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In fall 2014, NASA Associate Administrator for the Science Mission Directorate John Grunsfeld discussed 
with members of the Space Studies Board the possibility of a study of the value of NASA’s extended science mis-
sions and how the agency evaluates mission extension proposals, known as Senior Reviews. NASA’s  Astrophysics 
Division has conducted Senior Reviews on a regular basis since the early 1990s; the agency’s other divisions 
started following similar procedures afterwards, and they were formally required by the NASA Authorization Act 
of 2005, which states:

The Administrator shall carry out biennial reviews within each of the Science divisions to assess the cost and ben-
efits of extending the date of the termination of data collection for those missions that have exceeded their planned 
mission lifetime.

Although that Act (which was reaffirmed in 2010) requires biennial reviews, it does not define how NASA 
should conduct them, leaving the details to NASA, which has codified its requirements in internal management 
and other policy documents.

In summer 2015 NASA formally requested that the National Academies of Sciences, Engineering, and 
 Medicine conduct a study on this subject. The Academies established a committee in fall 2015. The committee 
held an organizing teleconference in December, and its first in-person meeting was held at the National Acad-
emies’ Keck Center in Washington, D.C., on February 1-2, 2016. The committee heard from the NASA Associate 
Administrator for Space Science as well as each of the division directors and other speakers. The committee’s 
second meeting was held at the Beckman Center in Irvine, California, on March 2-4. At this meeting the commit-
tee heard from the former chairs of several Senior Review panels, as well as persons in charge of large and small 
missions currently in their extended phase. The committee’s third meeting was held at the National Academy of 
Sciences Building in Washington, D.C., on April 18-20 and was primarily devoted to writing this report, which 
was delivered to NASA in late August. 

Preface
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1

NASA operates a large number of space science missions, approximately three-quarters of which are currently 
in their extended operations phase. They represent not only a majority of operational space science missions but 
also a substantial national investment and vital national assets. They are tremendously scientifically productive, 
making many of the major discoveries that are reported in the media and that rewrite textbooks. For example, the 
Spitzer Space Telescope together with the Hubble identified a very distant galaxy where star formation proceeds 
much more rapidly than previously known in the early universe. The Aqua Earth observing spacecraft showed 
that the melting of the Greenland ice sheet in 2012 was the most extensive surface melting measured to date. The 
STEREO spacecraft obtained the first 360 degree images of the Sun. The Mars Exploration Rovers Spirit and 
Opportunity identified habitable hydrothermal environments on Mars. (These and many other scientific discoveries 
made by missions in their extended phase are discussed in Chapter 2.)

The NASA Authorization Act of 2005 established a requirement for NASA to conduct reviews of missions 
in extended phase every 2 years. After a decade of this requirement, in summer 2015 NASA asked the National 
Academies of Sciences, Engineering, and Medicine to conduct a study on its extended science missions. In 
response, the Academies created the Committee on NASA Science Mission Extensions, which met in person and 
via conference call several times starting in December 2015. The committee was asked to evaluate the following:

• The scientific benefits of mission extensions,
• The current process for extending missions,
• The current biennial requirement for mission extensions,
• The balance between starting new missions and extending operating missions, and
• Potential innovative cost-reduction proposals for extended missions.1

NASA currently operates approximately 60 space science missions, of which approximately 45 have finished 
their prime mission phase and have entered their extended phase.2 Extended missions provide a substantial return 

1  The full statement of task is included in Appendix A.
2  Missions can consist of more than one spacecraft, and it is possible in some cases for one or more spacecraft that is/are part of a mission 

to be extended while other/s is/are not. For various reasons it is difficult to obtain exact numbers of NASA missions in prime and extended 
phases. This is due in part to how NASA counts its missions and the fact that some missions (e.g., WISE/NEOWISE) have changed status 
over time. Also, the numbers are always in flux as new spacecraft are launched or change status. Thus, the numbers in this report should be 
considered approximations and will have changed by publication.

Summary
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2 EXTENDING SCIENCE—NASA’S SPACE SCIENCE MISSION EXTENSIONS AND THE SENIOR REVIEW PROCESS

on investment for NASA and U.S. taxpayers, considering the very high science productivity of these extended 
missions at relatively low cost.

Extended science missions have made major contributions to scientific discovery over many decades. They 
are valuable assets in NASA’s portfolio because they are already operating successfully and no longer require 
development or launch costs but still provide excellent science at low incremental cost, needing only funding to 
conduct their operations and collect, process, and analyze their data. Approximately 75 percent of NASA’s space 
science missions operate on approximately 12 percent of the space science budget (Figures S.1 and S.2).

Many extended science missions have made important discoveries via new destinations, observation types 
or targets, and/or data analysis methods. Moreover, continuous coverage, long-baseline data sets, and statistically 
significant observations of infrequent events require continuity of measurement over years or decades and are best 
provided through missions in extended phase. NASA’s extended missions commonly achieve science objectives 
identified by the decadal surveys while providing unique insights for determining priorities and approaches for 
future exploration. Based on its assessment, the committee concluded that extended-phase science missions are a 
vital part of NASA’s overall science effort.

The NASA Science Mission Directorate (SMD) undertakes a Senior Review process for astrophysics and 
planetary science missions in even-numbered years and Earth science and heliophysics missions in odd-numbered 
years. For spacecraft missions that continue to operate beyond their prime phase, the Senior Review is a valuable 
peer review process for recommending future support based on assessments of the scientific accomplishments 

FIGURE S.1 Number of prime versus extended missions in the NASA Science Mission Directorate fiscal year 2016 budget. 
SOURCE: Data from the NASA Science Mission Directorate.

Extended Missions, 45

Prime Missions, 15
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SUMMARY 3

and future projections, as well as the practical utility in meeting national and related interagency needs. NASA 
uses Senior Review recommendations as a major consideration when deciding on mission extensions. However, 
given budget constraints and uncertainties, the Senior Review may need to recommend termination of otherwise 
highly productive missions, although it is likely to express support for continuation of such missions if additional 
resources can be identified and allocated. The committee noted that the current NASA approach provides some 
flexibility in how the agency ultimately implements recommendations for mission termination, which at times 
allows for additional recommended missions to be continued. For example, in rare instances, non-government 
support for continuing missions has been provided by universities.

The exact manner in which NASA conducts its Senior Reviews is based on the specific needs of each division. 
For example, NASA Earth Science Division missions and some Heliophysics Division missions have potential 
or realized non-research utility—meaning that they can be used to support other NASA or national needs. So in 
addition to the primary criterion of continued scientific productivity, evaluating the applied and operational use 
of NASA Earth science missions is a secondary factor in Earth Science Senior Review evaluation and extension 
decisions. In addition, the Astrophysics Division deems a few missions (currently the Hubble Space Telescope and 
Chandra X-ray Observatory) to be multipurpose observatories with broad scientific capabilities and has decided 
to review them separately from other missions in the division. Also, Planetary Science Division missions have 
variable transit times to their destinations, some taking many years before the beginning of the prime mission, 

FIGURE S.2 Percentage of the NASA Science Mission Directorate fiscal year 2016 budget devoted to extended phase missions. 
SOURCE: Data from the NASA Science Mission Directorate.

Extended Phase 
Budget, 12%

Other, 88%
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4 EXTENDING SCIENCE—NASA’S SPACE SCIENCE MISSION EXTENSIONS AND THE SENIOR REVIEW PROCESS

which requires that the Senior Review process be applied to such missions on a case-by-case basis. These differ-
ing needs of the divisions highlight the need to allow the divisions flexibility in how they conduct their Senior 
Reviews, and no single template can be effectively applied to all of the divisions.

Senior Review teams are established by NASA and consist of volunteers who issue their recommendations 
independent of the agency but rely on NASA to establish the timeline for conducting the review. At times, the Senior 
Review process has become too compressed, and NASA has allocated insufficient time for some of the stages that 
are essential for an effective Senior Review. In particular, it is essential that 

• The Senior Review panels have adequate time to review the proposals,
• Adequate time is also allocated to formulate questions for the mission teams, and
• The proposal (mission) teams have sufficient time to respond to questions from the panels.

Although NASA is required to conduct Senior Reviews every 2 years, the timing for launch of missions and 
their major events does not always correspond to the regular schedule for Senior Reviews. As a result, flexibility in 
scheduling the Senior Reviews (e.g., the ability to change the timing of individual reviews to avoid mission-critical 
events) is valuable for NASA’s science divisions. NASA divisions have at times conducted off-year reviews for 
some missions, determined by individual mission needs, or extended missions beyond the next 2-year cycle if the 
spacecraft is expected to terminate after the following review (i.e., Cassini). The committee determined that such 
flexibility has been important for the success of missions.

Regular reviews of operating missions are essential to ensure that missions are productive and scientifically 
relevant and that the nation is obtaining value for its expenditure on these missions. However, the current 2-year 
cadence creates an excessive burden on NASA, mission teams, and the Senior Review panels. A 3-year cadence 
would ease this burden, while still enabling timely assessment of the quality of the data returned from these mis-
sions and their potential for continued productivity. The committee judged that a 4- or 5-year cadence might be 
too long, given potential science developments and also changes in a mission’s health or overall capabilities. The 
committee also determined that other changes, such as reducing the number of pages required for proposals, would 
have a negligible or even negative effect on reducing the burden on proposal teams and NASA.

An important component of this revised 3-year cadence is conducting regular assessments of the health of 
the spacecraft and instruments so that both the agency and proposers are aware of any potential issues that might 
result in shorter useful lifetimes. NASA’s science divisions already have provisions for doing this—for example, 
Earth sciences missions undergo annual technical health assessments. These assessments need only be moderate 
in scope, assessing changes since the last review, but the committee noted in its recommendation that a regular 
assessment is necessary in order to ensure confidence in the extension process.

The committee recognizes that NASA alone cannot change this cadence and that it ultimately requires a change 
of language in NASA authorization bills. The committee believes that NASA can work with Congress to seek a 
change in the authorization language to allow for a 3-year cadence and that this will have a significant impact on 
reducing the burden and improving the overall efficiency of NASA’s mission extension process.

In some divisions, there is greater prioritization of new or ground-breaking science, whereas in other divi-
sions continuity of observations may be emphasized. Once again, the committee concluded that flexibility was 
important for NASA to maximize the efficiency and effectiveness of its mission extension process and obtain the 
maximum return for its investment.

Overall, the committee was impressed with the way NASA SMD conducts its mission-extension review pro-
cess and how much the four SMD divisions communicate amongst themselves regarding the reviews. With respect 
to the membership of the Senior Review panels, the committee concluded that there are several criteria that SMD 
can implement and standardize across the divisions.

As the divisions have performed more Senior Reviews, the details of the process have become more stable 
from cycle to cycle. Stability includes consistency of information requested, proposal format, timing for the 
various stages, and so on. Maintaining best practices through regular interactions and feedback between NASA 
Headquarters, the mission teams, and review panels will help to ensure that this consistency is maintained while 
also providing opportunities for incremental improvements to the process. 
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The committee was charged with evaluating the balance between prime and extended missions. Even though 
there is no formal definition for “optimal” balance, the committee concluded that the current balance between 
prime and extended missions is excellent, particularly with the high-quality science being returned at relatively 
modest cost for the extended missions. Extended missions represent only approximately 12 percent of the NASA 
SMD budget and provide a very high scientific return. 

The committee’s task also asked for an assessment of generally applicable current, and as yet unidentified, 
cost reductions that NASA could implement. In general, the committee concluded that many cost reduction options 
are already identified and implemented by both prime and extended missions. For example, colocating mission 
operations centers to a greater extent than is already done might provide added efficiency (and cost savings) in 
some cases. However, as the committee was told, the location and responsibilities of the science team are also 
important factors, and there might be added efficiencies and synergies when science and operations centers are 
colocated, so flexibility is required regarding sites for science and operations centers. Many extended missions 
have adopted innovative planning and operations approaches that translate to good or best practices (e.g., early 
awareness of the potential for extended missions while developing ground system and flight procedures, generat-
ing staffing plans, and preparing for reduced budgets during the extended phase) that may be applicable to other 
missions. Each mission has unique features, so no single approach will be optimal for all.

The committee notes that repurposing extended missions to perform new science observations and missions 
is an extremely cost-effective approach for addressing new scientific opportunities and national interests.

With the expectation that most missions will be eligible for extension, investment in the development of stan-
dard procedures and templates during the prime phase can be a highly effective way to control long-term opera-
tions costs and limit the risks introduced by implementing new procedures specifically developed for extended 
operations. Some NASA divisions permit missions entering into or already in extended phase to accept increased 
risk, which is an inevitable consequence for aging spacecraft and science instruments and at least for some divi-
sions, an acceptable option in the context of reduced budgets. The committee supports NASA’s current approach 
to establishing requirements and designs for prime phase and budgeting for extended missions, finding that it has 
many positive attributes and provides a very high return on investment.

Experience and knowledge gained during the prime phase typically result in lower costs for extended  mission 
operations, but there may be counteractive effects that can create upward pressure on operational costs. After 
the first two Senior Reviews, most missions have implemented all (or almost all) practical steps to reduce costs. 
Further budget cuts often then result in disproportionate cuts to project-funded science activities, increasing risks 
that science will be diminished or not performed at all.

This report consists of five chapters. Chapter 1 introduces the issues. Chapter 2 describes some of the valu-
able science discoveries that have been made during the extended phase of science missions. Chapter 3 discusses 
the Senior Review process and the requirement for conducting reviews every 2 years. Chapters 4 and 5 address 
the issues identified in the statement of task concerning balance and innovative approaches to reducing costs. The 
committee’s recommendations appear below and in their relevant chapters. 

Recommendation: NASA’s Science Mission Directorate (SMD) policy documents should formally articu-
late the intent to maximize science return by operating spacecraft beyond their prime mission, provided 
that the spacecraft are capable of producing valuable science data and funding can be identified within 
the SMD budget. (Chapter 5)

Recommendation: NASA should strongly support a robust portfolio of extended-phase science missions. 
This support should include advance planning and sufficient funding to optimize the scientific return 
from continued operation of the missions. (Chapter 2)

Recommendation: If a Senior Review recommends termination of a mission due to funding limitations 
rather than limited science return, NASA should allow the team to re-propose with an innovative, pos-
sibly less scientifically ambitious, approach at reduced operational cost and increased risk. (Chapter 3)
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6 EXTENDING SCIENCE—NASA’S SPACE SCIENCE MISSION EXTENSIONS AND THE SENIOR REVIEW PROCESS

Recommendation: NASA science divisions should be allowed to conduct reviews out of phase to allow 
for special circumstances and should have the added flexibility in organizing their reviews to take 
advantage of unique attributes of each division’s approach to science. (Chapter 3)

Recommendation: Each of the divisions should ensure that their timelines allocate sufficient time for 
each stage of the Senior Review process, including a minimum of 6 to 8 weeks from distribution of 
proposals to the panels until the panel meets with the mission teams. The panels should have at least 
4 weeks to review the proposals and to formulate questions for the mission teams, and the mission 
teams should be allocated at least 2 weeks to generate their responses to the panel questions. (Chapter 3)

Recommendation: NASA should conduct full Senior Reviews of science missions in extended operations 
on a 3-year cadence. This will require a change in authorizing language, and NASA should request such 
a change from Congress. The Earth Science Division conducts annual technical reviews. The other divi-
sions should assess their current technical evaluation processes, which may already be sufficient, in order 
to ensure that the divisions are fully aware of the projected health of their spacecraft, while keeping 
these technical reviews moderate in scope and focused on changes since the preceding review. (Chapter 3)

Recommendation: In order to obtain best value for money, NASA should encourage extended mission 
proposals to propose any combination of new, ground-breaking, and/or continuity science objectives. 
(Chapter 3)

Recommendation: NASA’s Science Mission Directorate should assemble Senior Review panels that
 •  Are comprised primarily of senior scientists knowledgeable about and experienced in mission 

operations so as to ensure that the operational context of the science being proposed and evalu-
ated is considered in the review (individuals with operations and/or programmatic expertise may 
also be included as needed);

 •  Are assembled early to avoid or accommodate conflicts of interest, and ensure availability of 
appropriate expertise; 

 •  Include some continuity of membership from the preceding Senior Review to reap advantage of 
corporate memory; and

 •  Include some early-career members to introduce new and important perspectives and enable them 
to gain experience for future Senior Reviews.

(Chapter 3)

Recommendation: NASA’s Science Mission Directorate division directors should continue to commu-
nicate among themselves to identify and incorporate best practices across the divisions into the Senior 
Review proposal requirements and review processes and procedures. (Chapter 3)

Recommendation: In its guidelines to the proposal teams and the Senior Review panels, NASA should 
state its intention to solicit feedback from its proposal teams and review panels about the suitability 
of the proposal content and review process. After obtaining such feedback, NASA should respond and 
iterate as needed with stakeholders to improve the review process, where possible. (Chapter 3)

Recommendation: NASA should continue to provide resources required to promote a balanced portfolio, 
including a vibrant program of extended missions. (Chapter 4)

Recommendation: NASA should provide open communications and dissemination of information based 
on actual experience with extended missions so that all missions are aware of and able to draw on prior 
effective practices and procedures, applying them during development of ground systems and flight 
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procedures, as well as when formulating staffing and budgetary plans for the prime and extended-
mission phases. (Chapter 5)

Recommendation: NASA should continue to encourage and support extended missions that target new 
approaches for science and/or for national needs, as well as extended missions that expand their original 
science objectives and build on discoveries from the prime phase mission. (Chapter 5)

Recommendation: NASA should continue to assess and accept increased risk for extended missions on 
a case-by-case basis. The headquarters division, center management, and the extended-mission project 
should discuss risk posture during technical reviews and as part of the extended mission and subsequent 
Senior Review proposal preparation process and should make all parties fully aware of all cost, risk, 
and science trade-offs. (Chapter 5)

Recommendation: NASA should continue anticipating that missions are likely to be extended and iden-
tify funding for extended missions in the longer-term budget projections. (Chapter 5)

Recommendation: Given the demonstrated science return from extended missions, NASA should con-
tinue to recognize their scientific importance and, subject to assessments and recommendations from 
the Senior Reviews, ensure that, after the first two Senior Reviews, both operations and science for 
high-performing missions are funded at roughly constant levels, including adjustments for inflation. 
(Chapter 5)

CONCLUSION

NASA’s extended science missions provide excellent science return and, in some instances, also meet national 
interests and needs. Missions that have already been paid for and successfully launched can continue to provide 
very high return at a modest incremental cost. Although the committee has recommended a number of refinements, 
including a 3-year cadence for Senior Reviews, there is a strong consensus that NASA’s approach to extended 
missions is fundamentally sound and merits continued support.
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At this moment, Voyager 1 and 2 are traveling away from the Sun, probing the outer edges of our solar system 
and analyzing the interaction of the solar wind and the interstellar medium nearly four decades after launch. The 
two Voyager spacecraft have contributed to our understanding of the giant planets of our solar system as well as 
the limits of the Sun’s influence, but it is easy to forget that both Voyagers ended their primary mission phases 
soon after their encounters with Saturn, which for Voyager 2 occurred in summer 1981. More than 30 additional 
years of scientific discovery by the Voyagers have resulted from repeated extensions of the mission (Figure 1.1).

The Voyagers are not alone in functioning long after their planned prime mission. Many NASA science 
 spacecraft—including but not limited to the Chandra X-Ray Observatory and the Kepler telescope; the Opportunity 
rover, the Lunar Reconnaissance Orbiter, and Cassini; the Aura, Aqua, and Terra Earth sciences spacecraft; the 
ACE and Wind spacecraft in interplanetary space between Sun and Earth, the THEMIS magnetospheric orbiter, 
and the SOHO and STEREO solar observatories—have provided incredible scientific value long after their pri-
mary missions. 

These lengthy missions and their incredible scientific productivity are not simply due to happenstance or the 
unexpected longevity of some spacecraft: Extended missions are a mainstay of NASA’s scientific endeavor, a 
major part of the agency’s science portfolio, and the result not only of impressive engineering but also of careful 
management and effective planning.

NASA’s Science Mission Directorate (SMD) operates several dozen spacecraft in Earth orbit and beyond. 
When these spacecraft were first launched, they entered what is known as the prime phase of their mission. During 
the prime phase, the spacecraft measurements are focused on achieving a specific set of mission objectives aimed at 
answering high-priority science questions. The objectives usually require measurements over one to several years 
and may be tied to the characteristics of the science target. For instance, 1 year at Mars lasts approximately 2 Earth 
years, so many Mars missions have prime phases lasting 2 Earth years. Spacecraft are designed to last through the 
proposed prime mission with a high level of certainty. They are tested to prescribed limits and include margins 
that ensure that a spacecraft has a high probability of achieving its design lifetime. These margins allow—but do 
not guarantee—the ability to use the spacecraft for well beyond the design lifetime.

After a mission has completed its prime phase, it can be considered for an extension, provided it is still opera-
tional and can make important scientific contributions. The decision to extend a mission is made via a deliberative 
process within SMD. Mission teams prepare a scientific and technical proposal that also contains relevant budgetary 
information. The proposals are reviewed by a peer advisory panel selected by the director (or their designee) of 

1
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FIGURE 1.1 One of the Voyager spacecraft during final integration prior to launch in 1977. Voyager 2 has made  numerous 
major scientific discoveries during three decades in extended mission phase. SOURCE: NASA/JPL; available at NASA, 
 “Prototype Voyager,” release date May 14, 2013, https://solarsystem.nasa.gov/galleries/prototype-voyager.

SMD’s division for Astrophysics, Heliophysics, Earth Science, or Planetary Science (depending on which divi-
sion supports the mission). A subsequent review by the division director takes into account various administrative 
considerations. A statute requires that such reviews (called Senior Reviews) take place every 2 years; however, 
there is no statutory definition of how such reviews must be conducted. Therefore, responsibility for defining and 
conducting each division’s Senior Review resides with the division of SMD in which it is held. 

THE SCIENCE MISSION DIRECTORATE

SMD is tasked with helping to fulfill the goals of the national science agenda, as directed by the executive 
branch and Congress and advised by the nation’s scientific community. In doing so, SMD conducts scientific 
exploration missions that use spacecraft instruments to provide observations of Earth and other celestial bodies 
and phenomena. 

SMD is allocated slightly less than one-third of NASA’s overall budget. In recent years SMD’s budget has 
been as follows:

• 2015 actual: $5.2 billion out of $18.0 billion total;
• 2016 enacted: $5.6 billion out of $19.3 billion total.

NASA currently has approximately 60 active space science missions with more than 20 additional missions 
currently under development—and missions can consist of multiple spacecraft. These spacecraft are sponsored 
by the Astrophysics, Heliophysics, Earth Science, and Planetary Science Divisions. Table 1.1 provides budget 
details for each of the four SMD divisions, along with data for the James Webb Space Telescope (JWST), which 
is separated from the Astrophysics Division for budgetary, management, and development purposes. Nonetheless, 
the science of JWST is largely astrophysical in nature, and it is treated as an Astrophysics Division mission in the 
remainder of this report. Table 1.2 shows the currently active extended missions in each division.
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TABLE 1.2 The 45 NASA Missions in Extended Phase as of February 2016 
Heliophysics Earth Science Planetary Science Astrophysics

ACE Aqua Cassini Chandra

AIM Aura LRO Fermi

Geotaila CALIPSO Mars Expressa Hubble

Hinodea CloudSat Mars Odyssey Kepler

IBEX EO-1 MAVEN NuSTAR

IRIS GRACE (1/2) MER Opportunity Spitzer

RHESSI LAGEOS (1/2) MRO Swift

SDO Landsat 7 MSL Curiosity XMM-Newtona

SOHOa OSTM/Jason-2 NEOWISE

STEREO (1/2) QuikSCAT

THEMIS SORCE

TIMED Suomi NPP

TWINS (A&B; 1/2) Terra

Voyager Van Allen Probes

Wind

a These missions are primarily foreign-led with some NASA participation.
NOTE: Numbers in parentheses indicate remaining spacecraft operating, compared to the original number. Acronyms are defined in Appendix F.

TABLE 1.1 NASA Science Mission Directorate (SMD) Division Budgets (in $ million)
2015 Actual 2016 Enacted

NASA Total 18,010.2 19,285.0

SMD 5,243.0 5,589.4

Earth Science 1,784.1 1,921.0

Planetary Science 1,446.7 1,631.0

Astrophysics 730.7 730.6

James Webb Space Telescope 645.4 620.0

Heliophysics 636.1 649.8

The Astrophysics Division focuses on understanding the universe beyond the solar system, seeking to  catalog 
and understand astronomical phenomena such as black holes and exoplanets. Some missions are designed to 
observe the effects of dark matter, others to probe dark energy and to explore the origins of the cosmos. During 
2016, there were approximately 10 active missions in the Astrophysics Division.

Heliophysics is the study of the Sun, the solar wind, and the physical domain dominated by solar activity, 
the heliosphere. The goals of the Heliophysics Division range from understanding the active processes within the 
interior of the Sun that drive the system, to measuring the space environments of Earth and other bodies within 
the solar system, stretching out to interstellar space. The Heliophysics Division during 2016 was responsible for 
approximately 16 active missions.

Earth science comprises the study of the diverse components that make up Earth as a planetary system, includ-
ing the oceans, atmosphere, continents, ice sheets, and biosphere. Using observations on a global scale, the Earth 
Science Division (ESD) seeks to improve national capabilities to understand and predict climate, weather, and 
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natural hazards; manage natural resources; and collect the knowledge needed to develop environmental policy. 
During 2016, there were approximately 20 active missions in this division.

The Planetary Science Division is responsible for sending robotic spacecraft and landers to Earth’s Moon, to 
the other planets and their moons, and to smaller celestial bodies, including asteroids and comets. These explora-
tion activities are undertaken in order to better understand the origin and nature of the solar system and to provide 
a path forward for future human exploration. During 2016, there were approximately 14 active Planetary Science 
Division missions.

WHAT IS AN EXTENDED MISSION?

NASA missions progress through multiple phases (A-F), from early concept studies to end of life (Figure 1.2). 
Phase E is the operational phase of a mission. This can include transit to the science-gathering location (such as 
a Lagrange point for an astrophysical observatory, or a planet) and the science-gathering phase. 

All missions have a prime phase during which they collect data and answer their top-level science questions. 
Spacecraft are designed and tested to specified lifetimes. Nevertheless, just as home appliances like dishwashers 
rarely stop working the day after the warranty expires, NASA spacecraft typically continue working after complet-
ing their prime phase. (This issue is further described in Chapter 4.) As a mission nears the end of its prime phase, 
the project team can request a mission extension through the relevant division’s Senior Review process. Extended 
operation may be approved if a mission can collect data that will help to answer new science questions that were 
not anticipated when the mission was first formulated, or extend the existing data sets and improve understanding 
of the subjects being investigated. Table 1.2 lists SMD’s current missions in extended operations.

The Senior Review process begins when SMD division issues a call for proposals, including guidelines for 
proposal content, several months before the desired due date. Proposing teams respond with written proposals that 
explain the accomplishments of the mission to date, the proposed observations that would be conducted during the 
mission extension and their scientific value, and the cost to support the observations for the period of time under 
consideration (typically the 2-year period until the next Senior Review). After submission and initial review of 
the written proposals, the Senior Review panel invites the proposal teams to give an oral presentation to the panel 
and answer questions about the proposed extended-mission activities. After a period that is usually on the order 
of a few weeks, the panel delivers to the relevant SMD division director a written report that contains the panel’s 
assessment of the merit of each mission proposal under consideration in that division that year. Taking into con-
sideration the panel’s recommendation, as well as any programmatic or other factors, the director then decides 
which missions to continue, end, or reduce in scope. Additional details describing how the Senior Reviews vary 
between divisions are described in Chapter 3.

Most missions entered their extended mission phase after being recommended to do so by a Senior Review 
panel conducted within their division. There have been some exceptions. For instance, the NEOWISE mission, 
which is currently conducting a survey for near-Earth objects that could potentially impact Earth, was strate-
gically directed to continue operations to satisfy agency requirements. It is not subject to the Senior Review 
process.

FIGURE 1.2 Phases of a NASA science mission.

PREPUBLICATION DRAFT—SUBJECT TO FURTHER EDITORIAL CORRECTION 
1 

 

 

 
 

Pre-Phase A 
Concept Studies 

Phase A 
Preliminary 

Analysis 

Phase B 
Definition 

Phase C/D 
Design & 

Development 

Phase E 
Operations 

Phase F 
Closeout 

Phase E 
Extended Operations 

Extending Science: NASA's Space Science Mission Extensions and the Senior Review Process

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23624


12 EXTENDING SCIENCE—NASA’S SPACE SCIENCE MISSION EXTENSIONS AND THE SENIOR REVIEW PROCESS

NASA’s Associate Administrator for Space Science John Grunsfeld1 regularly encountered what he referred to 
as “urban myths of extended missions.” These include the following: SMD spends most of its budget on extended 
missions for limited science return; NASA cannot build new missions because of the cost of extended missions; 
and NASA never terminates any missions. Dr. Grunsfeld stated that all of these claims are inaccurate and provided 
the committee with data that refuted them. 

The first urban myth relates to the scientific productivity of extended missions. Dr. Grunsfeld explained to 
the committee that, despite spending only a modest percentage of the SMD budget on missions in extended phase, 
the scientific return from those missions has been substantial. Chapter 2 of this report is devoted to identifying a 
number of major scientific discoveries made by missions in their extended phase, indicating that extended phase 
missions make major scientific contributions.

WHAT DO NASA’S EXTENDED MISSIONS COST?

In addition to Dr. Grunsfeld’s presentation, the committee heard from the four science division directors 
who presented further budget information about their directorates. They indicated that the amounts they spend on 
mission extensions vary. For example, in 2015 Earth Science Division (ESD) spent approximately 7 percent of 
its budget on extended missions and approximately 9 percent for 2016. The Astrophysics Division (ASD) spent 
approximately 17 percent of its budget in 2015 on extended missions, and 15.4 percent in 2016. In the Heliophysics 
Division (HD), 13 percent of the 2015 budget went to extended missions, and 12 percent in 2016. The Planetary 
Science division (PSD) spent 15 percent of its budget on extended missions in 2015, and 13 percent in 2016. 
Budget charts for fiscal year (FY) 2016 for all four NASA divisions are included in Appendix C.

NASA provided rather detailed information, year-by-year for FY2011-FY2015, showing the budget for each 
extended mission, the total for extended missions, and the total for all of SMD. Over the 5-year period, the total 
budget for extended missions ranged from $544 million to $591 million with the average over the 5 years at 
$567 million. The average budget for SMD over the same 5-year period was $5.03 billion. Thus, the extended 
missions accounted for 11.3 percent of the SMD funding from 2011 to 2015.

These numbers are the total listed under extended missions. However, there are additional funds expended on 
science from extended missions. In some cases, scientific research is supported through the mission line, but additional 
research may be supported under various research and analysis (R&A) or similar accounts in the four SMD divisions. 

The split of research supported by mission lines and by R&A accounts varies from division to division and 
from year to year. Moreover, accounting is complicated by the fact that research may use data from the prime mis-
sion phase, from the extended phase, or from a mix of the two. Some of this research would be supported under 
R&A even if the relevant extended mission were to end, whereas some of it is tied to new observations acquired 
as an extended mission continues.

The committee heard that extended science mission budgets have fluctuated over time and will continue to do 
so based on many factors, including spacecraft health, the results of the Senior Reviews undertaken by the divi-
sions, and other agency considerations. However, as discussed above, the overall SMD expenditure on extended 
science missions has averaged around 12 percent, which is significantly less than what is spent on missions in 
development, typically on the order of 50 percent (as calculated by combining the overall SMD development budget 
numbers for FY2016, which are shown graphically by division in Appendix C). The relatively small fraction spent 
on extended-phase missions compared to missions under development indicates that even if NASA were to end all 
extended missions in a division, the amount of funding this would free up for new missions would be of modest 
impact. The committee further addresses this issue in Chapter 4.

Another of the urban myths relates to the perception that SMD does not terminate missions that have outlived 
their utility. Then-Associate Administrator Grunsfeld explained to the committee that SMD has ended numerous 
space missions over the past two decades (see Table 1.3). In some cases, missions were terminated when the 
spacecraft could no longer be operated (e.g., the Spirit rover and the GRAIL lunar spacecraft), but the agency has 
also ended its support for some missions after finding that their science productivity no longer warranted support.

1  Dr. John Grunsfeld was NASA’s Associate Administrator for Space Science through April 2016. 
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TABLE 1.3 Examples of Science Missions Ended During Previous Two Decades
Mission

IUE Terminated 1996

ISEE-3/ICE Ended 1997; recently rebooted by non-NASA group

Compton Gamma 
Ray Observatory

De-orbited June 2000, to avoid potential uncontrolled re-entry

EUVE Decommissioned January 2001

SAMPEX NASA funding ended June 2004, operated by Bowie State University thereafter until 2012 at no cost to NASA

CHIPS NASA funding ended 2005; UCB operated until 2008

FAST NASA funding ended 2005

ERBS Terminated October 2005

Polar Ended in 2007

Gravity Probe B Funding ended 2008

TRACE Terminated June 2010 after success of SDO

WMAP Ended October 2010 after four extensions

GALEX Terminated February 2011

WISE Terminated in Astrophysics February 2011, restarted in Planetary Science in August 2013 for near-Earth object searching

RXTE Terminated January 2012

QuikSCAT Planned to be decommissioning in 2015, but continued following RapidScat issues

NOTE: Acronyms defined in Appendix F.

HOW DOES NASA DECIDE WHAT MISSIONS TO EXTEND?

A key aspect of the process for extending NASA science missions is the Senior Review. The requirement for 
this review is established in legislation as follows:

The Administrator shall carry out biennial reviews within each of the science divisions to assess the cost and ben-
efits of extending the date of the termination of data collection for those missions that have exceeded their planned 
mission lifetime.2

The requirement was initially established in the 2005 NASA Authorization Act and repeated in the 2010 NASA 
Authorization Act. NASA ASD began conducting Senior Reviews of its missions in the early 1990s and established 
a 2-year cadence for such reviews. According to former congressional staffers who spoke to the committee, the 
Authorization Act language calling for biennial reviews was based in part on this previously established cadence 
and was in part somewhat of a guess, with one former staffer suggesting that, in Washington, D.C., “two is the 
average between one and infinity.”

NASA’s overall policies for extending science missions are outlined in the agency’s management plan. The 
2013 Science Mission Directorate Management Handbook states that after a mission’s prime phase, entry into an 
extended phase “is possible if part of a compelling investigation that contributes to NASA’s goals” (NASA, 2013). 
This document also defines SMD’s implementation for the Senior Review process, which is codified, yet flexible 
for the needs of each division, and involves an evaluation of the productivity of the proposed extended mission 
by members of the scientific community. 

NASA conducts Senior Reviews for astrophysics and planetary science missions in even-numbered years and 

2  National Aeronautics and Space Administration Authorization Act of 2005, P.L. 109-155, Section 304, “Assessment of Science Mission 
Extensions,” December 30, 2005.
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for Earth science and heliophysics missions in odd-numbered years. The Senior Review processes for the four 
divisions are discussed in detail in Chapter 3.

The following chapters in this report review in greater detail the scientific return secured from extended mis-
sions, the process that is in place to ensure that extended missions are productive contributors to NASA’s science 
goals, how the relatively modest costs associated with supporting extended missions compares to the support 
required for new mission development and the potential for science lost if extended missions are not supported, 
and the potential ways in which extended missions may realize cost savings relative to their prime phase.

REFERENCE

NASA. 2013. Science Mission Directorate (SMD) Management Handbook. Washington, D.C., October. 
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Many NASA missions over previous decades have operated into extended phases and produced significant 
scientific discoveries. Scientific research is often conducted using extensive data sets collected in both prime and 
extended mission phases. In the Earth science, heliophysics, and planetary science fields, it is often important to 
collect data over long periods of time to detect long-term trends; thus a discovery may be made long into extended 
phase that was only possible after the collection of a lengthy data set. There are also completely new discoveries, 
either from rare events, new observations of specific features, or new mission destinations or observing modes. 
Major results have been realized while missions were in extended phase.

This chapter highlights some of the discoveries made in extended mission phase, but certainly is not compre-
hensive. What this short overview demonstrates, however, is that all of the science disciplines in NASA’s Science 
Mission Directorate (SMD) have experienced major benefits from the extended phase operations of spaceflight 
missions. This leads to the first major finding of this report.

Finding: NASA’s extended science missions have made major contributions to scientific discovery over 
many decades.

ASTROPHYSICS DISCOVERIES DURING EXTENDED MISSIONS

The Astrophysics Science Division conducts a broad program of research in astronomy, astrophysics, and 
fundamental physics. Investigations address issues such as the nature of dark matter and dark energy, discovery 
of exoplanets and analysis of which planets could harbor life, and the nature of space, time, and matter at the 
edges of black holes. There were four “Great Observatories” consisting of the Hubble Space Telescope (HST), 
Compton Gamma-Ray Observatory, the Chandra X-Ray Observatory, and the Spitzer Space Telescope. Except 
for Compton (de-orbited in 1999), all of these are in extended mission phases (see also Box 2.1 for a discussion 
of HST). Examples of results from current extended missions are in Table 2.1.

The Chandra X-ray Observatory, which provides 10 times better spatial resolution (0.5 arcsec) than any other 
X-ray observatory to date or currently in development, was launched into a highly elliptical, geocentric orbit in 1999 
and completed its prime mission in 2004. Since that time, it has been extended through the biennial Senior Review 
process and continues to be in good health. During its extended mission, Chandra has contributed important results 
over diverse areas of astrophysics, ranging from our solar system to cosmological studies. Chandra has provided 

2
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BOX 2.1 
The Hubble Space Telescope Prime and Extended Missions

Although the Hubble Space Telescope (HST) has been in orbit for more than 26 years, it has spent 
very little time in extended-mission phase due to repeated servicing and upgrading. Hubble was launched 
on April 24, 1990, as payload on the space shuttle Discovery. Hubble was designed with eight instrument 
bays. The original instruments included three fine guidance sensors used for pointing, the Wide Field 
Planetary Camera (WFPC) 1, the Faint Object Spectrograph (FOS), the Goddard High Resolution Spectro-
graph (GHRS), the Faint Object Camera (FOC), and the High Speed Photometer (HSP). Since the earliest 
plans, HST was designed to be serviceable via the space shuttle. In order to keep the observatory at the 
forefront of scientific ability, new instruments replaced the originals, and broken or outdated hardware was 
replaced over the course of five servicing missions from 1993 to 2009.

The first servicing mission (SM1) launched on December 2, 1993, and was focused primarily on repair-
ing Hubble’s optical system. To correct this problem, WFPC2 was designed with internal corrective optics 
and replaced WFPC1. Similarly, the Corrective Optics Space Telescope Axial Replacement (COSTAR) 
replaced HSP to serve as corrective optics for the FOS, GHRS, and FOC. Malfunctioning solar arrays were 
also replaced. With these new instruments installed, Hubble started a new prime mission phase.

On the second servicing mission (SM2) launched on February 11, 1997, the Space Telescope Imag-
ing Spectrograph (STIS) replaced GHRS, and the Near Infrared Camera and Multi-Object Spectrometer 
( NICMOS) replaced FOS. Both of these instruments contained internal corrective optics and therefore 
would not need to rely on COSTAR. During this mission, astronauts also replaced one Fine Guidance 
Sensor (FGS), installed a Solid State Recorder (SSR) in place of one of the original data recorders, and re-
placed one of the reaction wheel assemblies used for pointing. Hubble again started a prime mission phase. 

The third (SM3A) and fourth (SM3B) servicing missions were originally supposed to be completed 
together, but when a third of Hubble’s six gyroscopes broke down, NASA decided to split the mission into 
two parts. The telescope needs at least three gyroscopes for accurate pointing, so the first half of the 
servicing mission was moved up to a December 19, 1999, launch. This turned out to be excellent timing, 
as a fourth gyroscope broke down that November, necessitating that Hubble be put into a “safe mode” to 
protect it until it could be serviced. During SM3A, astronauts replaced all six gyroscopes, one FGS, and a 
broken radio transmitter, and installed a new central computer and a more advanced SSR. 

During SM3B, launched March 1, 2002, the Advanced Camera for Surveys (ACS) replaced FOS, the 
last of the original instruments. Additionally, NICMOS was repaired during this mission, because its cool-
ing system had exhausted its supply of nitrogen ice. Hubble’s solar panels and another reaction wheel 
assembly were also replaced. 

The fifth and final servicing mission (SM4) almost did not happen, because its initially planned 2004 
launch was canceled in the aftermath of the 2003 Columbia space shuttle accident. After the mission was 
reinstated with an eventual May 2009 launch, NASA planned with an eye for the future. Two major instru-
ments were replaced, with the Wide Field Camera (WFC) 3 replacing WFPC2 and the Cosmic Origins 
Spectrographs (COS) replacing the no longer needed COSTAR. In addition, repairs were made to STIS 
and ACS, which had gone offline in 2004 and 2007, respectively. To ensure the longevity of the telescope, 
astronauts replaced all six gyroscopes, all six of the original batteries, and another FGS, in addition to 
covering equipment bays with new insulating blankets. They also installed a backup Science Instrument 
Command and Data Handling Unit, because the original had malfunctioned and its backup had been 
activated. Planning for Hubble’s eventual decommission, they also installed the Soft Capture Mechanism, 
allowing for a robotic mission to safely bring the telescope back through Earth’s atmosphere. 

Due to its unique serviceable design, Hubble entered a new phase of its prime mission after each 
servicing mission. In this way, the servicing missions “reset the clock,” as updated technology and hardware 
repairs extended Hubble’s lifetime as well as the time it spent in its prime phase. The final prime mission 
phase, post-SM4, began with the 2009 servicing mission and ended in 2014, when Hubble entered its 
extended-mission phase. With the retirement of the Space Shuttle Program in 2011, Hubble can no longer 
be serviced, but due to the efforts of SM4, NASA is hoping to keep it operational until at least 2020 to allow 
for at least 1 year of overlap with James Webb Space Telescope. 
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TABLE 2.1 Examples of Science Results Made Possible by Extended Missions in Astrophysics
Mission Science Results

Chandra X-Ray 
Observatory

Discovery of the most recent known supernova explosion in our galaxy with an age of around 140 years, 
about 200 years younger than previous record-holder (Reynolds et al., 2008).

Fermi Gamma-ray 
Space Telescope

Discovery of a new class: classical novae that produce high-energy gamma rays, indicating acceleration 
of subatomic particles to cosmic-ray energies (Ackermann et al., 2015).

Hubble Space 
Telescope

The accelerated expansion of the universe due to dark energy is discovered by observations of Type Ia 
supernovae with HST and ground telescopes, celebrated by the 2011 Nobel Prize (Riess et al., 1998; 
Perlmutter et al., 1999).

Kepler Great enhancement of the population of small, rocky planets orbiting Sun-like stars and stars with 
astroseismology periods.

NuSTAR  
(Nuclear Spectroscopic 
Telescope Array)

Best measurement of the spin rate of a supermassive black hole at the center of a galaxy (Walton et al., 
2013).

Spitzer Space 
Telescope

Together with Hubble Space Telescope identified very distant galaxy GNz-11, finding that star formation 
proceeds much more rapidly than previously known in the early universe (Oesch et al, 2016).

Swift Discovery of bright X-ray emission from a tidal disruption event where a star was torn apart when it 
orbited too close to a massive black hole (Bloom et al., 2011; Burrows et al., 2011).

XMM-Newton Discovery of the first spinning neutron star in M31 (Esposito et al., 2016).

strong support for the existence of dark matter (Clowe et al., 2006), and it has recorded the long-term behavior of 
supermassive black holes, including Sagittarius A* at the center of the Milky Way (Ponti et al., 2015) (Figure 2.1).

The Spitzer Space Telescope was launched into an Earth-trailing heliocentric orbit in 2003. Upon completion 
of its prime mission in 2009, when its reserve of liquid helium cryogen was exhausted, Spitzer entered into the 
“warm” Spitzer extended mission phase. Although only two of its four original imaging arrays have remained useful 
(at wavelengths of 3.6 and 4.5 μm), Spitzer has successfully provided important observations of comets, near-Earth 
asteroids, brown dwarfs, transient objects, galaxy clusters, and the most distant galaxies (Werner et al., 2015). 

One of the most important questions in astrophysics involves the details of star formation and galaxy growth 
in the early universe. On the basis of colors determined from Hubble and Spitzer (warm/extended mission) 
images in different wavebands, a galaxy named GNz-11 had an estimated distance and age suggesting it was one 
of the most distant and youngest observed to date. These Spitzer and Hubble images indicated that GNz-11 is about 
25 times smaller than our Milky Way galaxy and about 100 times less massive. Nonetheless, GNz-11 forms stars 
at a rate about 20 times higher than the present rate of star formation in the Milky Way. Motivated by these prior 
Hubble and Spitzer data, spectroscopic observations made in 2015 with the Hubble Wide Field Camera 3 (during 
the Hubble extended mission) determined a precise redshift of 11.1 for this galaxy, meaning that it is being observed 
as it appeared just 400 million years after the Big Bang and about 200 million years earlier than the previous record 
holder (Oesch et al., 2016). This more precise distance determination tells us that star formation proceeds much 
more rapidly than previously known in the very early universe and promises many more such results from the 
upcoming James Webb Space Telescope (JWST) and Wide-Field Infrared Survey Telescope (WFIRST) missions. 

Recent engineering modifications have enabled Spitzer to become an additional tool in the identification, 
confirmation, and classification of exoplanets. Moreover, Spitzer’s warm mission has become an essential tool 
for studying atmospheric properties of hot Jupiters and determining whether super-Earth-size planets have an 
atmosphere (see Figure 2.2). Thus, one of the lessons from Spitzer’s experience is that extended missions can be 
surprisingly useful and resilient, even to the people who developed them. There was widespread perception within 
the astrophysics community that the warm Spitzer phase would not be very productive, and yet it has resulted in 
numerous important scientific discoveries. There are many reasons for this, including the fact that new technolo-
gies on the ground, and new concepts, questions, and ideas generated by its mission team, can be applied to a 
spacecraft many years after the end of its prime phase.
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FIGURE 2.1 Astronomers have observed the largest X-ray flare ever detected from the supermassive black hole at the center of 
the Milky Way galaxy. This event, detected by NASA’s Chandra X-ray Observatory, raises questions about the behavior of this 
giant black hole and its surrounding environment. SOURCE: Chandra X-Ray Observatory, “NASA’s Chandra Detects Record-
Breaking Outburst from Milky Way’s Black Hole,” release date January 5, 2015, http://chandra.harvard.edu/press/15_releases/ 
press_010515.html; courtesy of NASA/CXC/Amherst College/D. Haggard et al.

The Swift Gamma-Ray Burst Mission studies the most powerful explosions the universe has seen since the 
Big Bang. In its extended phase, Swift discovered the first jetted emission from a tidal disruption event (TDE). 
TDEs are a unique probe of dormant supermassive black holes in galaxies that are too distant for resolved kine-
matic studies. They occur when a star passes too close to a supermassive black hole and is ripped apart by the 
tidal forces. In an unexpected development, the TDE world was revolutionized in 2011 by Swift’s discovery of the 
high-energy transient SwJ1644+57. While initially thought to be an exotic gamma-ray burst, SwJ1644+57 turned 
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FIGURE 2.2 As measured by the Spitzer Space Telescope, the plot shows how the infrared light from the 55 Cancri system, 
both the star and planet, changed as the planet passed behind its star. When the planet disappeared, the total light dropped and 
then increased back to normal levels as the planet circled back into view. The drop indicated how much light came directly from 
the planet itself. This type of information is important for studying the temperatures and compositions of planetary atmospheres 
beyond our own. SOURCE: NASA, “Magician of a Planet Disappears to Reveal Itself,” last modified May 10, 2012, http://
www.nasa.gov/mission_pages/spitzer/multimedia/pia15621.html; courtesy of NASA/JPL-Caltech/MIT. 

out to be the birth of a relativistic jet triggered by the tidal disruption process. It was located at the center of an 
inactive galaxy nucleus, where a supermassive black hole is likely to exist. The initial bright flaring emission lasted 
for 1 day, followed by 1 year of fading afterglow. The formation of a relativistic outflow also powered a bright 
radio emission, visible for months after the onset of SwJ1644+57. Based on this Swift discovery, the new class of 
relativistic TDEs are predicted to be one of the most numerous class of extragalactic transients to be discovered 
by forthcoming wide-field radio surveys.

The Nuclear Spectroscopic Telescope Array (NuSTAR) provided the first orbiting telescopes to focus light in 
the high energy X-ray (6-79 keV) region of the electromagnetic spectrum to study highly energetic  phenomena. In 
its extended mission, NuSTAR, working together with Chandra, for the first time witnessed a Type Ib  supernova—
the explosion of a massive star without a hydrogen envelope—metamorphose into a supernova with a shock wave 
interacting strongly with material previously ejected by the progenitor star (Margutti et al., 2016). The data for 
SN2014C (Figure 2.3) imply that the shell of material was ejected by the progenitor star 10 to 1,000 years before 
the explosion. This phenomenology challenges the current theories of massive stellar evolution and argues for a 
revision of the understanding of mass loss in evolved massive stars. In turn, such revisions would affect estimates 
of the stellar initial mass function in galaxies and of star formation through cosmic time, which rely on the pre-
dictions of stellar evolution models.

EARTH SCIENCE DISCOVERIES DURING EXTENDED MISSIONS

Earth is a complex, dynamic system and to fully understand it requires understanding Earth’s atmosphere, 
lithosphere, hydrosphere, cryosphere, and biosphere as a single interconnected system. Earth is changing on all 
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FIGURE 2.3 NuSTAR and the Chandra X-Ray Observatory track the emission from the outward propagating shock in 
SN2014C as it encounters a shell of material ejected from the progenitor star less than a thousand years before it exploded. 
Left: The broadband spectrum with Chandra and NuSTAR 396 days after the explosion. The simultaneous fit constrains both 
the temperature of the thermal emission and the density of the ejecta into which the shock is propagating. Right: Using the 
broadband data, the density profile can be reconstructed 306, 396, and 472 days after the explosion, revealing the density 
profile of the shell as the shock traverses it. SOURCE: Data from Margutti et al. (2016).

spatial and temporal scales. The purpose of NASA’s Earth science program is to develop a sufficient understanding 
of Earth’s system and its response to natural or human-induced changes to make accurate predictions of climate 
impacts under various scenarios. NASA Earth science missions are a mix of large directed (flagship) missions 
such as Terra and Aqua, plus smaller, competitively selected missions and instruments. Examples of major results 
from a sub-sample of extended missions are given in Table 2.2. 

The Gravity Recovery and Climate Experiment (GRACE) is an Earth system science Pathfinder mission 
launched in 2002 and initially planned for 5 years. The Pathfinder Program provides periodic, competitively 
selected opportunities to accommodate new and emergent scientific priorities. GRACE goals included monthly 
measurements of Earth’s gravity field with unprecedented accuracy, to help define Earth’s geoid and help measure 
the dynamic ocean surface topography resulting from the general ocean circulation. The measurements contrib-
ute to understanding the temporal variations in global and regional sea level and are essential for separating the 
contributions of sea level rise due to thermal expansion from those of increasing seawater mass. This separation 
allows determination of the change in heat stored by the oceans. The monthly measurements also contribute to 
assessing ground water storage in aquifers, ocean mass change from melting of glaciers, measuring the change in 
mass distribution of polar ice and the episodic mass change associated with large earthquakes. 

GRACE entered extended mission phase in 2008 and has been extended several times since then. Due to 
its unique measurements and well-designed spacecraft and instruments, this international partnership mission 
con tinues to play a vital role in assessing Earth’s water resources. The long time series from the extended mis-
sion phase has enabled water resources to be monitored worldwide (e.g., Feng et al., 2013; Moiwo et al., 2013, 
Joodaki et al., 2014; Chen et al., 2011), and assessed relative to precipitation changes in El Niño years and La 
Niña years.1 

The demonstrated value of GRACE measurements for global water resource monitoring led to the decision to 
implement the GRACE Follow-On (GRACE-FO) mission, which is scheduled for launch in late 2017. To maintain 
the climate record, there is a strong desire within the Earth science community to continue extended operations 
of GRACE until GRACE-FO is launched and the overlapping data sets can be compared. If NASA does this, 

1  NASA, “GRACE Tellus: Gravity Recovery & Climate Experiment,” http://grace.jpl.nasa.gov/news/, accessed June 8, 2016.
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TABLE 2.2 Examples of Science Results Made Possible by Extended Missions in Earth Science
Mission Science Results

Aqua MODIS fractional snow cover, sea ice extent, and ice surface temperature products showed that the 
melting of the Greenland ice sheet in 2012 was the most extensive surface melting observed in the satellite 
era to that date (Hall et al., 2013).

Aura Microwave Limb Sounder and Ozone Monitoring Instrument data revealed unprecedented ozone loss 
during the 2010-2011 Arctic winter (Manney et al., 2011).

CALIPSO CALIPSO observations showed gradually increasing stratospheric aerosol loading from 2006-2011 due to 
a series of relatively moderate volcanic eruptions (Vernier et al., 2011) and resulting in a global cooling 
of about −0.07°C (Solomon et al., 2011), sufficient to offset a significant portion of the surface warming 
expected from increasing greenhouse gas concentrations over the past decade.

CloudSat CloudSat data from 2008-2010 showed that trapping of heat by clouds is enhancing Greenland ice sheet 
meltwater runoff (Van Tricht et al., 2016).

EO-1 As a technology demonstration mission, EO-1 demonstrated over 12 years the practicality and stability of 
using ground-based calibration sites in support of sensor cross-comparisons and carbon flux measurements 
(Campbell et al., 2013).

GRACE GRACE documented dramatic ice mass loss in Patagonia (Ivins et al., 2011), the Russian High Arctic 
(Moholdt et al., 2012), coastal Alaska (Sasgen et al., 2012), the Canadian Arctic (Gardner et al., 2011), 
and in the high mountains of central Asia (Jacob et al., 2012).
 GRACE data revealed groundwater depletion in the Colorado River basin from 2002-2014 during the 
recent drought in the western United States (Castle et al., 2014), as well as groundwater depletion in 
China (Feng et al., 2013; Moiwo et al., 2013), the Middle East (Joodaki et al., 2014), Turkey (Gokmen et 
al., 2013), the Aral Sea watershed (Zmijewski and Becker, 2014), Mexico (Castellazzi et al., 2014), and 
India (Chen et al., 2011; Chinnasamy et al., 2013).

Jason-1/Jason-2 
(OSTM)

The Jason-1/Jason-2 (OSTM) observation record now stretches over 20 years, providing the most 
accurate and complete understanding of sea level change. The extended mission phases of Jason-1 and 
Jason-2 improved estimates of deep ocean topography, resolving many presently unknown seamounts and 
geologic features on the ocean bottom.

QuikSCAT From 1999-2009, QuikSCAT provided ocean vector winds used by operational weather centers and the 
U.S. Navy. Since 2009, QuikSCAT provided a stable calibration of other spaceborne ocean wind vector 
measurements to enable a long-term, high-quality ocean wind vector database.

SORCE SORCE observations have extended the record of solar irradiance to determine that warming over the 
past century is attributable mainly to increasing anthropogenic gases, with solar irradiance variability 
estimated to cause about 10 percent of the 0.74°C per century increase in global surface temperature 
(Lean and Rind, 2008). Furthermore, SORCE total solar irradiance data from the Total Irradiance Monitor 
instrument revealed a smaller solar irradiance than previously thought (Kopp and Lean, 2011).

Terra MOPITT data between 2000-2003 and 2004-2008 show a clear decrease in carbon monoxide concentration 
worldwide (Worden et al., 2013) and over megacities (Pommier et al., 2013). MISR data show that human-
caused fires limit rainfall in Africa, exacerbating dry conditions in the region (Tosca et al., 2015).

NOTE: CALIPSO, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation; EO-1, Earth Observing-One Mission; GRACE, Gravity 
Recovery and Climate Experiment; MISR, Multi-angle Imaging Spectroradiometer; MODIS, Moderate Resolution Imaging  Spectroradiometer; 
MOPITT, Measurement of Pollution in the Troposphere; OSTM, Ocean Surface Topography Mission; QuikSCAT, Quick Scatterometer; SORCE, 
Solar Radiation and Climate Experiment.

then GRACE will have operated for over 15 years, only 5 of those in prime phase and the rest in extended phase. 
The GRACE experience demonstrates another typical value of Earth-science extended missions: providing cross-
calibration of sensors. By enabling GRACE to continue operating until GRACE Follow-On is operational, scientists 
can remove any bias in the data caused by transferring from the current sensor to the next sensor, even though the 
two sensors theoretically have the same specification. Such cross-calibration has been important for other Earth 
science missions, such as missions for measuring solar irradiance (e.g., Acrimsat), sea-surface topography (e.g., 
Jason, OSTM), and ocean vector winds (e.g., QuikSCAT), and can be important for planetary missions.
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FIGURE 2.4 Ground water storage anomaly in the United States in mid-September 2015, compared to the average for the 
same time of year from 1948-2012, where the most recent values are derived from the GRACE satellite. SOURCE: K. Hansen, 
“The West Dries Up,” NASA Earth Observatory, release date September 18, 2015, http://earthobservatory.nasa.gov/IOTD/
view.php?id=86632.

Figure 2.4 shows the ground water storage percentage over the continental United States in September 2015 
compared to the average historical results from 1948-2012, showing the severe drought in California and the 
Pacific Northwest.

Terra is a flagship EOS (Earth Observation System) mission launched in December 1999, whose prime mis-
sion ran through September 30, 2005. It has been extended through the Earth Science Senior Reviews in 2005, 
2007, 2009, 2011, 2013, and 2015, and all five instruments are still operating nearly as well as at launch, with the 
exception of the 1999 failure of the shortwave-infrared instrument on ASTER (Advanced Spacebourne Thermal 
Emission and Reflection Radiometer, a contribution from the Japanese Ministry of Economy, Trade, and Industry). 
There were more than 1,600 peer-reviewed science publications using Terra data in 2014 alone (NASA, 2015). 
Of the many science products produced over an increasingly long time period is the record of carbon monoxide 
(CO) concentration produced by the Canadian Space Agency-provided instrument Measurements of Pollution in 
the Troposphere (MOPITT), which has shown a steady decrease of CO concentration globally since Terra’s 1999 
launch. Due to its relatively long lifetime of several weeks in the troposphere, CO is used as a tracer of pollution 
transport in satellite or model studies and is an important precursor of ozone (O3). Of particular note is the use of 
the shortwave and thermal infrared channels of MOPITT to increase the capability to assess CO concentration in 
the lower atmosphere, an algorithm enhancement developed well into the extended phase of Terra. Most megacities 
studied by MOPITT show a clear reduction in CO emission between 2000 and 2003 and 2004 and 2008, reaching 
−43 percent over Tehran, Iran, and −47 percent over  Baghdad, Iraq (Pommier et al., 2013). Figure 2.5 shows a 
cross section of CO concentration upwind and downwind of Baghdad in 2000 to 2003 (blue line, prime mission) 
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FIGURE 2.5 Measurements of Pollution in the Troposphere (MOPITT) carbon monoxide (CO) total column concentration 
(in 1018 molecules cm-2) in an upwind-downwind direction over Baghdad, Iran, where the mean values were calculated from 
(blue) March 2000 to December 2003 and (red) January 2004 to December 2008. SOURCE: M. Pommier, C.A. McLinden, and 
M. Deeter, 2013, Relative changes in CO emissions over megacities based on observations from space, Geophysical Research 
Letters 40(14):3766-3771, ©2013 American Geophysical Union, all rights reserved.

and 2004 to 2008 (red line, extended mission). In addition to this focused study on various megacities around the 
world, MOPITT’s long time series has enabled studies of the overall decrease of CO concentration worldwide, 
which shows an approximately 1 percent per year decrease in total column CO over the Northern Hemisphere from 
2000 to 2011 (Worden et al., 2013), with a somewhat smaller but still decreasing trend in the Southern Hemisphere.

One of the lessons that Terra illustrates is that, although the spacecraft itself represents aging hardware, new 
technologies and techniques developed on the ground during an extended phase can be applied to the data. Thus, 
even a spacecraft that has been operating for many years and no longer represents the state of the art can be used 
in new and sophisticated ways.

HELIOPHYSICS DISCOVERIES DURING EXTENDED MISSIONS

Heliophysics is the study of the Sun, the heliosphere, and the interactions of the Sun and the solar wind with 
planetary environments. The heliosphere is a vast region of space carved out of the local interstellar medium 
by the solar wind, the magnetized plasma that flows outward at high speeds from its source in the solar corona. 
 Heliophysics addresses fundamental properties of space plasmas. Using in situ spacecraft measurements of 
charged particles from low to high energies, the magnetic field, electromagnetic radiation, and energetic neutral 
atoms produced by charge exchange with energetic ions in regions remote from the observation point, studies 
in this area elucidate processes that apply to astrophysical systems throughout the universe. Research addresses 
the properties and the variability of the Sun and the solar wind, the interaction of the solar wind with planetary 
environments, and the outer heliosphere and its interaction with the interstellar medium, the latter a new frontier 
in the field. The interaction of the solar wind with planetary environments produces magnetospheres or analogous 
structures, and study of Earth’s magnetosphere has profoundly contributed to our understanding of the complexi-
ties of magnetized plasmas.

The solar wind is confined within the heliosphere, a plasma bubble within the local interstellar medium, and 
the study of the outer heliosphere is a new frontier in the field. Heliophysics applies lessons of basic physics to 
the analysis and prediction of space weather, which is increasingly important to our technological civilization. Key 
objectives of heliophysics include unraveling of fundamental phenomena such as particle acceleration in turbulent 
plasmas and magnetic reconnection in space plasmas, goals that require multi-spacecraft measurements on scales 
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pertinent to exposing the details of this ubiquitous and critically important process. The science conducted by 
extended missions has been essential to advancing knowledge in all of the principal areas comprising heliophys-
ics. Examples of major scientific results from a subsample are provided in Table 2.3 and the text that follows.

One outstanding example of discovery science emerging from data acquired during the extended phase of a 
mission is the first in situ exploration of the outer heliosphere. The evidence comes from the two Voyager spacecraft, 
initially approved for flybys of Jupiter and Saturn. Voyager 1 and 2 are perhaps the most remarkable spacecraft 
ever launched. (Voyager 1 flew by Jupiter in 1979 and Saturn in 1980. Voyager 2 flew by Jupiter in 1979, Saturn 
in 1981, Uranus in 1986, and Neptune in 1989.) Once past Neptune, the ongoing extended Voyager mission has 
provided unprecedented information about the outer boundaries of the region of interstellar space in which we 
live. The scientific benefits of the extended mission include the first observation of the termination shock (Stone 
et al., 2005), a front across which the solar wind slows markedly, and the first crossing of the outer boundary of 
the heliosphere and the first direct encounter with interstellar space (Stone et al., 2013; Krimigis et al., 2009) (see 
Figure 2.6). The dramatic results obtained at the outer boundary of the solar system are particularly remarkable 
in view of the small cost of extended operation. Even today, the in situ measurements of plasma and magnetic 

TABLE 2.3 Examples of Science Results Made Possible by Extended Missions in Heliophysics
Mission Science Results

ACE Continuous observation of solar wind conditions for studies of energy, mass, and momentum flow through 
the geospace system (Gopalswamy et al., 2005). Long-term (over multiple solar cycles) observation of the 
solar wind is an essential part of the Heliophysics System Observatory (King and Papitashvili, 2005).

AIM Long-distance relationships (“teleconnections”) were discovered between noctilucent clouds in one polar 
region and meteorological activity in the other (Holt et al., 2015).

ISEE-3 Launched in 1978, ISEE became ICE in 1982, and well into extended phase, it was retargeted to Comet 
Giacobini-Zinner, becoming the first spacecraft to traverse the plasma tail of a comet, where it measured 
particles, fields, and waves (Scarf et al., 1986).

STEREO In its extended mission, STEREO obtained the first 360 degree images of the Sun.a 

THEMIS/ARTEMIS Conversion of magnetic energy in the magnetotail to particle energy in the inner magnetosphere was 
observed (Angelopoulos et al., 2013), particularly in conjunction with the Van Allen Probes (THEMIS). 
Retargeting two of the five spacecraft to circumlunar orbits (ARTEMIS) allowed for the first fully 
quantitative analysis of the structure and dynamical processes characteristic of the lunar wake (Wiehle et 
al., 2011).

TIMED Dramatic cooling in the upper atmosphere was observed that correlated with the deep solar minimum in 
2009 (Solomon et al., 2010). 

Voyager 1 and 2, 
IBEX,  
Cassini

In situ measurements by Voyagers 1 and 2 of magnetized plasmas and energetic particles in the outermost 
regions of the heliosphere, combined with remote sensing energetic neutral atoms observations by IBEX 
and Cassini have led to development of new models of the heliosphere required to explain plasma 
properties of these strange plasma regions.

Wind Direct observation of the electron diffusion region in collisionless reconnection (Øieroset et al., 2001). 

HSO HSO is not a single mission. It brings together the sum of spacecraft in both prime and extended phase. 
In particular, through the use of extended phase missions (including those not in this table), HSO 
has been able to document changes in the geospace environment over several solar cycles, especially 
the anomalously deep 2009 solar minimum (Russell et al., 2010), allowing for heliospheric wide 
observational studies (Gibson et al., 2009) and comparisons to models (Wiltberger et al., 2012) of entire 
Carrington rotations of the Sun. 

 a NASA Science, “First Ever STEREO Images of the Entire Sun,” release date February 6, 2011, http://science.nasa.gov/science-news/science-
at-nasa/2011/06feb_fullsun/.
NOTE: ACE, Advanced Composition Explorer; AIM, Aeronomy of Ice in the Mesosphere; ARTEMIS, Acceleration, Reconnection, Turbulence 
and Electrodynamics of the Moon’s Interaction with the Sun; HSO, Heliophysics System Observatory; ICE, International Cometary Explorer; 
ISEE, International Earth-Sun Explorer; STEREO, Solar Terrestrial Relations Observatory; THEMIS, Time History of Events and Macroscale 
Interactions during Substorms; TIMED, Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics.
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FIGURE 2.6 The Voyager interstellar mission is exploring the termination shock and heliopause for the first time. SOURCE: 
NASA, “What’s It Like Where Voyager Is?,” release date May 24, 2005, http://www.nasa.gov/vision/universe/solarsystem/
voyager-interstellar-terms.html; courtesy of NASA/Walt Feimer.

field properties made by the two Voyager spacecraft and the remote sensing of the plasma and field properties 
by the Interstellar Boundary Explorer (IBEX) spacecraft in Earth orbit continue to provide information about the 
farthest reaches of the heliosphere; the new data challenge our scientific preconceptions and are generating new 
understanding.

From the large scale and the outer reaches of the solar system to the smallest scale in our own backyard, 
important scientific discoveries have been made and are continuing to be made using data from extended mis-
sions. A key example is the developing understanding of the process of magnetic reconnection. This dynamical 
phenomenon, ubiquitous in space plasmas, transfers energy from magnetic fields to plasmas and powers solar flares 
and magnetic storms. However, many details of the reconnection process are still poorly understood. There had 
been an ongoing argument whether resistive or collisionless processes were at the heart of reconnection in Earth’s 
magnetosphere. The question was hard to answer because space is big, and the electron diffusion region where the 
critical processes take place is very small. But in 2001, NASA’s Wind spacecraft, well into its extended mission, 
was in the right place at the right time to capture crucial evidence that collisionless reconnection was occurring 
(Øieroset et al., 2001). Data from the ongoing THEMIS (Time History of Events and Macroscale Interactions 
during Substorms) extended mission have been illuminating in considerable detail the fundamental mechanisms 
through which energy released in magnetic reconnection is converted into plasma energy that powers the aurora 
and helps create the Van Allen radiation belts (Angelopoulos et al., 2013).
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Tracking energy flows through the magnetospheric system is central to our understanding of space weather. 
We live in the neighborhood of a variable star, and understanding its variations is fundamental to understanding 
our space climate. In the past decade, something has been happening with the Sun. In 2009, Earth experienced 
the deepest prolonged solar minimum of the space age with almost no sunspot activity (e.g., Russell et al., 2010). 
Fortunately, the Wind and ACE (Advanced Composition Explorer) extended missions were operating and were 
able to monitor the state of the Sun and the solar wind. The deep solar minimum was felt throughout the system; 
for example, data from the TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) extended 
mission revealed a link between the anomalously low solar extreme ultraviolet irradiance and the thermospheric 
density (Solomon et al., 2010). This type of correlated response highlights the need for the constellation of space-
craft that comprise the Heliophysics System Observatory (HSO) to provide a long-term monitoring of Earth’s 
space environment (see Figure 2.7). 

Additional questions addressable through heliophysics observatories include the following: How will the Sun 
evolve over the next solar cycle or two? Will it enter into a new extended minimum in solar magnetic activity 

FIGURE 2.7 The Heliophysics System Observatory, dominated by extended missions, provides the widespread coverage 
needed to understand solar physics. NOTE: Acronyms are defined in Appendix F. SOURCE: NASA, “Heliophysics System 
Observatory (HSO),” last modified March 2, 2015, http://www.nasa.gov/content/goddard/heliophysics-system-observatory-
hso/#.V3FY8vkrJki. 
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like that of the Dalton minimum of the 19th century or even the Maunder minimum of the 17th century?2 What 
will be the effect on space weather, or even on terrestrial climate? Only a continuous monitoring of all of the 
components of the system can help to answer these questions. Fortunately, the armada of spacecraft that comprise 
the HSO are already operating and most are still functioning well. Given that it would never be possible to launch 
all of the elements of the HSO simultaneously as new missions, it is essential that existing spacecraft be operated 
as long as they are functioning effectively because they are needed to provide the required long-term records that 
can reveal temporal changes of key elements of the heliosphere.

PLANETARY SCIENCE DISCOVERIES DURING EXTENDED MISSIONS

The strategic goal of NASA’s Planetary Science Division (PSD) is to advance scientific knowledge of the 
origin and history of the solar system, the potential for life elsewhere, and the hazards and resources present as 
humans explore space. Planetary science differs from the other science disciplines in a key way: it commonly 
takes significant time and energy for a spacecraft to reach its operating location and begin collecting data. For 
planetary science missions, a number of major science results have been possible only because of extended mis-
sions (see Table 2.4 for examples from some current extended missions). This section focuses on three examples 
to demonstrate the value of extended missions: recent extended mission discoveries about Mars, about ocean 
worlds, and near-Earth objects. In the first two cases, these discoveries have been critically important to shaping 
future exploration to achieve the highest priorities of NASA PSD. In the latter case, a relatively recent discovery 
revealed that Earth may have previously unknown companions in its orbit. 

During the 2014 Planetary Science Senior Review, both the Lunar Reconnaissance Orbiter and the Opportu-
nity rover were rated highly for their continued scientific contributions. However, they were both zeroed out for 
funding in the President’s fiscal year (FY) 2015 and FY2016 budgets. The scientific discoveries made by both 
missions during their extended phase are addressed in Appendix B of this report.

NASA’s Mars Exploration Program has benefited from missions lasting well beyond their primary missions, 
including the Mars Global Surveyor (MGS), Mars Odyssey, Mars Reconnaissance Orbiter (MRO), and the Mars 
Exploration Rovers (MER) Spirit and Opportunity. Each of these missions has spent far more time in extended 
phases than in the prime missions. For example, Spirit did not arrive at the Columbia Hills until well into its 
extended mission, where it achieved its most important results, describing a habitable ancient hydrothermal envi-
ronment (Squyres et al., 2008; Ruff et al., 2011). This region is now one of the top candidate landing sites for the 
Mars 2020 rover, designated to cache samples for future return to Earth.

MRO was launched in 2005, achieving orbit around Mars in 2006. After completing its 4-year prime mis-
sion, MRO then entered into the extended mission phase in 2010, in which it continues to be operated. During 
the extended mission, the MRO science team first observed recurring slope lineae (RSL) on the surface of Mars 
(see Figure 2.8)—dark streaks that grow and fade with the seasons (McEwen et al., 2011). In the extended mis-
sions, these features were systematically monitored to understand their temperature behavior, consistent with briny 
water, and geographic distribution (McEwen et al., 2014). Spectral data collected during the extended missions 
enabled the detection of hydrated salts at some of these locations, confirming a role for briny water (Ojha et al., 
2015). The RSL and other discoveries are of key importance for understanding potential present-day habitability, 
“Special Regions” for planetary protection plans, and resources for future humans on Mars, leading to the major 
science focus of the next recommended orbiter (MEPAG, 2015).

The outer planet moons with confirmed subsurface oceans are the Saturnian moons Titan and Enceladus and 
the icy Galilean satellites of Jupiter. Europa is the most interesting case because water is in contact with tidally 
heated silicates. An ocean in Europa was only suspected following three close encounters during the Galileo prime 
mission (Pappalardo et al., 1999). It was not until eight successful encounters in the extended missions that new 

2  The Dalton minimum was a period of low sunspot count, representing low solar activity, named after the English chemist, physicist, and 
meteorologist John Dalton, lasting from about 1790 to 1830. The Maunder minimum is the name used for the period starting in about 1645 
and continuing to about 1715 when sunspots became exceedingly rare, named after the solar astronomers Annie Russell Maunder (1868-1947) 
and E. Walter Maunder (1851-1928). 
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TABLE 2.4 Examples of Major Science Results Made Possible by Extended Missions in Planetary Sciences
Mission Science Results

Cassini Global subsurface oceans were discovered in Titan (Lorenz et al., 2008; Iess et al., 2012) and in Enceladus 
(Thomas et al., 2016).

LRO Hundreds of new impact events (Speyerer et al., 2016) as well as recent or active tectonics (Watters et 
al., 2015) were detected, and polar ice was quantified (Hayne et al., 2015; Patterson et al., 2016). 

MERs 
Spirit and Opportunity

A habitable hydrothermal environment was discovered by the Spirit rover (Squyres et al., 2008; Ruff et 
al., 2011). The Opportunity rover, along with MRO, mapped hydrated magnesium and calcium sulfate 
minerals that formed from rising ground waters (Arvidson et al., 2015).

Mars Odyssey Extensive chloride-bearing deposits were discovered, likely ancient playas (Osterloo et al., 2008).

MRO Recurring slope lineae were discovered (McEwen et al., 2011) and their association with hydrated salts 
was studied (Ojha et al., 2015).

Mars Science Laboratory The Curiosity rover arrived at the base of Mt. Sharp and discovered evidence for a long-lived lake (Grotzinger 
et al., 2015). Evidence of refractory organic material on Mars was discovered (Eigenbrode et al., 2015).

NEOWISE Earth’s Trojan asteroid was discovered (Connors et al., 2014).

Voyager 2 The first exploration of ice giant systems was completed of Uranus (Stone, 1987) and Neptune and Triton 
(Stone and Miner, 1989).

NOTE: LRO, Lunar Reconnaissance Orbiter; MER, Mars Exploration Rovers, MRO, Mars Reconnaissance Orbiter, NEOWISE, Near-Earth 
Object Wide-field Infrared Survey Explorer.

FIGURE 2.8 Dark narrow streaks, called “recurring slope lineae,” emanate from the bedrock layers of Garni Crater on Mars, 
in this oblique view constructed from observations by the High Resolution Imaging Science Experiment (HiRISE) camera on 
NASA’s Mars Reconnaissance Orbiter. Image width ~1 km. The scale varies from top to bottom because it is an oblique view. 
SOURCE: HiRISE image ESP_031059_1685, http://hirise.lpl.arizona.edu/; courtesy of NASA/JPL/University of Arizona.
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geophysical (Kivelson et al., 2000) and other results (Pappalardo et al., 2009) were considered definitive evidence 
for an ocean. This changed the focus of future Europa exploration from confirmation of an ocean to habitability 
of that ocean. The multiple flyby mission to study Europa’s habitability is now in Phase A development, and a 
Europa lander is also being studied.3 

Cassini-Huygens is a flagship mission originally launched in 1997 that, after 7 years in transit, reached Saturn 
in 2004 to begin its 4-year prime mission of exploring the local system and landing the Huygens probe on the 
surface of Saturn’s largest moon, Titan. Upon completing the prime mission, the orbiter was extended in 2008 for 
the 2-year Cassini Equinox Mission, including a series of close approaches to the icy moon, Enceladus. Having 
previously discovered active cryo-volcanism near the southern pole of this moon, Cassini was able to engage its 
suite of remote sensing and fields and particle experiments to determine the trace constituents within the plumes, 
as well as the conditions near the surface fractures where the jets emanate. These observations provided strong 
additional evidence for the existence of a liquid water reservoir beneath the surface of Enceladus (e.g., Waite et 
al., 2009; Figure 2.9) and for hydrothermal activity in the deep subsurface (Hsu et al., 2015). Cassini was extended 
again in 2010 for the Cassini Solstice Mission in order to study seasonal-temporal changes within the Saturn system, 
with an additional 12 encounters with Enceladus and 56 of Titan. In the Cassini prime mission, a subsurface ocean 
(perhaps not global) was only suspected in Enceladus, and confirmation came from the extended mission with many 
more encounters (Iess et al., 2014; Thomas et al., 2016) (see Figure 2.10). For Titan, surface hydrocarbon lakes 
or seas were known, but confirmation of a deep global water ocean was a key extended mission result (Iess et al., 
2012). Based on these extended mission results, Congress has recommended, and NASA is acting on, creating a 
new Ocean Worlds program with a series of future missions. 

Earth is now known to share its orbit with a Trojan asteroid that librates around its L4 Lagrange point, joining 
Venus, Mars, Jupiter, Neptune, and Uranus among the list of planets known to host such co-orbital objects. The 
first and only known Earth Trojan, 2010 TK7, was discovered by the Wide-field Infrared Survey Explorer (WISE) 
(Wright et al., 2010) satellite and its enhancement for solar system science, known as NEOWISE (Mainzer et al., 
2011). WISE, launched in December 2009, surveyed the full sky in four infrared wavelength bands (3.4, 4.6, 12, 
and 22 μm) until the frozen hydrogen cooling the telescope was depleted in September 2010. The survey continued 
as NEOWISE for an additional 4 months used the two shortest wavelength detectors. The spacecraft was placed 
into hibernation in February 2011 after completing its search of the inner solar system. NEOWISE was brought 
out of hibernation (now supported by PSD) to learn more about the population of near-Earth objects and comets 
that could pose an impact hazard to Earth. NEOWISE observations resumed in December 2013. Shortly after the 
survey start, NEOWISE discovered its first potentially hazardous near-Earth asteroid, 2013 YP139. Earth Trojan 
2010 TK7 was discovered on October 1, 2010, approximately a day after the cryogen was fully depleted and the 
survey was originally scheduled to stop. Numerical integrations have shown that 2010 TK7 is likely to remain a 
Trojan asteroid for thousands of years (Connors et al., 2011, 2014; Figure 2.11). Subsequent fits to the data yielded 
diameter and albedo estimates for the object, indicating that it is several hundred meters across (Mainzer et al., 
2012). It is possible that 2010 TK7 represents the first of a population of Earth Trojans, some of which may be 
primordial. The decision to operate the WISE spacecraft beyond its original lifetime has provided a first glimpse 
into this unique and rare population of small bodies. 

What the planetary science extension examples demonstrate is that sometimes new scientific discoveries are 
only possible after a spacecraft moves into a new orbit or to a new location that could not be achieved during 
the prime mission, such as Cassini making multiple orbits around Saturn enabling it to make more and better 
planned observations of Enceladus, or a Mars rover reaching a new location far from its landing site. In addition, 
as in the earlier example of Earth science missions, sometimes data collected later in a mission (such as repeated 
observations of the time-varying RSL on Mars) enables fuller interpretation of earlier data. Finally, as NEOWISE 
demonstrates, surprising discoveries, like Earth’s Trojan asteroid, can be made at any time, including long after 
a prime mission has ended.

3  NASA, “Mission to Europa,” https://www.nasa.gov/europa, last updated January 26, 2016.
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FIGURE 2.9 Measurements of constituent gases and particles within the center of the Enceladus plumes, as observed by 
Cassini’s Ion and Neutral Mass Spectrometer during the October 9, 2008, encounter, its closest approach of the entire mission 
at only 27 km (16 miles). SOURCE: Reprinted by permission from Macmillan Publishers Ltd: Nature, J.H. Waite, Jr., W.S. 
Lewis, B.A. Magee, J.I. Lunine, W.B. McKinnon et al., Liquid water on Enceladus from observations of ammonia and 40Ar 
in the plume, Nature 460:487-490, copyright 2009. 
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FIGURE 2.10 The erupting jets and curtains of water on Enceladus. SOURCE: NASA Jet Propulsion Laboratory, “Encroach-
ing Shadow,” accessed June 27, 2016, http://www.jpl.nasa.gov/spaceimages/ details.php?id=PIA17184; courtesy of NASA/
JPL-Caltech/Space Science Institute.
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FIGURE 2.11 Left: Earth’s only known Trojan asteroid, 2010 TK7, was discovered because the Wide-field Infrared Survey 
Explorer (WISE) satellite observes near 90° solar elongation (blue dashed line) and thus detected the object as it reached an 
extreme point in its libration. Right: Thermal fits to the infrared discovery data reveal the object to be several hundred  meters 
across with a moderately low albedo. SOURCE: Left: Reprinted by permission from Macmillan Publishers Ltd: Nature, 
M. Connors, P. Wiegert, and C. Veillet, 2011, Earth’s Trojan asteroid, Nature 475(7357):481-483, copyright 2011. Right: 
NASA, “A Glimmer in the Eye of WISE,” last modified July 27, 2011, http://www.nasa.gov/ mission_pages/WISE/multimedia/
gallery/neowise/pia14405.html; courtesy of NASA/JPL-Caltech/UCLA.
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CONCLUSIONS

Extended missions in all four divisions of NASA’s Science Mission Directorate have made major scientific 
contributions at low cost relative to the initial investments for the prime missions. 

Finding: Extended science missions are valuable assets in NASA’s portfolio because they provide excellent 
science at low incremental cost.

In numerous cases, the long-baseline data is critical to recognizing changes over time, especially in under-
standing the dynamic Earth system, the large and dynamic heliosphere, and for active planetary bodies such as 
Mars. Long-baseline data are also essential to discovery of rare events, such as supernova explosions and X-ray 
flares and relativistic jets from supermassive black holes. 

Finding: Continuity, long-baseline data sets, and statistically significant observations of infrequent events 
require continuity of measurement over years or decades and are best provided through missions in extended 
phase.

In multiple cases, extended missions are able to accomplish surprising new results, either from a new orbit or 
observation profile or from new data analysis techniques. Examples include the Voyager spacecraft exploring the 
outer heliosphere, new Cassini orbits advancing understanding of the ocean and erupting jets of Enceladus, and 
development of a new algorithm to track carbon monoxide using Terra. 
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Finding: Extended missions may accomplish surprising new results via new destinations, observation types, 
or data analysis methods. 

NASA extended mission science results have been sufficiently compelling to change the future exploration 
priorities of NASA and the decadal surveys. Examples include GRACE leading to GRACE-Follow On, Mars 
discoveries leading to new landing sites and future orbiter science priorities, and discovery of subsurface oceans 
leading to new missions such as the Europa multiple flyby mission and a new Ocean Worlds program. 

Finding: NASA’s extended missions are an important part of both achieving science objectives of the decadal 
surveys (see Appendix D) and determining priorities or approaches for future exploration. 

Recommendation: NASA should strongly support a robust portfolio of extended-phase science missions. 
This support should include advance planning and sufficient funding to optimize the scientific return 
from continued operation of the missions.
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NASA ensures that its fleet of extended science missions provides good value and remains in balance with 
other science-motivated pursuits by periodically reviewing operating missions. Extended missions generally pro-
vide excellent, cost-effective science value by leveraging existing assets. Although the resource levels required to 
operate extended missions are generally much lower than those required for developing comparable new prime 
missions, the required investment levels are substantial enough that careful stewardship is warranted.

NASA reviews its extended missions biannually in accordance with Public Law 109-155 (passed in 2005 
and renewed in 2010 as part of the NASA Authorization Act). Because that law does not prescribe implementa-
tion details, NASA has designed and implemented a review process in each of the Science Mission Directorate 
(SMD) divisions. The review process was described to the committee through presentations by the SMD associate 
administrator and each of the SMD division directors. The committee received further information in the form of 
archival documents and data. The overall approach to the reviews is based on peer-review principles commonly 
used to assess scientific merit. The reviews are called Senior Reviews, and each of the four SMD divisions con-
ducts its own Senior Review using its own processes and criteria. Many aspects of the reviews are shared across 
the divisions, but each division implements processes and criteria tailored to its own characteristics and needs. 
The present-day Senior Reviews are derived from those that began in the 1990s within what are now called the 
Astrophysics Division and the Heliophysics Division. The Planetary Science Division also began conducting Senior 
Reviews in the 1990s, and the Earth Sciences Division has been conducting them since 2005. All SMD divisions 
therefore have extensive experience with conducting Senior Reviews.

NASA uses the Senior Reviews as key guidance for managing extended missions. The reviews are the primary 
gauges of the scientific value of each mission, and the findings resulting from these reviews play a central role in 
NASA’s decision-making and resource allocation planning. Guidance from the Senior Reviews is used, along with 
other significant factors that are taken into account, for any NASA activity, including “the budget, programmatic 
considerations, agency or national policy, and international partnerships.”1

Finding: The Senior Review is a valuable peer-review process for assessing the utility, scientific value, and 
interagency applications of spacecraft missions that continue to operate beyond their prime mission.

1  Clarke, S., NASA Science Mission Directorate. 2016. “Heliophysics Division,” presentation to the Academies’ Committee on NASA 
 Science Mission Extensions, February 1, Washington, D.C.
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This chapter describes NASA’s present implementation of Senior Reviews. It discusses elements that are 
common to the four SMD divisions and highlights aspects that differ among the divisions. It presents perspectives 
on the process gleaned from presentations by and conversations with a cross section of stakeholders. The chapter 
discusses evolution of the Senior Review process through incorporation of experiences from previous reviews, 
and it presents a summary history of the missions that have been reviewed since 2005. This chapter also compares 
NASA’s process to that practiced by the European Space Agency (ESA) for reviewing its extended missions. 

SMD-WIDE CHARACTERISTICS OF SENIOR REVIEWS

The Senior Review process is based on a proposal-driven paradigm. It begins with a division director issuing 
a call for proposals to the teams that operate missions under the management of that division. The call is timed 
such that the results can be used as input to NASA’s annual budgeting process. The call contains instructions for 
proposal preparation and submission and explains how the proposal will be reviewed by a Senior Review panel 
convened for this purpose. It delineates the criteria to be used by the panel in its assessment. It explains that a 
budget guideline for the amount of funding available for each mission has been developed by NASA within the 
Planning, Programming, Budgeting, and Execution (PPBE) process and specifies a period of performance. It con-
tains the schedule for submission, typically about 4 months after the release of the call, and discusses how each 
team is to make an oral presentation to the panel. The call also contains links to supporting documents. Proposals 
are typically 30 pages in length, plus appendices, although the guidelines have varied from division to division 
and review to review over the years.

Senior Reviews are nominally conducted on a biannual basis, with Astrophysics and Planetary Science reviews 
occurring in even-numbered years and Earth Science and Heliophysics reviews occurring in odd-numbered years. 
Although the reviews happen on a regular basis, science missions are subject to different events and timelines, 
which can affect how recommendations are implemented or when individual reviews take place. For example, a 
launch failure of a new mission might occur after a Senior Review recommended termination of an earlier mis-
sion, thus requiring the earlier mission to be extended to avoid a gap in data continuity. Another possibility is 
that a spacecraft may be due to run out of fuel a few months after a scheduled review, and it would make little 
sense to hold a new review for only a short life extension. Perhaps most importantly, mission teams spend up 
to 6 months preparing for a Senior Review, and if the review and a major mission event are scheduled to occur 
around the same time, this could jeopardize the mission’s success by diverting the team members’ attention when 
they should be focused on mission operations. Specific examples of missions that were reviewed off-cadence are 
given later in this chapter.

Within each division, a panel of experts evaluates the division’s extended-mission portfolio. Strategic or 
directed missions like NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer), principal investigator-
led missions, and foreign partner-led missions to which SMD contributes, like Mars Express, are commonly, but 
not always, considered together. After its deliberations have concluded, the Senior Review panel issues a report 
containing its findings to the division director. A typical report contains an executive summary, an overview, and a 
digest of findings for each mission. Grades for the overall scientific merit of each mission are given. Occasionally, 
areas of special concern for some missions are called out and explained. The division uses this report as a basis 
for managing its portfolio of extended missions, including the following:

1.  Prioritizing the operating missions and projects;
2.  Defining an implementation approach to achieve division strategic objectives;
3.  Providing programmatic direction to the missions and projects for years 1 and 2 following the review; and
4.  Issuing initial funding guidelines for years 3 and 4 following the review.

DIVISION-SPECIFIC CHARACTERISTICS OF SENIOR REVIEWS

Each SMD division tailors its Senior Reviews to take into account special conditions and aspects of the 
division and the way it performs its overall undertaking. Thus, there are differences in the reviews across the divi-
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sions. This section describes the division-specific aspects of the Senior Reviews and explains the  rationales for 
these differences.

Astrophysics

Unlike the other divisions, the Astrophysics Division does not review all missions in the same manner. It has a 
different process for the Hubble Space Telescope and Chandra X-Ray Observatory than for the other astrophysics 
missions. These missions, as members of the Great Observatories, are treated as general-purpose facilities capable 
of addressing wide areas of astrophysics research and therefore are not tied to specific scientific goals. Thus, the 
Hubble and Chandra reviews are incremental or “delta” reviews that focus on changes since the previous review, 
with an emphasis on mission efficiency.

Reduced funding guidelines provided to extended missions and to the Senior Review panels in recent years 
has become a key concern. For example, in its 2014 Senior Review,2 Spitzer was ranked highly enough to be fully 
funded, yet the projected budget for the set of extended missions would not accommodate that. Two lower-ranked 
missions would not add up to the required cut, so one option recommended by the Senior Review committee 
was to zero out Spitzer. In response, the Astrophysics Division provided some additional funding and allowed 
the Spitzer team to propose for an extension with reduced operations and higher risk. The reduced mission was 
approved and has delivered excellent science at lower cost. For the 2016 Astrophysics Senior Review, the guide-
line budgets were again insufficient to fully fund all of the missions under review. Following recommendations 
from the review panel to continue funding all of the missions, the Astrophysics Division reworked its constrained 
budgets to enable ongoing operation for all of the proposed missions. Some missions, however, are required to 
find further operating efficiencies to deal with reduced funding, and one mission is allocated a modest over-guide 
budget to augment its guest observer program. 

Finding: In recent Senior Review cycles, the Astrophysics Division has adopted effective options for dealing 
with budget constraints and the likelihood that Senior Review panels will recommend supporting extended 
missions at a level above the nominal total guideline. The extent to which future cycles will be able to rely 
on needed budget flexibility within the divisions, as well as the ability of the missions to find further savings, 
albeit with increased risk, is less clear, as is the question as to whether similar approaches are applicable in 
other SMD divisions.

Recommendation: If a Senior Review recommends termination of a mission due to funding limitations 
rather than limited science return, NASA should allow the team to re-propose with an innovative, 
 possibly less scientifically ambitious, approach at reduced operational cost and increased risk. 

Earth Sciences

Earth Science Division (ESD) Senior Reviews3 begin with an assumption that a mission will be continued 
if its unique contributions are still rated highly and if the health of the instruments and spacecraft are still very 
good. An additional consideration for long-term Earth Science missions is the NASA policy requirement (NASA 
NPR 8715.6A) that maneuverable spacecraft that are terminating their operational phases at altitudes of less than 
2,000 km above Earth shall have fuel and capability to reduce their remaining orbital lifetime to 25 years.

The Earth Science Senior Reviews explicitly acknowledge the importance of long-term data sets and the 
overall value of data continuity for Earth science research. This importance leads to a different risk posture for 
Earth Science missions in comparison to other SMD missions. The other divisions explicitly tolerate higher risk in 

2  The Astrophysics Division Senior Reviews are available at NASA Science, “Astrophysics: Documents,” http://science.nasa.gov/ astrophysics/
documents/. 

3  The Earth Science Division Senior Reviews are available at NASA Science, “Earth: Missions: Operating,” http://science.nasa.gov/ earth-science/
missions/operating/. 
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extended missions than they do for prime missions, with the idea that costs can be reduced by accepting higher risk 
levels. Because of national interests and needs, Earth Science has more stringent requirements for data continuity 
and cannot accept additional risk for extended missions as a way to reduce costs.

The Earth Science Division explicitly takes into account national operational objectives in its Senior Review 
process. The 2005 National Research Council report Extending the Effective Lifetimes of Earth Observing Research 
Missions recognized that Earth science missions “have unique considerations, such as future operational utility 
and interagency partnerships, that distinguish them from space science missions” (NRC, 2005, p. 1), and the same 
report contained a recommendation that NASA consider the operational use of NASA Earth science missions in 
the mission-extension process. As a result, a National Needs Panel has been included in ESD Senior Reviews 
since 2007 (being more recently renamed the National Interests Panel). The findings of the National Interests 
Panel provide a secondary evaluation criterion; the primary evaluation criterion is the scientific merit of the mis-
sion. The National Interests Panel determines the value of the data sets for applied and operational uses that serve 
national interests—including operational uses, public services, business and economic uses, military operations, 
government management, policy making, and nongovernmental organizations’ uses. The organizations that were 
represented during the 2015 Senior Review are as follows: 

• National Oceanic and Atmospheric Administration National Weather Service,
• National Oceanic and Atmospheric Administration National Ocean Service,
• Federal Aviation Administration,
• U.S. Department of Agriculture,
• Naval Research Laboratory,
• U.S. Army Corps of Engineers,
• Environmental Protection Agency,
• U.S. Geological Survey,
• Department of Homeland Security Federal Emergency Management Agency,
• Centers for Disease Control and Prevention,
• Alliance for Earth Observations,
• International Association of Wildland Fire,
• Conservation International,
• National States Geographic Information Council,
• U.S. Geospatial Intelligence Foundation, and
• Urban and Regional Information Systems Association.

ESD also supplements the Senior Review with an annual Operations Review. This review evaluates space-
craft and instrument health, mission operations functionality, anomalies, new or monitored risks, and science data 
product production for all division missions.

Finding: NASA Earth Science missions have potential or realized nonresearch utility. Evaluating the applied 
and operational use of NASA Earth Science missions is a secondary factor in Senior Review evaluation and 
extension decisions. Recognizing and promoting the contribution of NASA Earth Science data sets to applied 
and operational uses by public and private organizations (nonresearch purposes) increases the benefits from 
public investment in these missions.

The committee notes that the above finding can also apply to some heliophysics missions as well.

Heliophysics

The Heliophysics Division recognizes the interconnectedness of its discipline by explicitly considering the 
contributions each mission makes to the Heliophysics System Observatory (HSO). The HSO consists of all operat-
ing Heliophysics missions, and its purpose is to investigate the behavior of the entire interconnected heliophysics 

Extending Science: NASA's Space Science Mission Extensions and the Senior Review Process

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23624


40 EXTENDING SCIENCE—NASA’S SPACE SCIENCE MISSION EXTENSIONS AND THE SENIOR REVIEW PROCESS

domain through simultaneous multipoint sampling throughout that domain. The Senior Review panel evaluates the 
contributions of each mission to the HSO and reflects these evaluations through a separate set of scores reported 
alongside the scores of overall scientific merit.

Heliophysics extended mission proposals include a 10-page Mission Archive Plan as an appendix. This appen-
dix describes the data products of the mission and how they will be archived for use by the research community. 
(Similar data archiving plans are required for the other divisions’ extended mission proposals as well.)

Like the missions of the Earth Science Division, the missions of the Heliophysics Division collect data that are 
used by other agencies. The Senior Review includes a mechanism to include input from these agencies. Because 
data from some current missions are being used by the National Oceanic and Atmospheric Administration (NOAA), 
the 2015 Senior Review panel included a scientist from NOAA’s Space Weather Prediction Center.4

Planetary Science

The Planetary Science Division incorporates flexibility into its regimen of mission review with occasional 
mission-specific adjustments to review timing due to the special constraints of planetary missions, such as target 
body encounters and critical mission events that require the undivided attention of the team members who would 
also be charged to write the Senior Review proposal. Flexibility has also been employed to recognize other aspects 
of planetary missions. For example, a 3-year proposal was requested from Cassini in the 2014 Senior Review 
in recognition that the mission’s “Grand Finale” scenario would require slightly more than the nominal 2-year 
extension period, but the mission would then be terminated due to lack of fuel and the need to dispose of the 
spacecraft for reasons of planetary protection. Therefore, Cassini was not reviewed in the 2016 Senior Review.5 
The Planetary Science Division also convenes out-of-sequence reviews as needed for missions that enter into 
extended operations off-cycle.

The Planetary Science Senior Review panels are sometimes split into separate subpanels by subject matter. 
In 2014, the Mars Exploration Program missions under review were considered by a separate group of  reviewers 
from the other missions, and this separation was retained in 2016. The division indicated that separate review 
panels are used primarily because the Mars missions are parts of an integrated program, where the value of each 
mission is not independent of the other. The non-Mars Exploration Program missions are viewed as independent 
from one another. 

STAKEHOLDERS

As part of its assessment process, the committee heard from various Senior Review stakeholders, including 
the NASA SMD associate administrator and the four division directors, panel chairs from the most recent Senior 
Reviews in each division, and principal investigators or science team leads for at least one large and one small 
mission currently in extended phase in each of the divisions. These presenters represent the immediate stakeholders 
of the Senior Review process—that is, the NASA Headquarters program executives, the review panels, and the 
mission teams. Each of the stakeholders has their own interests and perspectives on various aspects of the Senior 
Review process and on the overall value of Senior Reviews. 

NASA Headquarters

The Senior Reviews are essential for NASA assessment of the scientific return and costs of missions in 
extended phases. In some cases, it is obvious that a mission has reached the end of its scientific productivity, but 
in most cases missions remain healthy with continued scientific return. In a cost-constrained environment, infor-

4  The Heliophysics Division Senior Reviews are available at NASA Science, “Heliophysics: Missions: Senior Review Reports,” http://
science.nasa.gov/heliophysics/senior-review/. 

5  “Report for Planetary Mission Senior Review 2016,” letter from J. Douglas McCuistion to James Green, Planetary Science Division 
 Director, NASA Headquarters, June 17, 2016, http://solarsystem.nasa.gov/missions/2016seniorreview.
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mation is needed on the absolute worthiness of the missions and the relative importance of their future scientific 
promise. Implementation and cost information from the mission teams also is important for planning future budgets.

Review Teams

The review panels represent the community in assessing the NASA portfolio of missions in extended phase. 
There are trade-offs between the cost and benefit of operating current missions and applying the funding to other 
areas of NASA science, and the SMD divisions utilize the reports from the Senior Review panels to refine initial 
allocations of funding among the extended missions as well as for deciding whether to allocate additional funding 
from elsewhere in the science portfolios. There is significant work involved for the panel members, who must 
carefully assess each mission and prepare the final report. Recent panel chairs indicated that they believed that a 
minimum period of 6 to 8 weeks between receipt of proposals and the panel meeting with the mission teams was 
required to effectively review and assess the proposals. They recommended that the panels have at least four weeks 
to read the proposals and to formulate questions for the mission teams. The committee considered the substantial 
workload on the community in formulating its assessments below. The panel members serve without compensation. 
The community and NASA Headquarters owe a huge debt of gratitude to the review panels for this essential work.

Mission Teams

For the mission teams, the preparation of Senior Review proposals and presentations requires a tremendous 
amount of work. Some of the work may be needed in any case for future planning, but substantial extra effort is 
needed to prepare formal proposals for the Senior Review. According to many of the mission team members who 
met with the committee, it typically requires up to 6 months of every 2-year period to prepare for and present at 
a Senior Review, which diverts mission teams from producing scientific results with their spacecraft during that 
period. Representatives from mission teams reported that there are commonly a large number of questions from 
the panel with very limited time for the mission teams to prepare responses. They suggested that the review panels 
should provide the questions to the proposers a minimum of 2 weeks before the panel meets with the teams. It is 
clear that this process presents a workload on the mission teams that could reasonably be called burdensome and 
therefore represents an important consideration for the committee.

In summary, the reviews are a huge amount of work for all stakeholders. NASA invests considerable resources 
on the reviews. A substantial amount of effort goes into choosing panels without conflicts of interest and in pre-
paring the call for proposals. The mission teams spend a significant fraction of their time and effort preparing 
proposals, answering questions, and presenting to the Senior Review panels. The review panels devote a significant 
amount of time to reading and accurately reviewing the proposals. 

Finding: Flexibility in scheduling the Senior Reviews—for example, the ability to change the timing of indi-
vidual reviews to avoid mission-critical events—is valuable for NASA’s science divisions.

Recommendation: NASA science divisions should be allowed to conduct reviews out of phase to allow 
for special circumstances and should have the added flexibility in organizing their reviews to take 
advantage of unique attributes of each division’s approach to science.

Finding: At times, the Senior Review process becomes too compressed, and insufficient time is allocated for 
some of the stages that are essential for an effective Senior Review.

Recommendation: Each of the divisions should ensure that their timelines allocate sufficient time for 
each stage of the Senior Review process, including a minimum of 6 to 8 weeks from distribution of 
proposals to the panels until the panel meets with the mission teams. The panels should have at least 4 
weeks to review the proposals and to formulate questions for the mission teams, and the mission teams 
should be allocated at least 2 weeks to generate their responses to the panel questions.
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The committee recognizes that some of these recommendations have already been in practice for some divi-
sions (such as the length of time allocated to a panel to review the proposals) and believes that they should be 
adopted in general for all Senior Reviews regardless of the division. These minimums are essential for obtaining 
the best quality recommendations from the review panels, and considering that NASA holds Senior Reviews on 
a regular cadence, the agency can plan for the reviews well in advance.

Finding: Regular reviews of operating missions are essential. However, the current 2-year cadence creates 
an excessive burden on NASA, mission teams, and the Senior Review panels. A 3-year cadence would ease 
this burden, while enabling timely assessment of the quality of the data returned from these missions and their 
potential for continued productivity. The committee judged that a 4- or 5-year cadence might be too long, 
given potential science developments and also changes in a mission’s health or overall capabilities.

The committee recognizes that because the 2-year cadence is established in congressional budget authoriza-
tion language, NASA alone cannot change to a 3-year cadence. The committee believes that NASA will have 
to work with Congress to seek a change in the requirement for Senior Reviews, but that the advantages of such 
a change are significant and can save money and effort while continuing to maximize scientific return from the 
space agency’s extensive fleet of science missions.

Recommendation: NASA should conduct full Senior Reviews of science missions in extended operations 
on a 3-year cadence. This will require a change in authorizing language, and NASA should request 
such a change from Congress. The Earth Science Division conducts annual technical reviews. The other 
divisions should assess their current technical evaluation processes, which may already be sufficient, 
in order to ensure that the divisions are fully aware of the projected health of their spacecraft, while 
keeping these technical reviews moderate in scope and focused on changes since the preceding review.

As the recommendation indicates, an important component of this revised 3-year cadence is conducting 
regular assessments of the health of the spacecraft and instruments. This is necessary so that both the agency and 
proposers are aware of any potential issues that might result in shorter useful lifetimes and can plan accordingly. 
NASA’s science divisions already have provisions for doing this. These assessments do not need to be extensive, 
and their primary focus can be assessing changes since the last review. 

The committee heard from the division director of the Earth Science Division that continuity of scientific 
measure ments is a priority, because climate and other studies benefit most from similar measurements over time. 
Mission budgets are normally only sufficient to cover the processing, validation, and distribution of the approved 
standard data products. Innovative uses of current missions and the development of new data products can be, 
and often are, proposed through the ROSES (Research Opportunities in Space and Earth Sciences) investigation 
solicitations. 

Conversely, in the other divisions, many mission teams believe that they must emphasize “new science,” over 
continuity measurements in their proposals, to be competitive. A careful reading of recent Senior Review proposal 
guidelines documents (Heliophysics 2015, Astrophysics 2014 and 2016, and Planetary Science 2014 and 2016) 
shows that new science is not required for a mission’s extension, although the potential for (or enabling of) new 
science may be evaluated. However, due to the emphasis on demonstrating that the primary science goals must 
help achieve NASA’s Science Plan or decadal survey objectives, in combination with the idea that the objec-
tives of the prime phase of the mission have already been satisfied before proceeding into extended phase, it is 
easy to see how such a de facto requirement could be inferred by both the mission teams and the review panels 
evaluating the proposed activities. This de facto requirement is then underscored by the competitive environ-
ment of the Senior Review process. For example, in the case of the Planetary Science Division, language stating 
that a criterion of the evaluation is the “potential for groundbreaking science” has been widely interpreted by 
recent Senior Review panels and proposing mission teams as a requirement for new science and a diminution 
of continuity science.
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Finding: In some divisions, there is greater prioritization of new or ground-breaking science, whereas in other 
divisions continuity of observations may be emphasized.

Recommendation: In order to obtain best value for money, NASA should encourage extended mission 
proposals to propose any combination of new, ground-breaking, and/or continuity science objectives.

INCORPORATION OF LESSONS LEARNED INTO SENIOR REVIEWS

Based on inputs from across the divisions, lessons learned include the following:

• Maximizing the number and experience of returning panel members facilitated the work of the Senior 
Review panels. The goal of ESD is to recruit panel members for a two-review commitment, with half of 
the panel returning from the prior review and half of them new. Other divisions have carry-over members, 
but the numbers are not specifically called out. Inclusion of some early-career panelists is also desirable 
in that it promotes opportunities for presentation of new perspectives as part of the review process.

• The process for developing questions for the mission teams’ oral presentations to the panel still needs 
improvement in some divisions. Although having a few standard questions can facilitate discussion between 
the panel and the missions, there also need to be mission-specific questions to fill in possible blanks and 
to provide essential clarifications without overloading the mission team or the review panel.

• The budget evaluation process has been improved over the years. More detail is now requested in 
the proposal and more support from NASA’s SMD/Resources Management Division Assessment and 
Evaluation Group in recent Senior Reviews greatly improved the use of the proposal budget information 
in decision making.

• In some instances, better coordination is needed with the PPBE (NASA’s annual budget planning) decision 
process and the PPBE submittal schedule.

Recommendation: NASA SMD should assemble Senior Review panels that
 •  Are comprised primarily of senior scientists knowledgeable about and experienced in mission 

operations so as to ensure that the operational context of the science being proposed and evalu-
ated is considered in the review (individuals with operations and/or programmatic expertise may 
also be included as needed);

 •  Are assembled early to avoid or accommodate conflicts of interest and ensure availability of 
appropriate expertise; 

 •  Include some continuity of membership from the preceding Senior Review to take advantage of 
corporate memory; and

 •  Include some early-career members to introduce new and important perspectives and enable them 
to gain experience for future Senior Reviews.

Because continuity from one Senior Review to the next is valuable, introducing early-career members into the 
Senior Review process provides a way to ensure that future reviews will have a pool of scientists experienced in 
the process.

SUMMARY HISTORY OF MISSIONS REVIEWED BY THE SENIOR REVIEWS

The Senior Review process has been used by SMD to review a total of 73 science missions since 2005. Most 
missions have been reviewed several times in this interval, with proposals for a total of some 290 mission-years 
evaluated. Tables 3.1 through 3.4 present a history of these reviews for each division. The process has generally 
worked as it was conceived, and recommendations to terminate missions that were returning useful data have been 
infrequent. Exceptions for Astrophysics are GALEX and WISE in 2010 and Spitzer in 2014. Three missions were 
recommended for termination in Earth Sciences: ACRIMSAT in 2007 and 2009, ICESat in 2009, and EO-1 in 
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2009, 2013, and 2015.6 In Planetary Science, no missions were recommended for termination in the 2014 Senior 
Review. However, both the Lunar Reconnaissance Orbiter and Opportunity were eliminated from funding in the 
President’s fiscal year (FY) 2015 and FY2016 budget proposals. Congress later added money to continue these 
missions. The results of the four divisions’ Senior Reviews since 2005 are presented in Tables 3.1, 3.2, 3.3, and 3.4.

There also have been circumstances that have caused the NASA extended mission fleet to be operated in a 
manner that deviated from the recommendations of the Senior Reviews. Other than budgetary shortfalls, significant 
deviations have been necessary for a variety of reasons. An example is ACRIMSAT, which was extended after 
the failure of the Glory launch in 2011 to provide a backup for total solar irradiance measurements performed by 
SORCE. Similarly, an out-of-sequence Senior Review was convened to continue QuikSCAT when the performance 
of the RapidScat instrument on the International Space Station became unpredictable. These experiences underscore 
the value of allowing SMD to have flexibility in interpreting the Senior Review recommendations. 

One thing that is apparent in Table 3.4 is that the Planetary Science Division has held a number of reviews 
in between the normal 2-year Senior Review cycle, such as Cassini in 2007 and 2009 and MESSENGER in 2011 
and 2013. These off-year reviews were prompted by individual mission needs, indicating that a certain degree of 
flexibility on the cadence for Senior Reviews has been necessitated by mission operations.

EXTENSION OF EUROPEAN SPACE AGENCY SCIENCE MISSIONS

NASA is not the only agency that operates long-lasting science missions. ESA also operates a number of 
Earth science, heliophysics, astrophysics, and planetary science spacecraft. Like NASA, ESA has also developed 
a process for reviewing missions after their prime phase has been completed. ESA makes a commitment for the 
first 2 years of extended phase, but after that conducts Senior Reviews for the missions to extend them for 2 years 
at a time.

For ESA missions in which there is a NASA contribution (e.g., Rosetta), ESA approaches the international 
partners, such as NASA, and verifies the status of their commitment before the Senior Review. That information 
is then presented to the ESA Senior Review.

ESA conducts its Senior Reviews on a 2-year cadence, like NASA. According to an ESA representative who 
spoke to the committee, this is a compromise. This rolling process provides a sufficient continuity for managers 
to plan and provides checkpoints to ensure that there are sufficient reviews to change course if the mission is no 
longer compelling. The representative stated that some people have called for yearly reviews of ESA programs.

According to the ESA representative, there is no pressure for immediate balance across science disciplines 
when Senior Reviews are conducted. However, he stated that there is an understanding that the goal is a long-
term balance. ESA ranks science first and foremost; the same is true for mission proposals (not just extensions).

According to the ESA representative, scientific proposals have a page limit (approximately 12 pages) that 
is significantly shorter than NASA’s requirements (which have varied from 20 to 50 pages). According to the 
ESA representative, this short length is not an excessive burden for the scientific community, but he also stated 
that the mission operations people would prefer longer proposals so as to provide more details of their plans 
and capabilities. Proposers for extended missions are asked to make an oral presentation to the peer review 
committee. The committee discussed the issue of page length for proposals with NASA proposal teams and 
determined that the NASA requirement is more appropriate for NASA missions. Some teams noted that shorter 
page requirements do not necessarily save preparation time because teams spend more time and effort deliberat-
ing on what should be included and excluded, and excluding important data may limit a review panel’s ability 
to understand the proposal.

6  EO-1 was recommended for termination in 2009. However, the Senior Review specifically allowed for further consideration of the mission 
in the 2011 Senior Review. Utilization of EO-1’s instruments increased significantly after 2009 and by 2011 the spacecraft was increasingly 
used for disaster monitoring. The 2011 Senior Review recommended a continued mission, although it also called for improvements in data 
utilization. The 2013 Senior Review recommended an additional 2-year extension but did not recommend that the mission be allowed to pro-
pose to the 2015 Senior Review. The EO-1 team responded by indicating that there was still a demand for EO-1 data and they were allowed to 
propose to the 2015 Senior Review. The 2015 Senior Review recommended an additional year of operation but that EO-1 begin the termination 
phase by October 2016, which is the current plan.
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TABLE 3.1 Astrophysics Division Senior Reviews by Year and Missions Reviewed
Mission 2006 2008 2010 2012 2014 2016

Chandra � � � � �

Fermi � � �

FUSE �

GALEX � � �

Gravity Probe B �

Hubble � � �

INTEGRAL � � �

Kepler � � �

MaxWISE �

NuSTAR � �

Planck � � �

RXTE � � �

Spitzer � � � � �

Suzaku � � � � �

Swift � � � � � �

WISE �

WMAP � � �

XMM-Newton � � � � � �

NOTE: Acronyms defined in Appendix F.

TABLE 3.2 Earth Science Division Senior Reviews by Year and Missions Reviewed
Mission 2005 2007 2009 2011 2013 2015

ACRIMSAT � � � �

Aqua � � � � �

Aquarius �

Aura � � � �

CALIPSO � � � � �

Cloudsat � � � � �

ERBE �

EO-1 � � � � �

GPS Science �

GRACE � � � � � �

ICESat � � �

Jason-1 � � � � �

OSTM � � �

QuikSCAT � � � � � �

SAGE �

SORCE � � � � � �

Terra � � � � � �

TOMS �

TRMM � � � � �

UARS �

NOTE: Acronyms defined in Appendix F.
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TABLE 3.3 Heliophysics Division Senior Reviews by Year and Missions Reviewed
 2005 2008 2010 2013 2015

ACE � � � � �

AIM � � � �

CINDI � � �

Cluster � � � �

FAST � �

Geotail � �

Hinode � � �

IBEX � �

IMAGE �

IRIS �

Polar �

RHESSI � � � � �

SDO �

SOHO � � � �

STEREO � � � �

THEMIS � � � �

TIMED � � � � �

TRACE �

TWINS � � �

Ulysses �

Van Allen Probes �

Voyager � � � � �

Wind � � � � �

NOTE: Acronyms defined in Appendix F.

TABLE 3.4 Planetary Science Division Senior Reviews by Year and Missions Reviewed
 2006 2007 2008 2009 2010 2011 2012 2013 2014 2016

Cassini � � � �

Curiosity � �

Dawn �

Deep Impact �

GRAIL �

LRO � �

MAVEN �

MER � � � � � �

Mars Global Surveyor �

Mars Express � � � � � �

MRO � � � � �

MESSENGER � �

Odyssey � � � � � �

Phoenix �

New Horizons �

Stardust-NExT �

NOTE: Acronyms defined in Appendix F.
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During the last ESA Senior Review process, 10 missions were put up for extended missions. Eight of these 
were approved for extension. The two that were not extended were reaching the end of their technical lifetimes 
and could not be extended.

CONCLUSION

The committee did not identify major problems with NASA’s overall approach to Senior Reviews, although 
it did conclude that the agency needs to provide more time for its review teams in order to ensure that they can 
devote appropriate time to conduct quality reviews. The committee also concluded that NASA’s divisions also 
communicate with each other about review processes best practices and believes that this is a valuable practice.

As the divisions have performed more Senior Reviews, the details of the process have become more stable 
from cycle to cycle. Stability includes consistency of information requested, proposal format, timing for the  various 
stages of the review, and so on. Maintaining best practices through regular interactions and feedback between 
NASA Headquarters, the mission teams, and review panels will help to ensure that this consistency is maintained 
while also providing opportunities for incremental improvements in the process.

Finding: As the divisions have performed more Senior Reviews, the details of the process have become more 
stable from cycle to cycle. Stability includes consistency of information requested, proposal format, timing 
for the various stages of the review, and so on.

Recommendation: NASA’s Science Mission Directorate division directors should continue to commu-
nicate among themselves to identify and incorporate best practices across the divisions into the Senior 
Review proposal requirements and review processes and procedures.

Recommendation: In its guidelines to the proposal teams and the Senior Review panels, NASA should 
state its intention to solicit feedback from its proposal teams and review panels about the suitability 
of the proposal content and review process. After obtaining such feedback, NASA should respond and 
iterate as needed with stakeholders to improve the review process, where possible.

REFERENCE

NRC (National Research Council). 2005. Extending the Effective Lifetimes of Earth Observing Research Missions. The National 
Academies Press, Washington, D.C.

Extending Science: NASA's Space Science Mission Extensions and the Senior Review Process

Copyright National Academy of Sciences. All rights reserved.

http://www.nap.edu/23624


48

The committee’s task includes addressing the proper balance between new and extended missions. NASA’s 
Science Mission Directorate (SMD) is currently operating approximately 60 science missions, of which approxi-
mately three-fourths are in their extended mission phase and one-fourth in their prime phase. This complementary 
arrangement has proved effective in enabling all four mission divisions to achieve scientific goals that could not 
have been reached with either primary or extended missions alone. 

An example of a scientific goal that could only have been reached with both prime and extended missions 
concerns the magnetized plasmas that fill near-Earth space and produce long-range interactions that can be under-
stood only by taking measurements at widely distributed observing points and continuing to monitor them over 
decades. By extending missions beyond their prime lifetime and adding additional spacecraft every few years, 
NASA’s Heliophysics Division has created what is referred to as the Heliophysics System Observatory (HSO), a 
network of spacecraft that monitors the entire heliosphere with a special emphasis on a volume of space with a 
radius 200 times that of Earth’s orbit. In 2016, the HSO, which includes the STEREO (Solar Terrestrial Relations 
Observatory) spacecraft in the same orbit as Earth and the two Voyager spacecraft more than 100 astronomical 
units from the Sun, comprised 18 missions (28 spacecraft). Only one mission, the four-spacecraft  Magnetospheric 
Multiscale mission, is in prime phase (see Figure 4.1). Thus, extended missions are an essential component of 
the ensemble of HSO spacecraft that is monitoring the interconnected system of the solar wind and Earth as 
well as the outer boundary of the heliosphere. The importance of the HSO is acknowledged in the first research 
recommendation of the 2013 heliophysics decadal survey (NRC, 2013), which calls for continued support of the 
complement of spacecraft it comprises.

Other divisions have equally compelling reasons to extend the operation of missions beyond their prime phases. 
For example, the Cassini mission of the Planetary Science Division has gathered extensive data on Saturn’s small 
moon, Enceladus, during its extended phases. Only during the extended operations were the properties of the vapor 
plumes of this small moon established, and in addition, it was shown that Enceladus likely harbors a global-scale 
ocean beneath its icy surface. Data collected during the mission’s extensions also revealed that the puzzling peri-
odicities of electromagnetic phenomena at Saturn vary in frequency with season. By operating missions into their 
extended phases, missions in the Earth Sciences Division have monitored the retreat of the Antarctic ice shelf and 
established the temporal variation of atmospheric gases and other key elements of the coupled atmosphere-ocean 
system. Astrophysics has also benefitted from missions in their extended phase, including new discoveries made 
by the Kepler, Spitzer, and Chandra observatories.

4

The Balance of New Missions 
Versus Extended Missions
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FIGURE 4.1 The Magnetospheric Multiscale (MMS) Mission is the only heliophysics mission currently in prime 
phase, emphasizing just how much the Heliophysics Science Division relies upon extended missions for most of its 
data. SOURCE: NASA, “NASA’s MMS Celebrates a Year in Space,” release date March 14, 2016, http://www.nasa.gov/
feature/goddard/2016/nasas-mms-celebrates-a-year-in-space/. 

Extended missions require resources, which naturally raises the question of how much SMD resources should 
be allocated for this purpose and whether typical expenditures are the proper amount. The most recent budget figures 
indicate that SMD is spending approximately 12 percent of its budget on extended missions. NASA officials stated 
to the committee that, although the fraction of funding going to operating missions in extended phase has fluctu-
ated over time, it has, on average, remained close to the present 12 percent. As demonstrated in Chapter 2 of this 
report, major scientific discoveries have been made by NASA missions in extended phase. This record of scientific 
productivity leads the committee to conclude that continuing most NASA missions into extended phase is justified. 

Missions in prime or extended phase also utilize communications support including the DSN (Deep Space 
Network) and NEN (Near Earth Network), which may be stressed by the number of spacecraft requiring their 
services. As such, the total number of missions and their locations in the sky impact the support infrastructure 
(although the impact cannot be quantified without a detailed evaluation of mission-specific needs).

Typically for space science missions in different divisions, maintaining balance among small, medium, and 
large missions, and including a diversity of targets, have been identified as important goals. “Lack of balance” 
has been generally understood by the scientific community to mean too much emphasis on either a single band-
width or target (e.g., measurements in a specific range of frequencies or measurements at a particular planet) 
or support of one costly space mission at the expense of all others. The committee is unaware of any published 
evaluation of what constitutes the “proper” balance between new and extended phase missions, other than the 2005 
National Research Council report Extending the Effective Lifetimes of Earth Observing Research Missions (NRC, 
2005). The various decadal surveys consistently have stressed the importance of missions in extended phase, but 
they have not specifically addressed the balance between extended phase missions and new ones, or even sought 
to define a desirable balance (see Appendix D).

Extended missions provide a suitable training ground for students and early-career scientists. For graduate 
students, the predictability of data sources and operations, particularly with respect to the timeline for completing 
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thesis research, is invaluable and far preferable to delaying graduation or completing a changed project if a prime 
mission’s launch is delayed or, in a worst case, lost. For other early- or mid-career scientists, the experiences 
gained in an environment conducive to learning on the job provide valuable payback to the enterprise in the form 
of much more experienced personnel to perform in the pressure cooker of mission formulation and development. 
Thus, a robust portfolio of extended missions helps to provide the workforce for future new missions.

The committee considered the issue of appropriate balance between prime and extended phase missions, 
initially seeking to identify how much NASA currently spends on prime and extended missions in each division. 
A key question the committee considered was the approximate buying power of the funds that support mission 
extensions—in other words, if a division canceled all of its extended missions and spent all of that money on 
new missions, how many new missions could it buy? More specifically, the data show that if the Astrophysics 
Division canceled and turned off all of its missions currently in extended phase—Hubble, Chandra, Spitzer, 
NuSTAR, and so on—it could purchase less than one MIDEX (Medium-Class Explorer) mission per year, or 
approximately one additional flagship mission every decade. Of course, this would come at tremendous cost in 
scientific  productivity—ending data return from eight operating missions in return for adding perhaps two new 
medium-sized missions every 3 years. 

The calculation for the Earth Science Division indicated greater adverse impact: ending all Earth science 
missions in extended phase—such as Aura, Terra, Aqua—could release funding for approximately one new Earth 
Systems Science Pathfinder mission every 2-plus years, or one new flagship class mission every 12 years. For the 
Heliophysics Division, the effects were also disproportionate: ending all current extended missions could provide 
funds for approximately one new MIDEX mission every 4 to 5 years, or two new Small Explorers (SMEX) every 
3 years, or a new flagship class mission every 19 years. The scientific loss to heliophysics, however, would be 
tremendous. The Heliophysics System Observatory, which relies upon multiple observations at multiple locations, 
would simply collapse.

The results for the Planetary Sciences Division are similar: canceling all operating extended phase missions—
Curiosity, Opportunity, Lunar Reconnaissance Orbiter, Mars Reconnaissance Orbiter, MAVEN, Cassini, and even 
New Horizons, which will finish its prime phase soon—would result in approximately one new Discovery mission 
every 2-plus years, or one new flagship class mission every decade (see Table 4.1).

TABLE 4.1 Approximate Buying Power Resulting from Cancelling All Extended Phase Science Missions per 
Division

Division

Total Budget for  
Fiscal Year 2016 
($millions)a

Approximate Savings 
($milions) If All 
Extended Missions Are 
Eliminated

Equivalent Number of 
New Small Science 
Missions per Yearb

Equivalent Number of 
New Large Science 
Missions per Yearc

Astrophysics 768 (+JWST: 620) 214  ~ 0.6 MIDEX ~ 1/10 flagship mission

Earth Science 1,921 180  ~ 0.4 ESS Pathfinderd ~1/12 flagship mission

Heliophysics 640 78 ~ 0.2 MIDEX
~ 0.4 SMEX

~1/19 flagship missione

Planetary Science 1,628 216 ~ 0.4 Discovery missions ~ 1/10 flagship mission

NOTE: The table does not account for the normal spending profile for a mission that is not evenly distributed over each year.
 a NASA, “NRC Extended Missions Follow up questions, SMD Responses,” submitted to the committee, April 5, 2016.
 b The committee assumed launch costs of approximately $150 million. A MIDEX mission costs from approximately $330-$350 million total, 
including launch costs, and a Discovery mission costs approximately $575 million total, including launch costs. (http://explorers.gsfc.nasa.gov/
missions.html and http://discovery.nasa.gov/p_mission.cfml, accessed May 5, 2016).
 c This assumes that a typical flagship mission costs $2 billion and launch costs are approximately $250 million, for $2.250 billion total.
 d For Earth Science, the committee took the cost of the most recent Earth Systems Science Pathfinder mission, the Orbiting Carbon Observa-
tory 2, which cost approximately $470 million, including launch (http://www.jpl.nasa.gov/news/press_kits/oco2-launch-press-kit.pdf, accessed 
May 26, 2016).
 e For heliophysics, the committee took the current $1.5 billion estimated cost (including launch) for the Solar Probe Plus mission.
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Of course, it would be possible to cancel some but not all extended-phase science missions in a division. 
Criticism of continuing to fund extended science missions (see Chapter 1) is usually formulated as a proposal to 
spend an undefined “less” on extended missions and to devote the money saved to new mission development. 
But what Table 4.1 demonstrates is that even drastic cuts to the extended missions budgets would result in very 
few new science missions. Another way to look at this trade-off is that, because each of the divisions spends 
approximately 50 percent of its budget on new development and approximately 12 percent on extended missions, 
ending all extended missions in a division would increase the respective development budget by approximately 
25 percent. Thus, even the drastic action of ending all extended missions has a relatively limited effect on both 
development spending and the number of new missions.

The cost to science of ending all extended science missions, however, would be catastrophic. In some cases, it 
could create gaps during which no new data are being returned from any mission for a division. Such breaks could 
destroy some scientific disciplines, particularly Earth science and heliophysics, which require understanding their 
subjects via multiple observations made by multiple spacecraft over many years. For planetary science, ending 
extended missions at Mars would not just impact science but could mean shutting off spacecraft that provide data 
relay for other spacecraft, thus eliminating infrastructure needed to support both prime and extended missions (see 
Figure 4.2). Astrophysics benefits by using multiple observatories—many in their extended phase—to take data 
at different wavelengths simultaneously to understand how many astrophysical systems work. Ending missions 
that have many productive years left would also be tremendously wasteful—the equivalent of throwing away a 
functioning appliance at the end of its warranty. Finally, eliminating all extended missions would contradict the 
recommendations in the divisions’ decadal surveys.

Of course, ending many or all extended missions is an extreme example, but it demonstrates the limitations 
of what can be accomplished even by making major changes to the current balance of spending on extended 
missions. Although the committee could not establish a clear definition of balance, it was able to conclude that 
substantial changes in the current balance between new and extended missions would be highly deleterious in 
terms of scientific return.

Finding: NASA’s extended science missions constitute approximately three-fourths of the missions in flight, 
but cost a relatively small percentage of the overall SMD budget, on average 12 percent over the last 5 years. 

Finding: Eliminating all of the extended missions would
 • Increase the funds available for new development only by approximately 25 percent;
 •  Make it difficult or impossible to achieve many objectives of decadal survey science; and
 • Adversely and significantly impact SMD’s overall science return.

Finding: The current balance between prime and extended missions is reasonable.

Recommendation: NASA should continue to provide resources required to promote a balanced portfolio, 
including a vibrant program of extended missions.

CONCLUSION

Although the committee did not develop a formal definition or recipe for the ideal balance between prime 
and extended missions, it found the present mix to be excellent and identified no basis for substantially altering 
the current balance based upon either scientific or monetary considerations.
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FIGURE 4.2 The Mars Reconnaissance Orbiter not only performs extended mission science at Mars but also serves as a relay 
spacecraft for the Opportunity and Curiosity rover missions. Ending operating Mars orbiters would eliminate vital infrastruc-
ture supporting other missions in both prime and extended phase. SOURCE: NASA, Image PIA04916, December 10, 2003; 
courtesy of NASA/JPL-Caltech.
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The committee’s charge included identifying possible innovative ways to reduce costs for extended missions. 
During the course of this study, the committee heard several presentations addressing cost reduction approaches 
for extended missions and discussed specific case studies in the search for overarching principles that might be 
applied to other missions. The committee evaluated approaches to cost savings within the context of increased 
risk and potential impacts on science return.

COLOCATING OPERATIONS

One method for increasing efficiency for space science missions is colocating multiple mission operations at 
a given location, which is an approach that NASA already takes for many of its missions. For example, NASA’s 
Goddard Space Flight Center (GSFC), the California Institute of Technology’s (Caltech’s) Jet Propulsion Labora-
tory (JPL), and the Johns Hopkins Applied Physics Laboratory (APL) each operate multiple missions using their 
on-site operations centers. In some cases, these missions are concentrated by type—for example, Earth science 
missions at GSFC and planetary missions at JPL. However, GSFC also operates the Lunar Reconnaissance Orbiter 
as well as a number of astrophysics missions, JPL operates some Earth science and astrophysics missions, and 
APL operates Earth science, heliophysics, and planetary missions. The committee notes that there is no inherent 
reason that all similar missions have to be handled by the same operations center. 

Although colocating multiple missions operations at a single location is likely to produce added efficiencies 
due to some level of commonality in spacecraft operations, the Science Mission Directorate’s (SMD’s) current 
portfolio includes competed science missions and principal investigator (PI) teams that provide NASA with dif-
ferent opportunities to draw on scientific expertise that is spread throughout the United States. Added operations 
efficiencies and scientific synergies may result from colocating science operations and mission operations close to, 
or at, the host institution for the science team, as exemplified by the Chandra X-ray Center located in Cambridge, 
Massachusetts, and the Infrared Processing and Analysis Center at Caltech. 

Finding: Colocating mission operations centers may provide added efficiency (and cost savings) in some 
cases. The location and responsibilities of the science team and the potential advantages of colocating the 
science and mission operations teams are also important factors, so flexibility and trade studies are required 
when deciding how to organize and where to site science and operations centers.

5

Innovative Cost Reductions for Extended Missions
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INNOVATIVE APPROACHES

The committee also was briefed on the innovative approaches adopted to continue operations during the 
extended phase of several missions, including the Galaxy Evolution Explorer (GALEX), the Solar, Anomalous, 
and Magnetospheric Particle Explorer (SAMPEX), and the Mars Exploration Rover Opportunity. The level of 
NASA support varied for the later stages of these missions, as discussed below, and this factor should be kept in 
mind when assessing the effectiveness of the approaches.

The GALEX mission provided important ultraviolet astronomy observational capabilities (see Figure 5.1). 
It transitioned from prime to extended phase in 2007 and was highly recommended in the 2004, 2006, and 2008 
Astrophysics Senior Reviews. However, the 2010 Senior Review recommended only 2 more years of operations, 
followed by close-out. That review also opposed a suggested move of the operations to Caltech, saying that the 
move would introduce unnecessary risk and would provide no cost savings, given the limited remaining time they 
were recommending for operating the mission. Subsequently, NASA decided to terminate the mission after just 
1 year. The mission PI and the science team negotiated with NASA to transfer operations and ownership of the 
satellite to Caltech, but several issues arose, including the question of liability associated with possible collisions 
on-orbit and eventual Earth re-entry. Ultimately, this issue was surmounted by a NASA decision to “loan” the tele-
scope to Caltech, with NASA retaining ownership. However, no NASA funding was provided, so the GALEX team 
and Caltech endeavored to raise just over $1 million for a bare-bones operation of the satellite for approximately 
1 year. Several universities and telescope consortia purchased observing time, JPL funded efforts to complete the 
galactic plane portion of an all-sky survey, and the PI team raised modest amounts of additional private funding. 

FIGURE 5.1 The Galaxy Evolution Explorer (GALEX) spacecraft during construction. SOURCE: GALEX Technical Docu-
mentation, “Chapter 1. Instrument Overview,” accessed June 27, 2016, http://www.galex.caltech.edu/researcher/techdoc-ch1.
html; courtesy of JPL/Caltech and the GALEX science team. 
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Employment of student operators on a part-time basis also reduced costs somewhat. Although these efforts suc-
cessfully extended the mission, there was no immediate funding or time for science research. According to the 
PI, the team was exhausted after 1 year, and the satellite was “returned” to NASA and decommissioned. The PI 
informed the committee that he would not recommend this option to future missions. An unanswered question is 
the extent to which this approach might have been less taxing on the team, with the possibility of operating in this 
mode for longer than 1 year, had NASA at least provided partial funding support.

Continuing GALEX operations after the end of NASA funding involved a rather rushed effort with some 
complicated issues. It is possible that, with more advance notice and careful planning, taking advantage of lessons 
learned, this kind of effort could be less stressful and more successful in some future situations.

There could be an important ancillary benefit to efforts to transition older missions to a NASA-university/
consortia partnership: increasingly, the development of space hardware and missions is concentrated at NASA 
centers. Encouraging universities to become involved in extended-phase missions may be one way of rekindling a 
broader involvement in space hardware and space science. However, this may only be applicable to smaller mis-
sions with more focused scientific objectives. Observatories as large and complex as the Hubble Space Telescope 
and the Chandra X-Ray Observatory cannot easily be transitioned in this way; given the breadth of science that 
they continue to enable even in their extended phase, it is important that operations do not change drastically.

SAMPEX was NASA’s first Small Explorer mission. Launched in 1992, SAMPEX was designed as a 1-year 
mission, with a goal of 3 years, to study space weather through measurements of particles and cosmic rays in 
near-Earth space as a function of solar activity. The mission was extended to cover a full solar cycle, and NASA 
support ended in 2004. However, data continued to be acquired for another 8 years, with the Aerospace Corporation 
funding the downloading and Bowie State University operating the spacecraft (starting in 1997) as an educational 
tool for its students. A GSFC scientist obtained a NASA grant to process the 2004-2012 data and to provide access 
to the data for the science community. SAMPEX continued to provide valuable science data until it re-entered 
Earth’s atmosphere in late 2012, just over 20 years after it was launched. Without question, SAMPEX exceeded 
expectations, thanks in large part to the confluence of factors listed above that enabled the last 8 years of the 
mission. However, it does not seem realistic to plan future extended missions based on highly uncertain support 
relying on corporate funding commitments, university interest for educational purposes, or grants that must be 
competitively secured. 

The Mars Exploration Rover has operated on the surface of Mars for more than 12 years (see Figure 5.2). 
Given that Opportunity’s prime phase was 90 martian days, the duration of the extended phase has exceeded the 
prime by almost 50-fold. The project has been under continuous pressure during this time to reduce the cost of 
extended operations without adding risk of loss of mission. The project responded to this new reality by adopting a 
number of innovative cost-saving measures, most of which were not foreseen at the start of operations, partly due 
to the very short anticipated prime mission duration. These innovations drew heavily from the actual experience 
of having operated the spacecraft through the prime mission period. Notable among these cost-saving measures 
were the use of cloud computing in lieu of purchasing and maintaining hardware systems, the use of information 
technology automation to handle many routine operational tasks, the cross-training of team members to allow 
individuals to cover more than one job as extended mission work lessened, and the elimination of deputy posi-
tions as team members gained job skills experience and became cross-trained. Overall, this approach was very 
successful, with increases in efficiency and associated cost reductions implemented “on the fly,” according to one 
of the mission’s managers.

Unlike the two cases discussed above, NASA did provide continuous, albeit reduced, funding for  Opportunity’s 
extended mission. As noted in Chapter 2, the President’s FY 2015 and FY2016 budget request zeroed out the 
funding for Opportunity as well as the Lunar Reconnaissance Orbiter, even though both were highly rated in 
the Planetary Science Division’s 2014 Senior Review. (See Appendix B for sampling of scientific contributions 
during the extended phases of both missions.) Congress subsequently decided to continue the funding for both 
Opportunity and LRO.

Subject to recommendations from the Senior Review process, NASA SMD generally expects to extend the 
mission operations beyond the original prime mission period, provided the spacecraft is returning valuable science 
data and the cost for extending the operations fits within the program budget. Given that extended operations are 
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FIGURE 5.2 First color image taken by the Opportunity rover soon after touchdown in 2004. The rover was expected to last 
only 90 days but has operated for more than 12 years. SOURCE: NASA Jet Propulsion Laboratory, “Panoramas: Opportunity,” 
release date January 26, 2004, http://mars.nasa.gov/mer/gallery/panoramas/opportunity/2004.html; courtesy of NASA/JPL/
Cornell.

a likely eventuality, planning of the ground system and operations approaches from the early phases of the pro-
gram can include an awareness (without driving costs) of the potential for a mission extension that is likely to be 
implemented with reduced budgets, reduced and changing staff, aging hardware, and, possibly, new objectives. 
Such early steps may provide benefits for later reducing the cost of extended mission operations and limiting the 
increase in risk. 

The committee was briefed on a number of different approaches but did not identify any new over-arching 
cost-saving principles to apply across the board—every mission has unique circumstances. Using the information 
presented, the committee was able to extract a number of best practices including the following:

• Allow for the possibility of extended operations without driving costs as projects plan and develop their 
ground operations and flight procedures for the prime mission.

• Consider the implications of possibly transitioning from prime mission operations into extended missions 
when recruiting and assigning the operations team for the prime mission.

• Plan for and then cross-train mission and science operations staff to more effectively enable reductions in 
workforce and staff at reduced risk as a mission transitions to extended phase.

• Perform appropriate trade studies for purchase versus “rental” of computer hardware and data storage (e.g., 
use of cloud capabilities) for operations and data processing, while addressing factors such as information 
technology security and upgrade requirements.

Finding: Many extended missions have adopted innovative planning and operations approaches that translate 
to good practices (e.g., early awareness of potential for extended mission while developing ground system 
and flight procedures; generating staffing plans and preparing for reduced budgets during the extended phase) 
that may be applicable to other missions. Each mission has unique features, so no single approach will be 
optimal for all.

Recommendation: NASA should provide open communications and dissemination of information based 
on actual experience with extended missions so that all missions are aware of and able to draw on prior 
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effective practices and procedures, applying them during development of ground systems and flight 
procedures, as well as when formulating staffing and budgetary plans for the prime and extended-
mission phases.

The committee determined that communication about Senior Review processes among SMD divisions is rela-
tively good and encourages the divisions to continue this communication about other aspects of extended-mission 
operations. There are many possible ways that NASA could ensure open communications and dissemination of 
information, including websites, conferences, and even contractual communications. As the committee has noted, 
the best time to begin preparations for extended missions is when a mission is still in its formulation phase, a time 
when decisions can have significant impacts many years after the prime mission has ended.

REPURPOSING EXTENDED MISSIONS TO CREATE NEW SCIENCE MISSIONS

Upon completion of a prime mission and during the transition to an extended phase, opportunities may arise 
to consider a major redirection of the project. One example is the Deep Impact mission that was launched in 2005 
to study the interior of comet Tempel 1. On July 4, 2005, the spacecraft’s impactor collided with the comet, pro-
ducing effects that were observed by the main spacecraft. Shortly afterwards, Deep Impact’s prime mission ended, 
even though the spacecraft was still healthy. NASA then sought proposals for an extended mission and eventually 
selected and merged two proposals that included both original and new members of the Deep Impact team. The 
extended mission was named EPOXI (Extrasolar Planet Observation and Deep Impact Extended Investigation).

The EPOXI mission recycled the Deep Impact spacecraft to visit a second comet, Hartley 2. The November 4, 
2010, flyby of Hartley 2 marked only the fifth time a comet had been visited by a spacecraft. The EPOXI mission 
flyby revealed that the rocky ends of comet Hartley 2 spew out tons of golf-ball to basketball-size fluffy ice par-
ticles, whereas the smooth middle area is more like what was observed on comet Tempel 1, with water evaporating 
below the surface and percolating out through the dust. Repurposing the Deep Impact spacecraft enabled NASA to 
take advantage of new ideas and a wider array of expertise that would have otherwise required NASA to initiate 
and fund the development of a whole new mission.

Another example is the WISE (Wide-field Infrared Survey Explorer) mission, launched in December 2009. 
WISE surveyed the full sky in four infrared wavelength bands until the hydrogen cooling the telescope was depleted 
in September 2010. The survey continued as NEOWISE (Near-Earth Object WISE) for an additional 4 months 
using the two shortest wavelength detectors to detect previously known and new minor planets and to study 
 asteroids throughout the solar system. NEOWISE enabled the discovery of the first known Earth Trojan asteroid. 
The spacecraft was placed into hibernation in February 2011, after completing its search of the inner solar system.

In response to increasing scientific interest and growing geopolitical concern about the possibility of near-Earth 
objects (NEOs) impacting Earth and the consequential impacts to human life and damage to the environment and 
economy, NASA’s Planetary Science Division reactivated the mission (as a directed mission of national priority 
and no longer subject to the Senior Review process) in December 2013, with the primary goal of learning more 
about the population of NEOs and comets that could pose an impact hazard to Earth. During its first 3 years of 
operations, NEOWISE characterized many NEOs and obtained accurate measurements of their diameters and 
albedos (how much light an object reflects). NEOWISE is equally sensitive to both light-colored asteroids and the 
optically dark objects that are difficult for ground-based observers to discover and characterize.

As of mid-April 2016, NEOWISE was approximately 73 percent of the way through its fifth coverage of the 
entire sky. The repurposing of this mission after its prime phase has provided a very cost-effective means of 
addressing questions of great scientific interest and in this case of great importance to our planet’s, and our own, 
well-being.

A third example is provided by the Heliophysics THEMIS (Time History of Events and Macroscale Interac-
tions during Substorms) mission. In this instance, a multi-spacecraft mission was partially repurposed to obtain 
new science. Originally composed of five spacecraft to study magnetospheric substorms, the THEMIS mission 
proposed that two spacecraft be diverted to lunar orbit. The new mission, called ARTEMIS, has provided impor-
tant observations of the lunar wake (Wiehle et al., 2011), while the remaining three spacecraft constitute a revised 
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THEMIS extended mission that continues to provide crucial observations of energy conversion processes in Earth’s 
magnetotail (Angelopoulos et al., 2013).

Finding: Repurposing of extended missions, such as Deep Impact to EPOXI, WISE to NEOWISE, and 
THEMIS to ARTEMIS and THEMIS, is an extremely cost-effective approach for addressing new science 
opportunities and national interests.

Recommendation: NASA should continue to encourage and support extended missions that target new 
approaches for science and/or for national needs, as well as extended missions that expand their original 
science objectives and build on discoveries from the prime phase mission.

RISK ASSESSMENT AND ACCEPTANCE

NASA mission and science operations budgets typically decrease significantly when a mission enters extended 
phase, which is normally expected and usually justifiable. After that, costs may reduce further as a consequence 
of additional performance improvements over time and learning-curve effects. However, after several years of 
extended operations, most missions have implemented all steps that safely can be taken to reduce cost. Further 
funding cuts increase risk, including a real loss of unique science or possible degradation or loss of a spacecraft. 
Based on the mission team presentations to the committee, there is a perception among proposal teams that NASA 
at times may not fully recognize the changed risk posture when reducing funding for mission extensions, instead 
assuming that funds for extended missions can be continually cut without ramifications. To be fair, NASA is at times 
under intense budget pressures, and agency officials may believe they have no choice other than to apply such cuts. 
Moreover, given the national interest needs met by Earth science missions, there is much less risk acceptance for 
extended missions by the Earth Science Division than the other divisions. Increased risk can take various forms. 
One example is that missions in extended phase may go for longer periods between communications sessions with 
ground control. This could mean that a problem on the spacecraft could go undetected and pose a threat to loss of 
an instrument or the spacecraft. Decisions by NASA and mission proposers to accept such risks have long been 
made for extended missions, but not everyone involved may be aware of the risks. 

Finding: Some divisions permit missions entering into or already in extended phase to accept increased risk, 
which is an inevitable consequence for aging spacecraft and science instruments and, at least for some divi-
sions, an acceptable option in the context of reduced budgets.

Recommendation: NASA should continue to assess and accept increased risk for extended missions on 
a case-by-case basis. The headquarters division, center management, and the extended-mission project 
should discuss risk posture during technical reviews and as part of the extended mission and subsequent 
Senior Review proposal preparation process, and all parties should be made fully aware of all cost, 
risk, and science trade-offs. 

THE NEED FOR SUPPORT IN RESPONSE TO SPACECRAFT ANOMALIES

In some instances, mission operations costs may also rise over time due to changes in mission profile; the need 
to respond to anomalies that are commonly but not always age-related, such as deteriorating performance of flight 
systems; as well as inflation. For example, the complete loss of one radio receiver on Voyager 1 and the loss of 
frequency tracking capability on the remaining redundant unit required intense and costly operational workarounds, 
as did the failure of the high-gain antenna on Galileo during its prime mission phase. Historically, barring such 
extenuating operational cost drivers, extended missions often experience additional cuts to their budgets at subse-
quent Senior Reviews, which along with inflation, often result in disproportionate cuts to project-funded science 
activities. This is because mission management normally prefers to limit increased risk and, therefore, attempts 
to minimize cuts to the operations budgets. In turn, mission science teams then seek support from research and 
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analysis programs. However, those programs are also under increasing funding pressure, which means that all-
too-frequently science is diminished or sometimes not performed at all.

Finding: Experience and knowledge gained during the prime phase frequently result in lower costs for 
extended mission operations, but occasionally there may be counteracting effects that can create upward 
pressure on operational costs. 

Finding: After the first few years of extended operations, most missions have implemented all (or almost all) 
practical steps to reduce costs. Further budget cuts often then result in disproportionate cuts to project-funded 
science activities, increasing risks that science will be diminished or not performed at all. 

Recommendation: Given the demonstrated science return from extended missions, NASA should con-
tinue to recognize their scientific importance and, subject to assessments and recommendations from 
the Senior Reviews, ensure that, after the first two Senior Reviews, both operations and science for 
high-performing missions are funded at roughly constant levels, including adjustments for inflation.

CONTROL OF COSTS AND RISKS RELATED TO THE INTRODUCTION OF NEW PROCEDURES

In concert with the assessment of past experiences and evaluation of innovative ideas for reducing costs and 
increasing the science cost-effectiveness of extended missions, the committee discussed the question of increased 
risk associated with such approaches. It usually costs money upfront to develop new procedures that could eventu-
ally reduce costs, but the upfront funding usually is not available during the extended phase of a mission, unless 
it is diverted from science or essential operations activity. Keeping procedures as simple as possible in the prime 
mission, which projects should do to the extent possible, may be the best way to control costs and limit risks in 
extended missions. Increased risk from any new procedure is unavoidable but may be acceptable in some cases. 
For example, if the alternative is to terminate a mission, then substantially increased risk may be acceptable. Also, 
risk to the science data is less critical than risk of catastrophic failure of the mission. As is commonly done by 
project management, all such risks are best identified, described, and carefully evaluated in order to avoid making 
decisions that could keep a spacecraft operating but drain it of scientific productivity.

Finding: Investment in the development of standard procedures and templates, with complexity as limited as 
possible, for use during the prime phase may be the best way to control operations costs and limit the risks 
from introducing new procedures specifically developed for extended operations.

DETERMINING THE LIFETIME COST OF SCIENCE MISSIONS

NASA’s present approach is to develop prime mission hardware specifications (e.g., lifetime) such that 
there will be a high level of confidence in the mission’s ability to meet prime mission requirements. This 
approach is both understandable and appropriate and has served the agency well. Furthermore, it implies that 
there is a distinct probability that most missions will survive in good enough shape to propose an extension. 
Even so, NASA defers formal requests for extended mission operations funding until the approach of the prime 
mission completion along with achievement of the stated science objectives. This practice probably traces 
back to the early days of spacecraft development when there was lower confidence that spacecraft and science 
instrument operations would even reach, let alone exceed, desired mission lifetimes. Some critics have noted 
that this approach produces life-cycle cost estimates for missions that are lower than they would be if budgets 
for extended mission operations were included from the start. Moreover, deferring formal requests for mission 
extensions may encourage some skeptics to question the merits of such extensions. On the other hand, NASA’s 
5-year budget projections for the SMD do carry funding for extending missions on a division-by-division basis 
(sometimes by individual missions and sometimes as an aggregate number), so the planned expenditures are 
included in NASA’s budget projections. 
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The committee debated this question and concluded that the current NASA approach is very reasonable. Space-
craft and science instruments are designed and tested for specific lifetimes with corresponding requirements (and 
associated costs) for component and subsystem reliability. The lifetime design requirements also include margins, 
which increase the probability that the mission will meet its design lifetime, but do not guarantee how much longer 
it will continue working beyond its prime phase. After the design lifetime is reached, nobody expects the space-
craft or instruments to immediately stop working, just as nobody expects a household appliance to break the day 
after its warranty expires, but there is an understanding that degradation in function may occur. The committee 
also discussed the merits for NASA to further describe this philosophy in its own policy documents as a means to 
better communicate both internally and externally its intent to extend the operations of missions as long as they 
continue to return useful data and the resources needed to do so fit within their overarching budget constraints.

In addition, the prime phase of a mission is not only defined by the hardware lifetimes but by the science goals 
that are to be achieved during that time. If NASA were to define a longer lifetime for a mission from the outset, 
development, integration, and testing costs would increase, while NASA and the science team might also have to 
expand the science goals corresponding to a longer prime mission. One of the benefits of an approach that keeps 
the prime phase separate from the extended phase is that it enables NASA and the science teams to apply knowl-
edge gained during the prime mission to develop expanded, or even totally new, goals for the extended mission. 
This insight and the new goals cannot be predicted far in advance, so the current approach is a good method of 
tapping into new knowledge and applying it to an already flying mission.

Finding: NASA’s current approach to establishing requirements and designs for prime phase and budgeting 
for extended missions has many positive attributes and provides a very high return on investment.

Recommendation: NASA should continue anticipating that missions are likely to be extended and iden-
tify funding for extended missions in the longer-term budget projections.

Recommendation: NASA’s Science Mission Directorate (SMD) policy documents should formally 
articulate the intent to maximize science return by operating spacecraft beyond their prime mission, 
provided that the spacecraft are capable of producing valuable science data and funding can be identi-
fied within the SMD budget.

CONCLUSION

The committee is very supportive of the current NASA approach to mission design, which provides a high 
probability of achieving prime mission objectives while also allowing a reasonable likelihood that an extended 
phase with high science return will be achievable. As stated earlier, extended missions enable new science, pro-
vide for data continuity, and enable long baseline studies—all at very modest incremental cost. The committee 
has identified a number of good/best practices for missions to adopt in order to limit increased risk and prepare 
to operate extended missions under likely reduced budgets. Various cost-saving approaches were presented to 
the committee, and a number of positive attributes were identified, although no global solutions were found, 
given the distinct aspects of the various missions. The committee is supportive of the acceptance of increased risk 
during the extended phase of most missions while noting that the national interests or needs aspects of Earth sci-
ence missions (and possibly some Heliophysics missions as well) establish different risk acceptance levels. The 
committee also notes the importance of considering operations trades along with science impacts when budget 
reductions are required and notes the importance of providing roughly constant funding for highly performing 
missions after the first two Senior Reviews.
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The NRC will appoint an ad hoc committee to conduct an assessment of the scientific value of extended mis-
sions in the overall program of NASA’s Science Mission Directorate (SMD). The committee’s report will provide 
recommended guidelines for future NASA decision-making about such mission extensions. In conducting this 
study, the committee could address the following questions:

1.  Historically, what have been the scientific benefits of mission extensions? How important are these benefits 
(for example, benefits that might only accrue during the extended mission phase but not earlier)?

2.  What is the current SMD Senior Review process for extending missions—for example, how are reviews 
chartered and conducted, by whom, and using what criteria? What should be division dependent and what 
should be uniform across the Directorate?

3.  The NASA Authorization Act of 2005 requires biennial Senior Reviews for each mission extension. Is this 
biennial time period optimal for all divisions? Would a longer or shorter time period between reviews be 
advantageous in some cases?

4.  Does the balance currently struck between starting new missions and extending operating missions provide 
the best science return within NASA’s budget? That is, how much of an acceleration of new mission 
initiation could realistically be achieved by reallocating resources from mission extensions to new programs, 
compared to the corresponding scientific loss from terminated or diminished mission extensions?

5.  Are there innovative cost reduction approaches that could increase the science cost-effectiveness of 
extended missions? Are there any general principles that might be applied across the board or to all of the 
missions for an individual science theme or a particular class? Are there alternative mission management 
approaches (e.g., transfer to an outside technical or educational institution for training or other purposes) 
that could reduce mission costs during extended operations and continue to serve SMD’s science objectives?

A

Statement of Task
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LUNAR RECONNAISSANCE ORBITER

The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon for nearly 7 years. Originally in a 
quasi-circular 50 km orbit, after 18 months of operation LRO was moved to a ~30 km × ~180 km orbit to con-
serve fuel; all extended missions observations have been from the fuel-saving elliptical orbit. LRO includes seven 
science experiments; all remain healthy, except that the Miniature Radar Frequency (Mini-RF) transmitter ceased 
to function in December 2010 but still produces useful measurements as a receiver in a bi-static configuration 
(Earth-based assets transmit). An important legacy of the LRO mission is the vast amount of data made available 
to the scientific community, which is expected to be >900 TB by the end of 2018. This legacy data set will be 
used for decades of lunar exploration and science. 

A few of the key LRO science results from the extended mission are summarized below. More than 220 new 
resolved impact craters were discovered as of March 2016 (Figure B.1), having diameters of 1.4 to 43 m. The 
number of new craters shows that the size frequency distribution is steeper than expected based on models com-
monly used to date surfaces. In addition to the craters themselves, >45,000 albedo marks (splotches) are observed 
that provide information regarding secondary cratering processes (Robinson et al., 2015). 

The high-resolution LROC images also revealed numerous small-scale tectonic features with pristine mor-
phologies, indicating that they are likely still forming, most likely due to cooling of the interior. The orientation of 
these scarps is not random but rather consistent with a pattern expected from stresses introduced from solid body 
tides with Earth (Watters et al., 2015). The Lunar Orbiter Laser Altimeter (LOLA) detected enhanced reflectivity 
@1064 nm in permanently shadowed regions at both the north and south poles (Lucey et al., 2014). These data, 
together with other data such as from the Lyman Alpha Mapping Project (LAMP) and temperatures measured by 
Lunar Diviner Radiometer (Hayne et al., 2015), collectively suggest that a micron-thick layer of water ice is present 
in these regions. The polar hydrogen distribution at both the north and south poles is asymmetric and  mirrored, 
suggesting that true polar wander has occurred (Siegler et al., 2016). Although most volcanism on the Moon 
appears to have ended 2 to 3 Gyr ago, observations by LROC suggest late stage activity persisted until <100 Myr 
(Braden et al., 2014). The abundance of rocks in ejecta blankets is well correlated with the age of the crater from 
~100 kyr to ~1.5 Gyr (Ghent et al., 2014), establishing a new “lithochronology” technique. The Mini-RF instrument 
is operated in concert with the Arecibo Observatory to collect bistatic radar data of the lunar nearside from 2012 
to 2015; the response for the floor of the south-polar permanent shadowed region in Cabeus crater is consistent 
with the presence of blocky, near-surface deposits of water ice (Patterson et al., 2016). 

B

Scientific Discoveries of the  
Lunar Reconnaissance Orbiter and  

Opportunity Rover During Extended Phase
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FIGURE B.1 An 18 m diameter crater that formed on the Moon on March 17, 2013, and was observed by Earth-based moni-
tors. Before and after images acquired by the LROC NAC enabled scientists to locate the newly formed impact crater and 
study secondary surface changes. (A) Before image acquired by the LROC NAC (right before the crater formed). (B) After 
image acquired by the LROC NAC of the same area as image A (right after the crater formed). (C) Ratio of the after image 
divided by the before image. SOURCE: M.S. Robinson, A.K. Boyd, B.W. Denevi, S.J. Lawrence, A.S. McEwen, D.E. Moser, 
R.Z. Povilaitis, R.W. Stelling, R.M. Suggs, S.D. Thompson, and R.V. Wagner, 2015, New crater on the Moon and a swarm of 
secondaries, Icarus 252:229-235, doi:10.1016/j.icarus.2015.01.019.

MARS EXPLORATION ROVER OPPORTUNITY

The Mars Exploration Rover (MER) Opportunity landed on the Meridiani Planum plains of Mars in January 
2004. After completing its initial 90-sol (92.5-day) mission, Opportunity entered the extended-mission phase and 
has remained operational for more than 12 years—more than 4,500 sols. Opportunity continues a legacy of U.S. in 
situ exploration of Mars that was initiated with the 1997 Mars Pathfinder mission. The rover initially traversed the 
Eagle Crater to look for signs of habitability, but then continued traversing tens of thousands of meters further to 
survey the Endurance crater, Victoria crater, Endeavour crater, and beyond (Figure B.2). Microscopic Imager (MI) 
glitches, flash memory data loss, and an “arthritic” robotic arm have not yet become mission-inhibiting challenges. 
Its instruments are all fully operational; the rover continues to survey the planet using cameras, spectrometers, and 
magnets, although its Rock Abrasion Tool is no longer operational. Opportunity’s ongoing observations continue 
to be a valuable source of insight into the ancient Mars environment. This section will summarize the key findings 
made by Opportunity since it began its extended-mission phase.

It is important to establish that the extended mission was vital toward characterizing past environments. The 
Burns Formation, named after Roger Burns, is a designation for a region-wide group of rocks exposed by impact-
related crater formation or fracturing and explored by Opportunity. The observations from the Burns Formation 
in the Endurance crater helped support early observations of the formation in the Eagle crater, which together 
confirmed the past presence of water on Mars (Squyres and Knoll, 2005; Grotzinger et al., 2005).

Grotzinger et al. (2005) divided the Burns Formation into an upper, middle, and lower unit by similar depo-
sitional features and characterized eolian dune, eolian sand sheet, and damp to wet interdune environment types 
(called facies associations) in the Eagle and Endurance craters. All three units were composed of sandstone 
( Grotzinger et al., 2005). It was found that tepee-like or salt-ridge irregularities on a scoured sandstone facies 
su ggested a regularly oscillating water table that sometimes reached the surface to create an ephemerally damp 
environment (Grotzinger et al., 2005). Miniature Thermal Emission Spectrometer (Mini-TES) data detected 
evaporite and sulfate minerals, suggesting that the grains deposited in the Burns Formation dunes were transported 
from an evaporite basin containing water that interacted with basalt (Grotzinger et al., 2005; McLennan et al., 
2005). Bromine, which is found in very soluble minerals, was also detected in Meridiani Planum soils, suggesting 
acitivity by liquid water (Yen et al., 2005). Meanwhile, the unambiguous presence of jarosite—a sulfate mineral 
group—as an evaporite mineral suggested that Mars liquid water had a low pH because jarosite precipitates only 
from acidic solutions (McLennan et al., 2005; Squyres and Knoll, 2005). Additionally, hematite spherules about 
4 mm in diameter, informally named “blueberries,” were theorized to be formed by a concretion process from the 
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FIGURE B.2 Left: Pancam image of sedimentary rocks exposed in blocks along the wall of Eagle Crater. The bedding, cross-
lamination, and hematite concretion “blueberries” are visible. Right: Microscopic Imager image of sandstone grains and highly 
spherical hematite concretions. SOURCE: Left: Reprinted from S.W. Squyres and A.H. Knoll, Sedimentary rocks at Meridiani 
Planum: Origin, diagenesis, and implications for life on Mars, Earth and Planetary Science Letters 240:1-10, 2005, Copyright 
2005, with permission from Elsevier. Right: Reprinted from J.P. Grotzinger, R.E. Arvidson, J.F. Bell, W. Calvin, B.C. Clark, 
D.A. Fike, M. Golombek, et al., Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, 
Meridiani Planum, Mars, Earth and Planetary Science Letters 240:11-72, 2005, Copyright 2005, with permission from Elsevier.

breakdown of jarosite by groundwater or by oxidation of ferrous sulfates (McLennan et al., 2005). Therefore, grain 
formation on the Meridiani Planum of Mars was discovered to be once driven by acidic liquid water.
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Data for Figures C.1 through C.4 were provided by NASA to the committee. They demonstrate the individual 
budgetary breakdowns for each division. They are primarily included here to enable comparison of the size of 
development budgets versus extended science operations budgets in each division. Because the divisions manage 
and calculate their budgets in slightly different ways, it is not possible to make detailed budget category compari-
sons between the divisions.

C

NASA Science Mission Directorate  
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Fiscal Year 2016
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Extended missions have been mentioned in a number of decadal survey reports. However, their value has 
rarely been explicitly highlighted in these reports.

2010 ASTRONOMY AND ASTROPHYSICS DECADAL SURVEY

National Research Council, New Worlds, New Horizons in Astronomy and Astrophysics, The National 
 Academies Press, Washington, D.C., 2010.

Page 16, Wide-Field Infrared Survey Telescope (WFIRST)
A 1.5-meter wide-field-of-view near-infrared-imaging and low-resolution-spectroscopy telescope, WFIRST will 
settle fundamental questions about the nature of dark energy, the discovery of which was one of the greatest achieve-
ments of U.S. telescopes in recent years. It will employ three distinct techniques—measurements of weak gravita-
tional lensing, supernova distances, and baryon acoustic oscillations—to determine the effect of dark energy on the 
evolution of the universe. An equally important outcome will be to open up a new frontier of exoplanet studies by 
monitoring a large sample of stars in the central bulge of the Milky Way for changes in brightness due to  microlensing 
by intervening solar systems. This census, combined with that made by the Kepler mission, will determine how 
 common Earth-like planets are over a wide range of orbital parameters. It will also, in guest investigator mode, sur-
vey our galaxy and other nearby galaxies to answer key questions about their formation and structure, and the data 
it obtains will provide fundamental constraints on how galaxies grow. The telescope exploits the important work 
done by the joint [Department of Energy] DOE/NASA design team on the Joint Dark Energy Mission—specifically 
the JDEM-Omega concept—and expands its scientific reach. WFIRST is based on mature technologies with techni-
cal risk that is medium low and has medium cost and schedule risk. The independent cost appraisal is $1.6 billion, 
not including the guest investigator program. As a telescope capable of imaging a large area of the sky, WFIRST 
will complement the targeted infrared observations of the James Webb Space Telescope. The small field of view of 
JWST would render it incapable of carrying out the prime WFIRST program of dark energy and exoplanet studies, 
even if it were used exclusively for this task. The recommended schedule has a launch date of 2020 with a 5-year 
baseline mission. An extended 10-year mission could improve the statistical results and further broaden the science 
program. The European Space Agency (ESA) is considering an M-class proposal, called Euclid, with related goals. 
Collaboration on a combined mission with the United States playing a leading role should be considered so long as 
the committee’s recommended science program is preserved and overall cost savings result.

D

Extended Mission and Senior Review  
References in Decadal Surveys
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Page 167
NASA holds regular senior reviews to decide which missions to terminate, and it is anticipated that every one of its 
currently orbiting space telescopes, including Hubble (which needs an expensive de-orbiting mission), will cease 
operations before the end of the decade. SOFIA [Stratospheric Observatory for Infrared Astronomy], which has 
operations costs of $70 million per year, will be subject to a senior review after 5 years of operations. Thus, with 
the possible exception of JWST and SOFIA, none of the missions operating or started today are expected to be 
operational at the end of the decade.

Page 174, National Aeronautics and Space Administration
In the course of formulating recommendations that include large, medium, and small missions, as well as targeted 
augmentations to some of the core supporting activities, the committee considered broader issues of balance be-
tween a range of elements across the NASA program: between larger and smaller missions; between NASA-led and 
international-partner-led missions; between university-led and NASA-center-led missions; between mission-enabling 
and mission-supporting activities (technology development, suborbital program, theory, ground-based observing) 
and the missions themselves; between mission construction/operation and data archiving and analysis; and between 
extended mission support for operating missions versus funding of new missions. During its deliberations the com-
mittee attended to the general principle of balance in developing its recommended prioritization of projects within 
the NASA Astrophysics Division program during the coming decade.

Page 207, Priority 1 (Large, Space). Wide-Field Infrared Survey Telescope (WFIRST)
In a 5-year baseline mission, its observations would emphasize the planet census and dark energy measurements, 
while accommodating a competed general investigator program for additional surveys that would exploit WFIRST’s 
unique capabilities using the same observation modes. The powerful astronomical survey data collected during all of 
the large-area surveys would be utilized to address a broader range of science through a funded investigator program. 
An extended mission, subject to the usual senior review process, could both improve the statistical results for the 
main science drivers and broaden the general investigator program.

Page 225, Priority 1 (Large, Ground). Large Synoptic Survey Telescope (LSST)
The technical risk of LSST as determined by the survey’s cost appraisal and technical evaluation (CATE) process 
was rated as medium low. The committee did identify additional risk with establishing data management and archiv-
ing software environments adequate to achieving the science goals and engaging the astronomical community. The 
 appraised construction cost is $465 million with a time to completion of 112 months. The committee recommends 
that LSST be started as soon as possible, with, as proposed by the project, two-thirds of the construction costs borne 
by NSF [National Science Foundation] through its MREFC [Major Research Equipment and Facilities Construction]
line and a quarter by DOE using Major Item of Equipment (MIE) funds. The estimated operations cost is $42 million 
per year over its 10-year lifetime, of which roughly $28 million is proposed to be borne by the U.S. agencies—the 
committee recommends two-thirds of the federal share of operations costs be borne by NSF and one-third by DOE. 
It is recommended that any extended mission should only happen following a successful senior review. By its very 
nature LSST will stimulate a large number of follow-up studies, especially of a  spectroscopic character. The planning 
and administration of an optimized plan for follow-up studies within the public-private optical-infrared system could 
be carried out by the National Optical Astronomy Observatory.

2011 PLANETARY SCIENCE DECADAL SURVEY

National Research Council, Vision and Voyages for Planetary Science in the Decade 2013- 2022, The National 
Academies Press, Washington, D.C., 2011.

Page 12, NASA ACTIVITIES
Continue missions currently in flight, subject to approval obtained through the appropriate senior review process. 
Ensure a level of funding that is adequate for successful operation, analysis of data, and publication of the results of 
these missions, and for extended missions that afford rich new science return.
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Page 14, Recommended Program of Missions
Within the category of small missions are three elements of particular interest: the Discovery program, extended 
missions for ongoing projects, and Missions of Opportunity.

Mission extensions can be significant and highly productive, and may also enhance missions that undergo changes 
in scope because of unpredictable events. In some cases, particularly the “re-purposing” of operating spacecraft, 
fundamentally new science can be enabled. These mission extensions, which require their own funding arrange-
ments, can be treated as independent, small-class missions. The committee supports NASA’s current senior review 
process for deciding the scientific merits of a proposed mission extension. The committee recommends that early 
planning be done to provide adequate funding of mission extensions, particularly for flagship missions and missions 
with international partners.

Pages 27 and 67, International Cooperation
1.  Scientific support through peer review that affirms the scientific integrity, value, requirements, and benefits of a 

cooperative mission;
2.  A historical foundation built on an existing international community, partnership, and shared scientific experiences;
3.  Shared objectives that incorporate the interests of scientists, engineers, and managers in common and communi-

cated goals;
4.  Clearly defined responsibilities and roles for cooperative partners, including scientists, engineers, and mission 

managers;
5.  An agreed-upon process for data calibration, validation, access, and distribution;
6.  A sense of partnership recognizing the unique contributions of each participant;
7.  Beneficial characteristics of cooperation; and
8.  Recognition of the importance of reviews for cooperative activities in the conceptual, developmental, active, or 

extended mission phases—particularly for foreseen and upcoming large missions.

Page 35, Non-Mars Mission Priorities in 2003, Small
The 2003 decadal survey identified two small-class initiatives. They were, in priority order:

1.  Discovery program. The 2003 survey recommended that the Discovery line of innovative, principal-investigator-
led missions should continue and that a new one should be launched approximately every 18 months (Figure 1.3). 
This mission line has continued, but the flight rate has not matched the 2003 decadal survey’s expectations.

2.  Cassini extended mission. The 2003 decadal survey recommended that the Cassini Saturn orbiter mission be 
extended beyond its 4-year nominal lifetime. Operation of this highly successful and scientifically productive 
spacecraft (Figures 1.4 and 1.5) now extends through 2017.

Page 103, Chiron Orbiter
Given the growing number of known Centaurs and KBOs, the committee concluded that it is scientifically desirable 
that missions directed to the outer solar system take advantage of opportunities to fly by such objects (at ranges less 
than 10,000 km) en route to their ultimate targets. During the next decade there will be a growing desire to investigate 
some large trans-Neptune objects beyond the orbit of Pluto. The New Horizons mission already en route to Pluto 
(Figure 4.4) has the potential to fly by a small KBO. This extended mission opportunity will be a first chance for a 
close-up view of this class of object and should not be missed if a suitable target is available.

Page 123, Constrain Ancient Climates on Venus and Search for Clues into Early Terrestrial Planet Environments 
So As to Understand the Initial Conditions and Long-Term Fate of Earth’s Climate

Data from the ASPERA [Analyzer of Space Plasmas and Energetic Atoms] instrument on Venus Express suggest 
provisionally that hydrogen escape rates are an order of magnitude slower than previously assumed, implying that 
the hydrogen in Venus’s atmosphere has an average residence time of some 1 billion years. This result, if confirmed 
by further observations during an extended Venus Express mission, has important implications for the history of 
water and the current rate of outgassing on Venus. Another significant discovery is that Venus’s atmosphere is  losing 
 unexpectedly large quantities of oxygen to deep space by way of nonthermal processes. This finding calls into ques-
tion the long-standing assumption that a massive escape of hydrogen from Venus’s atmosphere must have left the 
atmosphere and surface highly oxidized.
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Page 257, UNDERLYING PROGRAMMATIC REQUIREMENTS
The individual flight projects for the coming decade must be considered within the context of the broader program 
of planetary exploration. The goal is to develop a fully integrated strategy of flight projects, technology develop-
ment, and supporting research that maximizes the value of scientific knowledge gained over the decade. All of the 
recommendations in this chapter are made under the assumption that the following basic programmatic requirements 
are fully funded:

•  Continue missions currently in flight, subject to approval obtained through the appropriate senior review  process. 
These missions include the Cassini mission to the Saturn system, several ongoing Mars missions, the New 
 Horizons mission to Pluto, ongoing Discovery missions, and others. Ensure a level of funding that is adequate for 
successful operation, analysis of data, and publication of the results of these missions, and for extended missions 
that afford rich new science return.

Page 264, Extended Missions for Ongoing Projects
Mission extensions can be significant and highly productive, and may also enhance missions that undergo changes 
in scope because of unpredictable events or opportunities. The Cassini and Mars Exploration Rover extensions are 
examples of the former, and the “re-purposing” of missions such as Stardust (NExT) and Deep Impact (EPOXI) 
are examples of the latter. In some cases, particularly the re-purposing of operating spacecraft, fundamentally new 
science can be enabled. These mission extensions, which require their own funding arrangements, can be treated as 
independent, small-class missions. The committee supports NASA’s current senior review process for deciding the 
scientific merits of a proposed mission extension. The committee recommends that early planning be done to provide 
adequate funding of mission extensions, particularly for flagship missions and missions with international partners.

2007 EARTH SCIENCE DECADAL SURVEY

National Research Council, Earth Science and Applications from Space: National Imperatives for the Next 
Decade and Beyond, The National Academies Press, Washington, D.C., 2007.

Page xiv
A related issue concerns the process for extension of a NASA-developed Earth science mission that has accom-
plished its initial objectives or exceeded its design life. NASA decisions on extension of operations for astronomy, 
space science, and planetary exploration are based on an analysis of the incremental cost versus anticipated science 
benefits. Historically, NASA has viewed extended-phase operations for Earth science missions as operational and 
therefore the purview of NOAA [National Oceanic and Atmospheric Administration]. However, the compelling need 
for measurements in support of human health and safety and for documenting, forecasting, and mitigating changes 
on Earth  creates a continuum between science and applications—illustrating again the need for multiple agencies to 
be intimately involved in the development of Earth science and applications from space.

Page 13
The elimination from NPOESS [National Polar-orbiting Operational Environmental Satellite System] of require-
ments for climate research-related measurements is only the most recent example of the nation’s failure to sustain 
critical measurements. The committee notes that despite NASA’s involvement in climate research and its extensive 
development of measurement technology to make climate-quality  measurements, the agency has no requirement 
for extended measurement missions, except for ozone measurements, which are explicitly mandated by Congress. 
The committee endorses the recommendation of a 2006 National Research Council report that stated, “NASA/
SMD [Science Mission Directorate] should develop a science strategy for obtaining long-term, continuous, stable 
observations of the Earth system that are distinct from observations to meet requirements by NOAA in support of 
numerical weather prediction.”
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2013 HELIOPHYSICS DECADAL SURVEY

National Research Council, Solar and Space Physics: A Science for a Technological Society, The National 
Academies Press, Washington, D.C., 2013.

Page 240, Heliophysics Systems Observatory
In the area of comparative magnetospheres, Juno will enter its prime mission phase when it arrives at Jupiter in 2016, 
while Cassini at Saturn is approved for a final mission extension to 2017, and MESSENGER [Mercury Surface, 
Space Environment, Geochemistry, and Ranging] will complete its prime mission early in the decade. Past and cur-
rent missions continue to provide deep insights into general solar wind magnetosphere interactions. For example, 
Ganymede’s Alfvén wings have led to modern theories of Earth’s own polar cap potential saturation mechanism; 
Saturn’s explosive energy releases have much in common with substorm injections at Earth; and Jupiter’s interchange 
motions enabling convection under Io’s mass loading have led to similar theories pertaining to inward penetration 
of fast reconnection flows. As is the case for Earth-orbiting satellites, extended missions for planetary missions that 
continue to return valuable science data are strongly encouraged.

Page 307, L5 Mission Concept
Two science phases are envisioned: drift to L5 at about 38° per year with continuous collection of science data and 
orbit around L5, 45°-90° from the Sun-Earth line. A long extended mission is possible.

Page 313, Heliophysics Systems Observatory [HSO] and MO&DA [Mission Operations and Data Analysis] Support
Resource allocation among extended HSO missions is determined through the senior-review process, which evaluates 
future scientific priorities for each mission. The present 5-year budget requests show flat or declining HSO  funding. 
In addition to supporting existing HSO missions, the budget must accommodate new missions, such as RBSP [Radia-
tion Belt Storm Probes] ( renamed the Van Allen Probes) and SDO [Solar Dynamics Observatory], that finish their 
prime mission in or before [fiscal year] FY 2015; this will inevitably lead to forced termination of or severe cuts in 
current HSO missions. As a consequence, key systems-science objectives are endangered, and essential legacy data 
sets may be foreshortened at a time when solar activity is apparently evolving in unexpected ways. Multipoint obser-
vations throughout the heliosphere and from the Sun to geospace regions need to be maintained to enable systems 
science. The SHP [Solar and Heliospheric Physics] panel assigns high priority to augmenting MO&DA support by 
annual inflationary increases plus $5 million to $10 million per year to accommodate new missions so that senior-
review decisions can be prudently based on strategic evaluations of existing and emerging assets.
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Research Institute (SwRI) in Boulder, Colorado. Dr. Hamilton has extensive experience with laboratory  spectroscopy 
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many invited talks. He has been on 20 working groups and committees in various positions. He served as chair of 
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for NSF’s Support of the Atmospheric Sciences, and the Committee on Solar and Space Physics.

AMY MAINZER is a senior research scientist at JPL in the astrophysics division. She has been employed as a 
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Voyager imaging team at Neptune; a Galileo interdisciplinary scientist associated with the Solid State  Imaging 
team; a Cassini Imaging Science Subsystem team member; a Mars Observer/Mars Global Surveyor participating 
scientist for the Mars Orbital Camera; a member of the Clementine advisory committee and science team; a partici-
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science missions/experiments operating in Earth orbit with a combined annual budget of over $70 million dollars. 
She oversees the JPL bi-annual Earth Science Senior Review proposal process for mission-operation extensions. 
She also manages the CloudSat mission that was launched, and she has submitted CloudSat proposals to the senior 
review multiple times. Her involvement in CloudSat began as the proposal manager in 1998. She has also served 
as the deputy PI; and she has served as project manager since the launch. She has been co-author on a number 
of journal articles on the application of CloudSat data to clouds and climate, atmospheric radiation, and applica-
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History of the Air Force Chief Scientist, and editor of several books, including a history of the CORONA reconnais-
sance satellite program. He has held Guggenheim and Verville fellowships at the National Air and Space Museum, 
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Washington Post. He has served as study director for over a dozen Academies reports, including 3-D Printing in 
Space (2013), NASA’s Strategic Direction and the Need for a National Consensus (2012), Vision and Voyages for 
Planetary Science in the Decade 2013-2022 (2011), Preparing for the High Frontier-The Role and Training of NASA 
Astronauts in the Post-Space Shuttle Era (2011), Defending Planet Earth: Near-Earth Object Surveys and Hazard 
Mitigation Strategies (2010), Grading NASA’s Solar System Exploration Program: A Midterm Review (2008), and 
Opening New Frontiers in Space: Choices for the Next New Frontiers Announcement of Opportunity (2008).

NATHAN BOLL served as the 2016 Christine Mirzayan Science and Technology Policy Graduate Fellow for the 
SSB. Mr. Boll is a graduate fellow at the Space Policy Institute of George Washington University where he is 
completing an M.A. in international science and technology policy at the Elliott School of International Affairs. 
His current focus is on building international and intergovernmental cooperation toward the exploration and 
development of outer space. He holds an M.S. in space science and a graduate certificate in science, technol-
ogy, and public policy from the University of Michigan, as well as a B.S. in mathematics from the University of 
Montana Western. His research has included environmental analysis of Venus and Mars and the development 
of the CYGNSS satellite constellation. Mr. Boll has recently served in various divisions of NASA, including the 
Office of International and Interagency Relations and the Office of Education Infrastructure Division at NASA 
Headquarters, the NASA Space Academy, the Multidisciplinary Aeronautics Research Team Initiative programs 
at the Glenn Research Center, and the Planetary Science Division of JPL. 

KATIE DAUD is a research associate for the SSB and the ASEB. Previously, she worked at the Smithsonian 
National Air and Space Museum’s Center for Earth and Planetary Studies as a planetary scientist. Ms. Daud was 
a triple major at Bloomsburg University, receiving a B.S. in planetary science and Earth science and a B.A. in 
political science. 

MICHAEL MOLONEY is the director for Space and Aeronautics at the SSB and the ASEB of the National Acad-
emies. Since joining the ASEB/SSB, Dr. Moloney has overseen the production of more than 40 reports, including 
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four decadal surveys—in astronomy and astrophysics, planetary science, life and microgravity science, and solar 
and space physics—a review of the goals and direction of the U.S. human exploration program, a prioritization of 
NASA space technology roadmaps, as well as reports on issues such as NASA’s Strategic Direction, orbital debris, 
the future of NASA’s astronaut corps, and NASA’s flight research program. Before joining the SSB and ASEB in 
2010, Dr. Moloney was associate director of the Board on Physics and Astronomy (BPA) and study director for the 
decadal survey for astronomy and astrophysics (Astro2010). Since joining the Academies in 2001, Dr. Moloney 
has served as a study director at the National Materials Advisory Board, the BPA, the Board on Manufacturing 
and Engineering Design, and the Center for Economic, Governance, and International Studies. Dr. Moloney has 
served as study director or senior staff for a series of reports on subject matters as varied as quantum physics, 
nanotechnology, cosmology, the operation of the nation’s helium reserve, new anti-counterfeiting technologies 
for currency, corrosion science, and nuclear fusion. In addition to his professional experience at the National 
Academies, Dr. Moloney has more than 7 years’ experience as a foreign-service officer for the Irish government—
including serving at the Irish Embassy in Washington and the Irish Mission to the United Nations in New York. 
A physicist, Dr. Moloney did his Ph.D. work at Trinity College Dublin in Ireland. He received his undergraduate 
degree in experimental physics at University College Dublin, where he was awarded the Nevin Medal for Physics.

ANESIA WILKS joined the SSB as a program assistant in 2013. Ms. Wilks brings experience working in the 
National Academies conference management office as well as other administrative positions in the D.C. metro-
politan area. She has a B.A. in psychology, magna cum laude, from Trinity University in Washington, D.C.
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ACE Advanced Composition Explorer
ACRIMSAT Active Cavity Radiometer Irradiance Monitor Satellite
ACS Advanced Camera for Surveys
AIM Aeronomy of Ice in the Mesosphere
APL Johns Hopkins Applied Physics Laboratory
ARTEMIS Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon’s Interaction with 

the Sun
ASD Astrophysics Division
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
Caltech California Institute of Technology
CHIPS Cosmic Hot Interstellar Plasma Spectrometer
CINDI Coupled Ion Neutral Dynamic Investigation
CO carbon monoxide
COS Cosmic Origins Spectrograph
COSTAR Corrective Optics Space Telescope Axial Replacement
CXC Chandra X-Ray Center

DSN Deep Space Network

EO-1 Earth Observing-One Mission
EOS Earth Observation System
EPOXI Extrasolar Planet Observation and Deep Impact Extended Investigation
ERBE Earth Radiation Budget Experiment
ERBS Earth Radiation Budget Satellite
ESA European Space Agency
ESD Earth Science Division
ESS Earth System Science

F

Acronyms
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EUVE Extreme Ultraviolet Explorer

FAST Fast Auroral Snapshot Explorer
FGS Fine Guidance Sensor
FOC Faint Object Camera
FOS Faint Object Spectrograph
FUSE Far Ultraviolet Spectroscopic Explorer
FY fiscal year

GALEX Galaxy Evolution Explorer
Geotail Geomagnetic Tail Lab
GHRS Goddard High Resolution Spectrograph
GPS Science Global Positioning System Science
GRACE Gravity Recovery and Climate Experiment
GRACE-FO Gravity Recovery and Climate Experiment Follow-On
GRAIL Gravity Recovery and Interior Laboratory
GSFC Goddard Space Flight Center

HD Heliophysics Division
HiRISE High Resolution Imaging Science Experiment
HSO Heliophysics System Observatory
HSP High Speed Photometer
HST Hubble Space Telescope

IBEX Interstellar Boundary Explorer
ICE International Cometary Explorer
ICESat Ice, Cloud, and Lade Elevation Satellite
IMAGE Imager for Magnetopause-to-Aurora Global Exploration
INTEGRAL International Gamma-Ray Astrophysics Laboratory
IRIS Interface Region Imaging Spectrograph
ISEE-3 International Earth-Sun Explorer-3
IUE International Ultraviolet Explorer

JPL Jet Propulsion Laboratory
JWST James Webb Space Telescope

LAGEOS Laser Geodynamics Satellites
LRO Lunar Reconnaissance Orbiter
LROC Lunar Reconnaissance Orbiter Camera

MAVEN Mars Atmosphere and Volatile Evolution
MaxWISE Refers to a proposed Wide-Field Infrared Survey Explorer mission
MER Mars Exploration Rover
MESSENGER Mercury Surface, Space Environment, Geochemistry and Ranging
MGS Mars Global Surveyor
MIDEX Medium-class Explorer
MISR Multi-angle Imaging Spectroradiometer
MIT Massachusetts Institute of Technology
MMS Magnetospheric Multiscale
MODIS Moderate Resolution Imaging Spectroradiometer
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MOPITT Measurement of Pollution in the Troposphere
MRO Mars Reconnaissance Orbiter
MSL Mars Science Laboratory

NAC Narrow-Angle Camera
NASA National Aeronautics and Space Administration
NEN Near Earth Network
NEO near Earth object
NEOWISE Near-Earth Object Wide-field Infrared Survey Explorer
NICMOS Near Infrared Camera and Multi-Object Spectrometer
NOAA National Oceanic and Atmospheric Administration
NPR NASA Procedural Requirement
NRC National Research Council
NuSTAR Nuclear Spectroscopic Telescope Array

O3 ozone
OSTM Ocean Surface Topography Mission

PI principal investigator
PPBE Planning, Programming, Budget and Execution
PSD Planetary Science Division

QuikSCAT Quick Scatterometer

R&A research and analysis
RapidScat Rapid Scatterometer
RHESSI Reuven Ramaty High Energy Solar Spectroscopic Imager
ROSES Research Opportunities in Space and Earth Sciences
RSL recurring slope lineae
RXTE Rossi X-ray Timing Explorer

SAGE Stratospheric Aerosol and Gas Experiment
SAMPEX Solar, Anomalous, and Magnetospheric Particle Explorer
SDO Solar Dynamics Observatory
SM Servicing Mission
SMD Science Mission Directorate
SMEX Small Explorer
SOHO Solar and Heliospheric Observatory
SORCE Solar Radiation and Climate Experiment
SSR Solid State Recorder
Stardust-NExT Stardust New Exploration of Tempel 1
STEREO Solar Terrestrial Relations Observatory
STIS Space Telescope Imaging Spectrograph
Suomi NPP Suomi National Polar orbiting Partnership, formerly the National Polar-orbiting Operational 

Environmental Satellite System (NPOESS) Preparatory Project or NPP

TDE tidal disruption event
THEMIS Time History of Events and Macroscale Interactions during Substorms
TIM Total Irradiance Monitor
TIMED Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics
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TOMS Total Ozone Mapping 
TRACE Transition Region and Coronal Explorer
TRMM Tropical Rainfall Measuring Mission
TWINS Two Wide-angle Imaging Neutral-atom Spectrometers

UARS Upper Atmosphere Research Satellite

WFC Wide Field Camera 
WFIRST Wide-Field Infrared Survey Telescope
WFPC Wide Field and Planetary Camera 
WISE Wide-Field Infrared Survey Explorer
WMAP Wilkinson Microwave Anisotropy Probe

XMM-Newton X-ray Multi-Mirror Mission-Newton
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