoryinVisualServoControl.

2.1.Image-basedVisualServoControl -- 2.2.Position-basedVisualServoControl -- 2.3.HybridVisualServoControl -- 3.VisualServoingApproaches -- 3.1.ImageBasedVisualServoing -- 3.2.PositionBasedVisualServoing -- 3.3.HybridVisualServoing -- 3.4.EstimationofVisual-MotorInteraction -- 3.5.FuzzyModeling -- Takagi-Sugenofuzzymodel -- FuzzyModelParametersIdentificationbyfuzzyclustering -- 3.5.1.UncalibratedFuzzyVisualServoing -- PARTII:APPLICATIONS -- 4.ApplicationsandImplementation -- 4.1.Reviewofworldwideapplications -- 4.2.ImplementationonRoboticManipulatorsofLearningApproaches -- 4.2.1.ExperimentalSetup -- 4.2.2.FuzzyModelingResults -- 4.2.3.ControlResults -- 5.Conclusions -- Acknowledgments -- References -- FLEXIBLE APPLICATIONS OF ROBOTIC MANIPULATORS BASED ON VISUAL-FORCE CONTROL AND COOPERATION WITH HUMANS -- Abstract -- Introduction -- Visual Servoing for Path Tracking -- Force Control for Contact Interaction -- Human Tracking System for Safe Cooperation -- Applications -- Application 1: Disassembly of a streetlamp for bulb replacement -- Application 2: Disassembly of an electrical appliance -- Application 3: Assembly of a metallic structure -- Conclusions -- Acknowledgments -- References -- ROBOTICS IN REHABILITATION- PART I: REQUIREMENTS AND CONTROL ISSUES -- Abstract -- 1.Introduction -- 2.TheContextofRobot-assistedRehabilitation -- 3.PhysicalHuman-RobotInteraction -- 3.1.SafetyIssues -- 3.1.1.IntrinsicSafety -- 3.1.2.SafetybyControl -- A)ControltechniquesforpHRI. -- B)Pathplanning. -- 3.2.Dependability -- 4.RobotControlIssuesinpHRI -- 4.1.ReviewofControlStrategiesSuitableforpHRI -- 4.1.1.PureForceControl -- 4.1.2.ImpedanceControl -- 4.2.HumanArmImpedance -- 4.2.1.HumanUpperLimbDynamicModel -- 4.3.RemarksonDefiningandEstimatingtheDynamicalModel -- 5.CaseStudy:Multi-SensoryCellforUpperLimbRehabilitation -- 5.1.Set-upDescription.

A)Therobotandtheopencontrolarchitecture. -- B)Sensorsforbiomechanicsmeasuresanddevices. -- C)VirtualRealityengine. -- D)Safe-PLCintegration -- 5.2.CoupledHuman-robot-VRInteraction -- A)HapticFeedbackfromVirtualEnvironment. -- B)ControlofHuman-RobotInteraction. -- 5.3.ControloftheRobotalongaConstrainedTrajectory -- 5.4.Safety -- 6.Conclusions -- References -- ROBOTICS IN REHABILITATION- PART II: DESIGN OF DEVICES AND MECHANISMS -- Abstract -- 1.Introduction -- 2.RobotsforUpperLimbRehabilitation -- 2.1.End-effectorDevices -- 2.2.ExoskeletalProstheses -- 3.CaseStudy:Self-adaptableandElbow-singularity-freeExoskeleton -- 3.1.HumanArmKinematicModel -- 3.2.MechanismDescription -- 3.3.Kinematics -- 3.4.Kinetostatics -- 3.5.Human-robotTorqueTransmission -- 4.Conclusions -- References -- AN OVERVIEW ON ROBOTIC MICROMANIPULATION -- Abstract -- Introduction -- 1.PhysicsatMicroscale -- 1.1.ContactatMicroscale -- 1.2.VanderWaalsForces -- 1.3.CapillaryForces -- 1.4.ElectrostaticForces -- 2.Pick-and-PlaceUsingAdhesionForces -- 2.1.MicroscaleGrippingStrategies -- 2.2.TheManipulator -- 2.2.1.ForceSensing -- 2.2.2.HapticUserInterface -- 2.3.ControlImplementation -- 2.3.1.MotionoftheGripperonHorizontalPlane -- 2.3.2.FocusingforVerticalMotion -- 2.3.3.ForceServoing -- 2.4.ForceFeedbackHapticRemoteHandling -- 2.4.1.TheHomotheticCouplingBlock -- 2.4.2.TheMasterControlBlock -- 2.4.3.TheSlaveControlBlock -- 2.4.4.Llewellyn'sUnconditionalStabilityCriteria -- 2.5.ExperimentsandUsageScenarios -- 2.5.1.AdhesionForces -- 2.5.2.SortingbySelectiveRelease -- 2.5.3.Rolling -- 2.5.4.Teleoperation -- 3.FinalWordsandFurtherReading -- References -- INDEX.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Yazar Ek Girişi:
Elektronik Erişim:
Click to View
Ayırtma: Copies: