Flexible Robotics : Applications to Multiscale Manipulations. için kapak resmi
Flexible Robotics : Applications to Multiscale Manipulations.
Başlık:
Flexible Robotics : Applications to Multiscale Manipulations.
Yazar:
Grossard, Mathieu.
ISBN:
9781118572009
Yazar Ek Girişi:
Basım Bilgisi:
1st ed.
Fiziksel Tanımlama:
1 online resource (405 pages)
Seri:
Iste
İçerik:
Cover -- Title Page -- Contents -- Introduction -- Chapter 1. Design of Integrated Flexible Structures for Micromanipulation -- 1.1. Design and control problems for flexible structures in micromanipulation -- 1.1.1. Characteristics of manipulation on the microscale -- 1.1.2. Reliability and positioning precision -- 1.1.3. Micromanipulation station -- 1.1.4. Difficulties related to controlling robotic micromanipulators -- 1.2. Integrated design in micromechatronics -- 1.2.1. Modeling integrated flexible structures -- 1.2.2. Active transduction materials -- 1.2.3. Multiphysical models -- 1.2.4. Optimization strategies for micromechatronic structures -- 1.3. Example of an optimal synthesis method for flexible piezoelectric transduction structures -- 1.3.1. Block method -- 1.3.2. General design approach -- 1.3.3. Finite element model -- 1.3.4. Example applications: designing integrated flexible microgrippers -- 1.4. Conclusion -- 1.5. Bibliography -- Chapter 2. Flexible Structures' Representation and Notable Properties in Control -- 2.1. State-space representation of flexible structures -- 2.1.1. Dynamic representation -- 2.1.2. Conservative model in the modal basis -- 2.1.3. Damping characteristics -- 2.1.4. Solving equations -- 2.1.5. State-space representation in the modal basis -- 2.1.6. Modal identification and control -- 2.2. The concepts of modal controllability and observability -- 2.2.1. Overview of state controllability and observability -- 2.2.2. Interpretations of Gramians in the case of flexible structures -- 2.2.3. Writing Gramians in the modal basis -- 2.3. Reduction of models -- 2.3.1. Balanced realization -- 2.3.2. The Moore reduction technique -- 2.3.3. Modal and balanced realizations equivalence for flexible structures.

2.4. Contribution of modal analysis criteria to topological optimization -- 2.4.1. Practical considerations in model reduction -- 2.4.2. Actuator/sensor collocation -- 2.4.3. Guiding the frequential response of the control transfer in the context of topological optimization -- 2.4.4. Modal observability criterion in structure optimization -- 2.4.5. High authority control (HAC)/low authority control (LAC) control -- 2.5. Conclusion -- 2.6. Bibliography -- Chapter 3. Structured Energy Approach for the Modeling of Flexible Structures -- 3.1. Introduction -- 3.2. Finite-dimensional systems -- 3.2.1. Classic energy models -- 3.2.2. Classic network models -- 3.2.3. Port-Hamiltonian formulation -- 3.3. Infinite-dimensional systems -- 3.3.1. Introductory example -- 3.3.2. Class of considered systems -- 3.3.3. Infinite-dimensional Dirac structure -- 3.3.4. Boundary control systems and stabilization -- 3.4. Conclusion -- 3.5. Bibliography -- Chapter 4. Open-Loop Control Approaches to Compliant Micromanipulators -- 4.1. Introduction -- 4.2. Piezoelectric microactuators -- 4.2.1. Compliant piezoelectric actuators -- 4.2.2. Hysteresis modeling and compensation -- 4.2.3. Modeling and compensating for badly damped vibration -- 4.3. Thermal microactuators -- 4.3.1. Thermal actuators -- 4.3.2. Modeling and identification -- 4.3.3. Bistable module using thermal actuators -- 4.3.4. Control -- 4.3.5. Digital microrobot -- 4.4. Conclusion -- 4.5. Bibliography -- Chapter 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers -- 5.1. Robotic gripper systems -- 5.1.1. Robotic gripper -- 5.1.2. Versatile gripping concept -- 5.1.3. Dexterous manipulation concept -- 5.2. Actuation architecture and elastic elements -- 5.2.1. Actuation system.

5.2.2. Modeling elastic transmissions in "simple-effect" actuation architecture -- 5.3. Structural flexibility -- 5.3.1. Compliant joints and precision issues -- 5.3.2. Design example of an interphalangeal joint for pluridigital manipulation -- 5.3.3. Deformable contact surfaces -- 5.4. Conclusion -- 5.5. Bibliography -- Chapter 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation -- 6.1. Introduction -- 6.2. Human dexterous manipulation as a basis for robotic manipulation -- 6.2.1. Human hand and finger movements -- 6.2.2. Tactile perception in the human hand -- 6.2.3. Functional specifications of tactile sensing for dexterous manipulation for robotics -- 6.3. Technologies for tactile sensing -- 6.3.1. Resistive sensors -- 6.3.2. Conductive polymers and fabrics -- 6.3.3. Conductive elastomer composites -- 6.3.4. Conductive fluids -- 6.3.5. Capacitive sensors -- 6.3.6. Piezoelectric sensors -- 6.3.7. Optical sensors -- 6.3.8. Organic field-effect transistors -- 6.4. A comparison of sensor solutions and sensing techniques -- 6.5. The Nail sensor -- 6.5.1. Description and working principle -- 6.5.2. Manufacturing process -- 6.6. From the Nail sensor to tactile skin -- 6.6.1. Flexible Nail sensor arrays -- 6.6.2. Dimensioning, materials and fabrication process -- 6.6.3. Signal addressing management: a challenge for large arrays and system integration -- 6.7. From tactile skin to artificial touch system -- 6.7.1. Sensor protection and force transmission -- 6.7.2. Texture analysis device based on the Nail sensor -- 6.8. Applications and signal analysis -- 6.8.1. Surface discrimination -- 6.8.2. Roughness estimation -- 6.8.3. Sensory analysis of materials -- 6.9. Summary and conclusion -- 6.10. Bibliography -- Chapter 7. Flexures for High-Precision Manipulation Robots.

7.1. High-precision industrial robots background -- 7.1.1. Applications -- 7.1.2. Constraints linked to high-precision and proposed solution principles -- 7.1.3. Several examples of ultra-high-precision robots -- 7.2. Kinematic analysis of simple flexures -- 7.2.1. Flexure design -- 7.2.2. Degrees of freedom of an elementary joint -- 7.2.3. Parasitic movements -- 7.2.4. Rectilinear and circular flexures -- 7.3. Design method of parallel modular kinematics for flexures -- 7.3.1. Motivation -- 7.3.2. Modular design methodology -- 7.3.3. Application of the concept to very high-precision -- 7.3.4. Flexure-based mechanical design of bricks -- 7.4. Example of the Legolas 5 robot design -- 7.4.1. Flexure-based mechanical design -- 7.4.2. Prototype of the Legolas 5 robot -- 7.4.3. Very high-precision modular parallel robot family -- 7.5. Bibliography -- Chapter 8. Modeling and Motion Control of Serial Robots with Flexible Joints -- 8.1. Introduction -- 8.2. Modeling -- 8.2.1. Sources of flexibilities -- 8.2.2. Dynamic model -- 8.2.3. Reduced dynamic model properties -- 8.2.4. Simplified case study -- 8.3. Identification -- 8.3.1. Identification from additional sensors -- 8.3.2. Identification from motor measurements only -- 8.3.3. Discussion and openings -- 8.4. Motion control -- 8.4.1. Singular perturbation approach -- 8.4.2. Linearization and compensations -- 8.4.3. Particular control methods -- 8.5. Conclusion -- 8.6. Bibliography -- Chapter 9. Dynamic Modeling of Deformable Manipulators -- 9.1. Introduction -- 9.2. Newton-Euler model of an elastic body -- 9.2.1. Poincaré equations applied to a rigid body: Newton-Euler model -- 9.2.2. Poincaré equations applied to the elastic body in the floating frame -- 9.2.3. Deformation parameterizing -- 9.3. Kinematic model of a deformable manipulator.

9.4. Dynamic model of a deformable manipulator -- 9.5. Example -- 9.5.1. Description -- 9.5.2. Definition of imposed movements -- 9.6. Conclusion -- 9.7. Bibliography -- Chapter 10. Robust Control of Robotic Manipulators with Structural Flexibilities -- 10.1. Introduction -- 10.2. LTI methodology -- 10.2.1. A medical robotic problem -- 10.2.2. Modeling and identification -- 10.2.3. H∞ control -- 10.2.4. Assessment of the linear control -- 10.3. Toward an LPV methodology -- 10.3.1. A manipulator with two flexible segments -- 10.3.2. Identification of an LPV model -- 10.3.3. Analysis and synthesis methods for LPV systems -- 10.3.4. Application to the flexible manipulator control -- 10.4. Conclusion -- 10.5. Bibliography -- List of Authors -- Index.
Özet:
The objective of this book is to provide those interested in the field of flexible robotics with an overview of several scientific and technological advances in the practical field of robotic manipulation. The different chapters examine various stages that involve a number of robotic devices, particularly those designed for manipulation tasks characterized by mechanical flexibility. Chapter 1 deals with the general context surrounding the design of functionally integrated microgripping systems. Chapter 2 focuses on the dual notations of modal commandability and observability, which play a significant role in the control authority of vibratory modes that are significant for control issues. Chapter 3 presents different modeling tools that allow the simultaneous use of energy and system structuring notations. Chapter 4 discusses two sensorless methods that could be used for manipulation in confined or congested environments. Chapter 5 analyzes several appropriate approaches for responding to the specific needs required by versatile prehension tasks and dexterous manipulation. After a classification of compliant tactile sensors focusing on dexterous manipulation, Chapter 6 discusses the development of a complying triaxial force sensor based on piezoresistive technology. Chapter 7 deals with the constraints imposed by submicrometric precision in robotic manipulation. Chapter 8 presents the essential stages of the modeling, identification and analysis of control laws in the context of serial manipulator robots with flexible articulations. Chapter 9 provides an overview of models for deformable body manipulators. Finally, Chapter 10 presents a set of contributions that have been made with regard to the development of methodologies for identification and control of flexible manipulators based on experimental data. Contents 1. Design of Integrated

Flexible Structures for Micromanipulation, Mathieu Grossard, Mehdi Boukallel, Stéphane Régnier and Nicolas Chaillet. 2. Flexible Structures' Representation and Notable Properties in Control, Mathieu Grossard, Arnaud Hubert, Stéphane Régnier and Nicolas Chaillet. 3. Structured Energy Approach for the Modeling of Flexible Structures, Nandish R. Calchand, Arnaud Hubert, Yann Le Gorrec and Hector Ramirez Estay. 4. Open-Loop Control Approaches to Compliant Micromanipulators, Yassine Haddab, Vincent Chalvet and Micky Rakotondrabe. 5. Mechanical Flexibility and the Design of Versatile and Dexterous Grippers, Javier Martin Amezaga and Mathieu Grossard. 6. Flexible Tactile Sensors for Multidigital Dexterous In-hand Manipulation, Mehdi Boukallel, Hanna Yousef, Christelle Godin and Caroline Coutier. 7. Flexures for High-Precision Manipulation Robots, Reymond Clavel, Simon Henein and Murielle Richard. 8. Modeling and Motion Control of Serial Robots with Flexible Joints, Maria Makarov and Mathieu Grossard. 9. Dynamic Modeling of Deformable Manipulators, Frédéric Boyer and Ayman Belkhiri. 10. Robust Control of Robotic Manipulators with Structural Flexibilities, Houssem Halalchi, Loïc Cuvillon, Guillaume Mercère and Edouard Laroche. About the Authors Mathieu Grossard, CEA LIST, Gif-sur-Yvette, France. Nicolas Chaillet, FEMTO-ST, Besançon, France. Stéphane Régnier, ISIR, UPMC, Paris, France.
Notlar:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2017. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Elektronik Erişim:
Click to View
Ayırtma: Copies: