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Preface

When Lukas Kasper reached out to me and my colleague Priv.-Doz. Dr. techn.

Alexander Schirrer in 2018, looking for an interesting and application-oriented topic

for his diploma thesis, we seized the opportunity to include him in our recently

started research project, Hybrid Storage for E�cient Processes [HyStEPs]. The aim

of HyStEPs is to develop an all-in-one storage concept to increase the e�ciency and

flexibility of industrial processes. This project provides interesting research questions

and work items that could be answered in the course of a thesis under qualified

supervision. The following thesis is the result of the successful symbiosis in the

course of this project between an engaged student and experienced scientists. At

the TU Wien, great emphasis is put on the participation of students in current

research activities. At the Institute for Energy Systems and Thermodynamics, we

try to involve students in our research groups as early as possible.

Experience has shown that the concept of research-oriented teaching provides con-

siderable advantages for students, researchers and teachers. Students can benefit

from research engagement through increased motivation, a great work environment

and direct interchange with colleagues with professional expertise. Students have the

unique opportunity to obtain the latest findings from research in teaching and can

gain valuable insights into ongoing work. On the one hand, this can lead to a broader

range of methodical results; on the other hand, it can also encourage application in a

wider variety of subject areas. Methodically, there is the option to deepen theoretical

or analytical investigations in related fields. Finally, diploma theses are a viable,

compact format for collaboration with industrial partners. These aspects not only

enable fruitful research work - they also raise the quality of teaching, with the goal

to develop scientific excellence and impart comprehensive competence. This diploma

thesis serves as an excellent example in that regard.
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Lukas Kasper is currently working on his doctoral thesis, wherein he continues his

research in the area of modelling and optimization of industrial energy systems.

Univ.Prof. Dr. techn. René Hofmann
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Abstract

The progressive decarbonisation process and the increased share of renewable energy

sources in the grid has increased the need for the development of new approaches

to store energy and to increase the e�ciency of industrial processes. Increasingly,

latent heat thermal energy storage systems are being used, which exploit phase change

materials to store a large amount of energy during the phase change. A novel approach

to increasing the e�ciency of the commonly used Ruths steam storage is currently

being investigated in the project HyStEPs, a project funded by the Austrian Research

Promotion Agency (FFG) with grant number 868842. In this concept, a container

filled with phase change material is placed at the shell surface of the Ruths steam

storage.

In this diploma thesis, and in contribution to the HyStEPs project, the phase change

material of this hybrid storage is modelled in two dimensions using the finite element

method. The apparent heat capacity method is applied in a MATLAB implementation

and considers heat transfer by both conduction and natural convection. Furthermore,

the developed code can handle any desired layout of materials arranged on a rectan-

gular domain. The model was successfully validated using an analytical solution and

experimental data, and a cross-validation showed corroboration with the results of

the CFD software ANSYS Fluent. A parameter study was conducted and the beha-

viour of di↵erent dimensions and orientations of the phase change material cavity was

investigated. The e↵ect of natural convection was found to cause significantly vary-

ing behaviour of the studied cavities with di↵erent orientation during the charging

process, while the e↵ect was found to be negligible during the discharging process.
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Chapter 1

Introduction

1.1 Motivation

Climate change and the management of the earth’s resources are two major challenges

of our time. The progressive decarbonisation process and the increased share of

renewable energy sources in the grid has increased the future demand for thermal

energy storage in existing industrial plants and processes is required in the future.

The e�ciency of industrial processes could be increased by balancing steam production

and consumption. The Ruths steam accumulator is a well-established thermal storage

technology in a variety of industries, including the steel industry.

In order to increase the storage capacity of such steam accumulators, an innovative

hybrid storage concept is currently being developed by the HyStEPs project (Hybrid

storage for e�cient processes), to which this diploma thesis makes a contribution.

HyStEPs is a project funded by the Austrian Research Promotion Agency (FFG)

with grant number 868842, as part of the Climate and Energy Fund KLI.EN. The

project includes the project coordinator Austrian Institute of Technology (AIT) and

the partners TU Wien, voestalpine Stahl Donawitz GmbH and EDTMAYER System-

technik GmbH.

The basic approach of HyStEPs is to encase Ruths steam storages in innovative lat-

ent heat accumulators. Furthermore, a state of charge measurement for the hybrid

storage tank should ensure optimal control and operation of both storage types dur-

ing charging and discharging. This innovative solution is based on an AIT patent

application.

1



Chapter 1. Introduction

1.2 Problem statement

Recently, the applications for latent heat thermal energy storages have increased sub-

stantially. The main advantage of these thermal energy storages is the high storage

density and the ability to store energy at a nearly constant temperature level, using

phase change materials (PCMs). This reduces thermal losses compared to sensible

heat storages, since energy can be stored at a lower temperature levels. A large

amount of energy is absorbed or released during the phase change of such materials,

most commonly between the liquid and solid state. The main disadvantage is the low

thermal conductivity of most PCMs, which necessitates various methods to increase

the heat transfer between the PCM and the heat transfer medium. One approach is

the addition of fins inside the PCM containing cavities built from materials with high

thermal conductivity, such as aluminium.

In the HyStEPs project, a number of di↵erent design options for encasing cylindric

Ruths steam accumulator with a latent heat material have been investigated and

are still open for discussion. The most promising of these options, and one that is

relatively easy to build, is that of PCM containers with aluminium fins in the plane of

the cylinder axis. A schematic illustration of this hybrid storage concept is shown in

Figure 1.1. It should be noted that a design optimization of hybrid storage concepts

for industrial applications was developed at the same time this thesis was conducted.

This optimization was published by fellow HyStEPs project researchers Hofmann et

al. [1].

Since heat is transferred in the PCM by both heat conduction and natural convection

in the liquid regions, the development of the melting front in the latent heat storage

cavity can take very complex forms. This leads to a rather di�cult characterisation

of the charging and discharging behaviour of the hybrid storage. To determine the

position(s) of the melting front(s) in the cavity, a model must be developed which

helps to finalize decisions regarding dimensioning and placement of sensors.

2



Aim of this work

Energies 2019, 12, 898 18 of 25

PCM modules. The implementation of the theoretical ideal design proposal into the direction to reality
must be carried out step by step from the calculation to the functional model and further from the
test bench to the prototype in compliance with the corresponding safety regulations and must comply
with all regulations of the existing strength guidelines, as well as the construction and operating
requirements. In addition, the vessels manufactured must fulfil the requirements for approvals, tests,
examinations, and inspections.

Liquid

PCM container

Steam

Figure 6. Schematic sketch of the hybrid storage design consisting of the RSS and the surrounding
LHTES modules [43].

Figure 7. Schematic sketch of the PCM container mounting: (a) front view. (b) top view. (c) sectional
view A-A. According to [43].

Figure 1.1: Schematic sketch of the hybrid storage design consisting of the Ruths

steam storage and the surrounding PCM modules [2]

1.3 Aim of this work

As mentioned above, one of the challenges in the HyStEPs project is the complex

charging and discharging behaviour of the PCM material in the cavities mounted

to the Ruths steam storage. As contribution to this project, a numerical model is

developed in the scope of this diploma thesis to simulate the evolution of melting and

solidification during possible operation scenarios.

The purpose of this model is, on the one hand, the prediction of the exact behaviour

of the latent heat storage for di↵erent operation scenarios and design options. This

aids the development of the final HyStEPs storage construction, as well as the choice

of PCM material, which should also have optimal characteristics in regards to the

operational cycle of the steam storage.

On the other hand, the model should provide a basis for developing a reduced order

model, which is part of the operation and control strategy of the HyStEPs project and

allows full exploitation of the potential of the latent heat storage. The approach for

3



Chapter 1. Introduction

this purpose is a model predictive control based on state of charge measurements in

the PCM. Thus, optimal sensor placement must be evaluated, which could be made

easier by using a reduced model developed on the basis of the fundamental model

created in this thesis.

In this work, a preliminary parameter study was conducted to estimate the char-

ging/discharging speed of di↵erent PCM cavity designs and to study the e↵ect of

natural convection in this specific application.

In comparison to commercially available code, the MATLAB model developed should

o↵er high usability in regards to running and evaluating parameter studies, which can

be run parallel on any desired number of computing units. Furthermore, modifica-

tions to the existing code should be easy to make, aiding model reduction by using

MATLAB directly.

1.4 Methodological approach

The stated problem was analysed with regard to mathematical description, approx-

imation possibilities and numerical modelling options. To this end, a thorough study

of relevant academic literature was undertaken. A good review of these topics with

regard to phase change materials can be found here [3].

The chosen discretization method of the continuous model is the finite element method,

which is well established in applications in structural mechanics, as well as fluid- and

thermodynamics. After setting up the fundamental model equations, using temper-

ature as the dependent variable and the apparent heat capacity method to account

for the latent heat of phase change, the finite element approximation was derived.

The modelling of the problem stated in Section 1.2 was done in MATLAB [4], which

presented a numerical computing environment with very e�cient matrix manipulation

operations. This is especially suitable for the finite element method.

4



Structure of this thesis

The model was then validated using an analytical solution for the heat conduction

problem and experimental data taken from literature for the problem considering

natural convection.

Furthermore, to investigate di↵erent aspects of the latent heat storage cavity of the

HyStEPs hybrid storage, simulations were carried out in which certain geometry para-

maters are varied and their e↵ect on overall behaviour is analysed. Thus, qualitative

statements can be made and the here used methodology used can act as a reference

for future investigations.

1.5 Structure of this thesis

After this short introduction into the thematics of the problem, this diploma thesis is

structured as follows.

In Chapter 2, the underlying theoretical framework for the development of a numerical

model describing phase change problems is given. This summary, based on literature

review, should provide the reader of this thesis with the most essential knowledge to

comprehend the documentation in the subsequent chapters.

The assumptions for the development of the computational model are explained in

Chapter 3, where the discretized equations and boundary conditions are also derived.

These were later implemented in the form of a MATLAB model, which is documented

in Chapter 4. Therein, the basic structure of the code and implementation approaches

are explained, and Section 4.3 acts as a guide on how to handle the final version of

the code. Detailed instructions on how to specify simulation parameters are available,

facilitating use of the code by unfamiliar users.

Chapter 5 deals with the validation of the developed model, which is presented in

three steps: The comparison of simulation results considering only heat conduction

with the analytical solution of the Stefan problem, the validation of the convection

model by experimental data [5], and the cross-validation of the full model with the

CFD software ANSYS Fluent. In this chapter of the thesis, very good agreement with

5



Chapter 1. Introduction

the comparative data was obtained and the developed model was therefore success-

fully validated. In addition, simulations were carried out for di↵erent values of the

computational parameters and subsequently analysed. The e↵ect of the chosen mesh

size, time step size and mushy region temperature range are discussed, as are possible

complications and how to avoid them.

Chapter 6 is a parameter study of the HyStEPs PCM cavity. Within the scope of

this thesis, a variation of di↵erent cavity dimensions was simulated and their charac-

teristics evaluated. Furthermore, the e↵ect of natural convection was investigated for

di↵erent orientations with respect to position on the steam storage.

The diploma thesis is concluded in Chapter 7, which includes a short summary of the

conducted tasks and the obtained results. The scope and limitations of the developed

MATLAB model, and of the assertions gained thereby, are discussed in Section 7.2.

Finally, improvements and future research objectives are suggested in Section 7.3.
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Chapter 2

Theoretical framework

2.1 Basics of thermodynamics

2.1.1 Principles of thermal energy storage systems

Thermal energy can be stored as a change in the internal energy of a material as

either sensible heat, latent heat or thermochemical heat, or a combination of these.

Sensible heat storage utilizes the heat capacity and the temperature di↵erence of the

material during the process of charging and discharging. The amount of heat stored

Q =

Z Tf

Ti

mcpdT (2.1)

depends on the specific heat capacity cp at constant pressure p of the material, the

temperature di↵erence (Tf � Ti) and the mass of the storage material m, under the

assumption of constant cp.

Latent heat storage systems are based on the absorption or release of thermal energy

when the storage phase change material (PCM) undergoes a phase change. The heat

storage capacity is then given by

Q =

Z Tm

Ti

mcp,solid dT +mam�lm +

Z Tf

Tm

ammcp,liquid dT , (2.2)

with the specific latent heat �lm and the liquid fraction of the total mass am [6]. The

specific heat capacity at constant pressure cp will simply be denoted as c, or also as

csolid for the constant heat capacity of a solid medium and as cliquid for the constant

heat capacity of a liquid medium.

Phase transitions occur in di↵erent forms:

Solid-solid transitions occur where energy is stored as a material is transformed

from one crystalline phase to another. These transitions generally have small

7



Chapter 2. Theoretical framework

latent heat and small volume changes and o↵er the advantages of less stringent

container requirements and greater design flexibility [7].

Solid-gas transitions, as well as direct liquid-gas transitions, have very high

latent heat of phase transition, but their large volumetric expansion during

these transitions is associated with containment problems and often rule out

their potential utility in thermal energy storage systems [6].

Solid-liquid transformations have comparatively smaller latent heat than liquid-

gas transformations. However, these transformations involve only a small change

(on the order of 10% or less) in volume and have therefore proven to be eco-

nomically attractive for use in thermal energy storage systems [6].

The phase change from solid to liquid (liquefaction) or liquid to solid (solidification)

is preferred for the use case in this thesis because the operating pressure is lower than

that of liquid to gas or solid to gas phase changes. From here on, this thesis discusses

exclusively the solid to liquid or liquid to solid type of phase change.

Liquefaction and solidification can either occur at a constant melting temperature

(isothermal phase change) or in a temperature range around the melting temperature

Tm, which is often called a mushy phase change. Numerous materials, especially

pure crystalline substances and eutectics show a sharply defined value for the melting

temperature Tm [8], but many PCM materials show a significant melting range. This

aids some numerical models in avoiding discontinuities, which can cause problems, as

we will see later in this thesis. The change of enthalpy during the phase change for

these two types is illustrated in Figure 2.1.

2.1.2 Heat transfer mechanics

In a solid medium, heat is transferred via heat conduction by microscopically colliding

particles, including molecules, atoms and electrons, which shift their internal energy

from one particle to another. The rate of the energy transfer can be shown as a
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Basics of thermodynamics

Figure 2.1: Enthalpy H versus temperature T with (a) mushy phase change and (b)

isothermal phase change [9]

Note. L denotes the specific latent heat.

function of the temperature di↵erence (temperature gradient) in the medium and its

conductive properties. This basic law, also known as Fourier’s law, is expressed as

q = �krT , (2.3)

where ~q is the thermal flux and k is the thermal conductivity of the medium [10]. In

a liquid medium heat is transferred both by conduction and convection. Convection

is the transfer of thermal energy via the movement of fluid, and is usually driven

by pressure di↵erences in the liquid. In the absence of outer forces, so-called natural

convection currents occur, due to temperature-triggered density variations. This leads

to a thermal flux

q = ⇢cTu , (2.4)

where ⇢ is the density of the liquid and u is the velocity of the liquid.

The energy equation for transient heat transfer by both conduction and convection

[11] is
@(⇢cT )

@t
= r(krT )�r(⇢cT u) . (2.5)

9



Chapter 2. Theoretical framework

According to the literature, this equation is also called the convection-di↵usion equa-

tion or advection-di↵usion equation, depending on the context [12]. Aside from the

conservation of energy (2.5), conservation of mass and momentum must be fulfilled.

@(⇢)

@t
= r(⇢u) (2.6)

For an incompressible fluid with @(⇢)
@t = 0, this continuity equation takes the form

r(⇢u) = 0 . (2.7)

The momentum balance, also known as the Navier-Stokes-equation, takes the fol-

lowing form for an incompressible Newtonian fluid with constant material properties

µ = const., ⇢ = ⇢0 = const. :

⇢0

✓
@u

@t
+ (u r)u

◆
�r (µru) +rp = f [13] , (2.8)

including the pressure p, the dynamic viscosity µ of the liquid and the external force

density f , which usually only consists of the density and the gravitational acceleration

g.

2.1.3 Boundary conditions

To solve a system of di↵erential equations, boundary conditions must be established,

as must an initial condition for the solution. The main types of boundary conditions

used in thermodynamics for the temperature T (⌦, t) at a boundary �⌦ of the domain

⌦ are listed below [14].

Dirichlet boundary conditions prescribe a temperature at the boundary:

T (�⌦, t) = Tboundary(t) . (2.9)

Neumann boundary conditions prescribe a heat flux qboundary(t) at the bound-

ary. By using Fourier’s law (2.3) these can be written as

�k
@T

@n
|�⌦,t= qboundary(t) , (2.10)

10
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where n is the outward unit normal to the boundary surface [9]. For perfectly

insulated boundaries (adiabatic wall) this means

�k
@T

@n
|�⌦,t= 0 . (2.11)

Robin boundary conditions prescribe a heat exchange with the surrounding

boundary at the ambient temperature Tboundary(t) with a specified thermal con-

ductivity ↵boundary:

�krT |�⌦,t= ↵boundary (T |�⌦,t �Tboundary(t)) . (2.12)

This type of boundary condition is often also called Fourier condition or con-

vective boundary condition [9].

It should be noted that there are more types of boundary conditions which are not

relevant for this thesis and will therefore not be discussed. One example would be

radiation boundary conditions when considering heat radiation e↵ects or periodic

boundary conditions, which are useful for symmetric problems. Combinations of the

boundary condition types mentioned are sometimes used.

The most common type of boundary condition for the velocity u(⌦, t) is the no-slip

condition

u |�⌦,t= 0 , (2.13)

which essentially prescribes that the fluid at the boundary has zero velocity relative to

the boundary, which implies zero velocity in case of a resting boundary. However, for

low pressure or high velocity, as well as for low viscosity fluids, a full-slip or partial-slip

condition could prove more accurate [13].

2.1.4 The Stefan problem

The analytical solution of the system of di↵erential equations given by (2.5), (2.7)

and (2.8) in combination with certain initial and boundary conditions can only be

found for a small class of problems. In general, this boundary value problem must be

solved numerically, as discussed in Section 2.2.
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Chapter 2. Theoretical framework

The simplest form of a mathematical model describing phase transitions is the clas-

sic, one-dimensional Stefan problem. This problem describes the liquefaction of a

solid medium, initially at the solidification temperature T (x, t = 0) = Tm with the

boundary condition T (x = 0, t) = T0 > Tm. To acquire the analytical solution to the

classic Stefan problem, meaning the temperature distribution in the liquid phase and

the location of the melting front s(t), the heat equation without convection must be

solved. A standard form of the problem can be declared as follows [15]:

The liquid region 0  x < s(t)

@(⇢cT (x, t))

@t
= r(krT (x, t)) heat equation, 0 < x < s(t), t > 0

T (x = 0, t) = T0 > Tm Boundary condition, t > 0

T (x, t = 0) = Tm Initial condition

The free boundary x = s(t)

�lm⇢
@s

@t
= �k

@T

@x
Stefan condition

s(t = 0) Initial position of melting front

T (s(t), t) = 0 Dirichlet condition at the melting front

The solid region s(t) < x < 1

T (x, t) t, x � s(t)

A similarity solution [15] of this problem can be found below, dependent on the Stefan

number StL = c(T0�Tm)
�lm

and the thermal di↵usivity ↵L = k
c⇢

T (x, t) = T0 �
T0

erf(�St)
erf(

x

2
p
↵Lt

) (2.14)

s(t) = 2�St

p
↵Lt (2.15)

�Ste
�2
Sterf(�St) =

StLp
⇡

. (2.16)

Here, �St is a parameter defined by the transcendental equation (2.16), dependent on

the Stefan number StL. This solution for the location of the melting front (2.15) will

later be used to validate the developed numerical model of the one-dimensional heat

equation.
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2.2 Numerical methods

To solve the system of di↵erential equations given by (2.5), (2.7) and (2.8), numerical

methods to accurately describe the phase change must be implemented. Furthermore,

the Stefan problem is complicated by the fact that, in general, more than one moving

phase boundary can occur in PCM ([16]).

Di↵erent approaches to this problem have been developed, the most common of which

are reviewed in the article [17] on which the following section is based.

2.2.1 Enthalpy method

One of the most popular approaches is the enthalpy method which can be illustrated

by considering a one-dimensional isothermal phase change problem controlled only by

heat conduction. The enthalpy function H is defined as the integral of the volumetric

heat capacity with respect to temperature:

H(T ) = �H(T ) + ⇢f(T )a =

TZ

Tref

⇢c(T )dT + ⇢f(T )a (2.17)

The first term of the enthalpy function (2.17) accounts for the sensible heat of the

material, while the second term accounts for the latent heat of phase change. To

obtain the total enthalpy for a temperature T , the liquid fraction

a =

8
>>><

>>>:

0 , solid: T < Tm

] 0, 1 [ ,mushy: T = Tm

1 , liquid: T > Tm

(2.18)

and the function f(T ), describing the amount of latent heat at the temperature T ,

must be given. This leads to an alternate form of the energy equation (2.5)

@�H

@t
=

@

@x

✓
↵L

@�H

@x

◆
� ⇢a

@f

@t
, (2.19)

with the thermal di↵usivity ↵L = k
c⇢ .

The enthalpy method leads to a simple phase change problem, since interface condi-

tions must not be taken into account [17].
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2.2.2 Apparent heat capacity method

In some applications, it is more suitable to use temperature rather than enthalpy as

the dependent variable. In these cases, the apparent heat capacity method is often

chosen to model the phase change problem. Here, the governing equation is the

energy equation (2.5), but the apparent heat capacity of the material capp is modelled

to account for the latent heat during the phase change:

capp =

8
>>><

>>>:

csolid , solid: Tm � " > T
�lm+csolid (Tm+"�T )+cliquid (�Tm+"+T )

2" ,mushy: Tm � "  T  Tm + "

cliquid , liquid: T > Tm + " .

(2.20)

This method obviously requires the existence of a phase change temperature range,

also called melting range, of the width 2✏ around the melting temperature Tm. In

modelling phase change problems with small values of ✏, this can lead to problems

[11]. In addition, the method is generally not applicable in cases with isothermal phase

change. However, it is possible to approximate isothermal phase change problems by

introducing an appropriately small artificial mushy region of the width 2✏.

2.3 Discretization methods

The basic premise of a discretization method is to replace the original continuous

problem by a sequence of finite-dimensional problems [18]. In the past, several meth-

ods of discretization have been developed to numerically solve problems of partial

di↵erential equations, the most common on which will be explained here. It should

be noted that there is a distinction between fixed grid and adaptive grid methods,

both of which have advantages for specific problems. In this thesis, only fixed grid

methods are used and therefore explained, however, most of the following principles

can be employed for adaptive grid methods as well.

In the next sections the main discretization methods with respect to space will be

described, although most problems are also continuous in time and therefore also
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need to be discretized appropriately. Time discretization methods will be outlined in

Section 2.3.4.

2.3.1 Finite element method

The first step in any finite element (FEM) simulation is to define a grid of the con-

tinuous computational domain. A grid consists of a finite number of non-overlapping

elements that cover the whole domain [19]. The most common geometries of elements

are triangular elements and quadratic elements, the latter of which are used in the

model developed in this work. The connection points between the elements, typically

located on the corners of the element, are called nodes. Of course, it is also possible to

define elements with more nodes, which enhances the accuracy of the approximation,

but requires more computational e↵ort.

Based on the defined grid, or mesh, continuous variables, such as the temperature T ,

can be decomposed by the shape functions [N ] = [N1, N2, N3...] and temperatures

at the element nodes {T} = {T1, T2, T3...}:

T = [N ] {T} . (2.21)

The general approach of the finite element method is to multiply the partial di↵er-

ential equation (PDE) with given boundary conditions (the strong form) by a test

function, or weighting function, and integrate over the whole simulation domain. Ap-

plying Green’s first integration theorem (partial integration) leads to a variational

formulation, also called the weak form [20]. To discretize this still infinite dimen-

sional equation, the approximation of continuous variables, as in (2.21), is applied

to the weak form. In the Galerkin procedure, which will also be used in this thesis,

the weighting functions are equal to the shape functions, which leads to a system

of equations with the same number of equations as unknowns, that is the number of

nodes [19]. In the case of a stationary problem, this is a system of algebraic equations,

otherwise this becomes a problem of ordinary di↵erential equations.

Although finite di↵erence (FDM) and finite volume schemes (FVM) are well estab-

lished in computational fluid dynamics (CFD) applications, including the well-known
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software package ANSYS Fluent, Nedjar [9] states that especially finite element meth-

ods (FEM) are able to handle complex coupled thermomechanical problems with vari-

ous and complex boundary conditions.

2.3.2 Finite di↵erence method

The finite di↵erence method (FDM) can also use the same grid as in 2.3.1. The

basic principle of FDM is that the derivatives in the partial di↵erential equation are

approximated by linear combinations of function values at the grid points xi. For first

order derivatives, the di↵erence quotient of a variable u(x) is by definition [21]

@u

@x
(x) = lim

�x!0

u(x+�x)� u(x)

�x
= lim

�x!0

u(x)� u(x��x)

�x
=

lim
�x!0

u(x+�x)� u(x��x)

2�x
(2.22)

for an infinitesimal di↵erence �x between the grid points. This leads to three types

of commonly used approximations:


@u

@x

�

i

⇡ ui+1 � ui

�x
forward di↵erence


@u

@x

�

i

⇡ ui � ui�1

�x
backward di↵erence


@u

@x

�

i

⇡ ui+1 � ui�1

2�x
central di↵erence .

(2.23)

The derivatives, which typically arise in two-dimensional convection-di↵usion prob-

lems for the variable u(x, y) and the corresponding grid point indices i, j are calculated

for the central di↵erence method, as can be seen below:


@u

@x

�

i,j

⇡ ui+1,j � ui�1,j

2�x
(2.24)


@u

@y

�

i,j

⇡ ui,j+1 � ui,j�1

2�y
(2.25)


@2u

@x2

�

i,j

⇡ ui+1,j � 2ui,j + ui�1,j

4�x2 (2.26)


@2u

@x@y

�

i,j

⇡ ui+1,j+1 � ui+1,j�1 � ui�1,j+1 + ui�1,j�1

4�x�y
. (2.27)
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The derivative of a nonlinear term u(x, y) v(x, y) can be calculated via the product

rule thus


@uv

@y

�

i,j

= ui,j


@v

@y

�

i,j

+ vi,j


@u

@y

�

i,j

⇡

ui,j

2�y
(vi,j+1 � vi,j�1) +

vi,j
2�x

(ui+1,j � ui�1,j) . (2.28)

2.3.3 Finite volume method

Although not implemented in the context of this work, it is worth mentioning another

important discretization method, the finite volume method (FVM). As in the finite

di↵erence and finite element methods, the first step is the discretization of the compu-

tational domain, which in this case means splitting it into non-overlapping elements,

or finite volumes. The partial di↵erential equations are transformed into algebraic

equations by integrating them over each discrete element, in other words, by tak-

ing the integral form of conservation equations and splitting the integrals into small

intervals. The finite volume method is strictly conservative, because, since two neigh-

bouring cells share a common interface, the total flux entering a volume is identical

to that leaving the adjacent volume [22]. This property makes the FVM the preferred

method in computational fluid dynamics problems (CFD) [23].

2.3.4 Time discretization

One of the most used methods for time discretization in numerical problems is the

so called ✓-method, in which the time derivative of a variable T (t) is replaced by a

simple di↵erential quotient
@T

@t
=

Tn+1 � Tn

�t
. (2.29)

Here, Tn = T (x, tn) is the variable’s value at t = tn and �t is the time increment

according to tn+1 = tn +�t. The variable T (x, tn) is usually assumed to be known
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and used as an initial condition to advance the solution to the next time level. The

solution T can then be written as

T = ✓Tn+1 + (1� ✓)Tn , tn  t  tn+1 . (2.30)

The relaxation parameter ✓ 2 [0, 1] is most commonly one of the following:

✓ = 1 implicit backwards Euler scheme

✓ = 1
2 second-order, centered implicit method (Crank-Nicolson-Galerkin)

✓ = 0 explicit forward Euler scheme

[19]

(2.31)

It is known that for ✓ < 1
2 , only conditional stability is attained [24]. In the model

developed in this thesis, the implicit backwards Euler scheme was chosen.

In Chapter 3.2 the semi-discrete Galerkin-formulation

[C]
n
Ṫ
o
+ [K] {T} = [R] (3.23)

will be developed (discrete in space, continuous in time). In this equation, the square

brackets denote a matrix and the braces denote a vector of node point values.

If we consider this system of ordinary di↵erential equations and apply the backwards

Euler scheme, we evaluate the equation at the time t = tn+1:

[C]
n
Ṫ
o

n+1
+ [K] {T}n+1 = [R] . (2.32)

The time derivative of the temperature vector {T} is approximated through the back-

wards di↵erential quotient

⇢
@T

@t

�

n+1

=
n
Ṫ
o

n+1
=

{T}n+1 � {T}n
�t

, (2.33)

which gives us the value

{T}n+1 = {T}n +�t
n
Ṫ
o

n+1
. (2.34)

Combining equation (2.32) with (2.34) leads, with the expression

[M ] = [C] +�t [K] , (2.35)
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to

[M ]
n
Ṫ
o

n+1
= ([C] +�t [K])

n
Ṫ
o

n+1
= [R]� [K] {T}n . (2.36)

We can therefore derive the value for
n
Ṫ
o

n+1
as

n
Ṫ
o

n+1
= [M ]�1 ([R]� [K] {T}n) , (2.37)

if the matrix [M ] (equation (2.35)) is invertible and nonsingular [20]. The solution

for {T}n+1 can thus be found through equation (2.34) to be

{T}n+1 = {T}n +�t
n
Ṫ
o

n+1

{T}n +�t [M ]�1 ([R]� [K] {T}n) =

{T}n +�t ([C] +�t [K])�1 ([R]� [K] {T}n) .

(2.38)
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Chapter 3

Numerical modelling

In this chapter, the underlying assumptions for developing a computational model of

the PCM storage are explained, and the discretized equations and boundary condi-

tions are derived.

Although a number of di↵erent design options are currently being discussed for the

PCM storage containers attached to the cylindric Ruth steam storage, one of the

most promising and easiest to build calls for PCM containers with aluminium fins

in the plane of the cylinder axis. For general fin arrangements, a three-dimensional

cavity simulation might be required. However, the geometry of the PCM cavities

regarded in this work, in which the depth of the enclosure parallel to the cylinder

axis is assumed large enough for wall boundary layer e↵ects to be negligible, suggests

symmetry reduction of the simulation problem to single aluminium fin segments and a

two-dimensional approach. In the hybrid storage concept in [25] this geometry relates

to an aluminium fin structure orientated in the radial-axial plane of an RSS.

This sort of design is modelled in this thesis, although the developed model can be

easily modified to suit similar problems. Unfortunately, it is not possible to simu-

late a design with fins oriented in a plane perpendicular to the cylinder axis. Heat

conduction and convection e↵ects would make this a three-dimensional problem and,

as such, this would require further extensions to a three-dimensional finite element

model.
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3.1 Model equations and assumptions

3.1.1 Geometry

Although the fins are not exactly parallel, the diameter of the cylindric Ruths steam

storage is assumed much larger than the thickness of the attached PCM modules.

Therefore, it is reasonable to see the PCM container as rectangular. Also, it is possible

that the containers will later be constructed in a rectangular design, due to their

simplified construction. The underlying equations of the problem will therefore be

developed for a rectangular mesh of finite elements. PCM material, aluminium fins,

as well as containment or other materials can later be defined separately for each

element.

3.1.2 Material properties

Currently, several di↵erent PCM materials are being discussed for inclusion in the

application described in this work. A comparison of di↵erent PCM materials can be

found in [26]. Thus far, the most promising material considering the container geo-

metry and operating temperatures of this hybrid storage system is a eutectic mixture

of potassium nitrate and sodium nitrate (KNO3-NaNO3). The properties of this mix-

ture, as well as those of a typical containment steel, carbon steel 1.0425, taken from

reference [27], are compared in Table 3.1. In this reference, it is noted that despite

the theoretical melting temperature of the mixture at 222 �C, the onset of melting of

the technical grade material used was measured at 219.15 �C. For the purpose of basic

evaluations in this thesis, an approximation of Tm = 220 �C is used and is therefore

given as such in Table 3.1.

There is no exact number to declare the melting temperature range of (KNO3-

NaNO3), but there are results of di↵erent measurements found in literature. In

reference [28], the reported result for the onset of melting was 220.6 ± 0.3 �C and

for the onset of crystallization 223±0.34 �C, which would result in a melting range of
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around 2.5 �C. It was also noted that the results are in very good agreement with those

found in other literature and that neither subcooling nor thermochemical instability

have been observed [28].

Table 3.1: Thermophysical material properties

Note. (s) denotes the solid phase, (l) denotes the liquid phase.

Material
⇢

kgm�3

c

J(kg K)�1

k

W (mK)�1

Tm
�C

�lm
kJ kg�1

�

K�1

µ

N sm�2

KNO3-

NaNO3

2050(s)

1959(l)

1350(s)

1492(l)

0.457(s)

0.435(l)
220 108 3.5 10�4 5.8 10�3

Steel 7800 540 51 - - - -

Aluminium 2700 910 237 - - - -

Air 1 1000 0.024 - - - -

For most simulations aiming to assess the behaviour of the potential PCM container,

a mushy region of 2 �C was introduced, otherwise this will be declared. The e↵ect of

the mushy region with respect to possible numerical di�culties will be discussed later

in this thesis.

Also given in Table 3.1 are the well known properties of aluminium and air [29], which

are used for certain simulations.

Regarding the heat transfer from the RSS to the PCM containers, the choice of inner

heat transfer coe�cient is not straightforward, since it is highly dependent on the

inner thermodynamic state in the RSS and therefore on the operating scenario. If the

RSS is charged, condensing steam dominates the heat transfer to the outer wall in

the vapour phase, while in the liquid phase, the heat transfer is dominated by liquid

water. During discharging, heat transfer through boiling water occurs at the outer

wall in the liquid phase, and heat transfer through dry steam occurs in the vapour

phase [30]. The respective heat transfer coe�cients are listed in Table 3.2.
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In the parameter studies following in Chapter 6, heat transfer coe�cients were as-

sumed that are within the range given here. However, the impact of di↵erent heat

transfer coe�cients on the hybrid storage behaviour was not within the scope of this

thesis. A further investigation of this research topic was pursued in [31].

Table 3.2: Heat transfer coe�cients ↵ occurring between the inside of the RSS and

its outer wall [32]

Operating mode Phase Dominating heat transfer e↵ect
↵

W m�2 K�1

charging vapour condensing steam 5000

charging liquid liquid water 700

discharging vapour dry steam 10

discharging liquid evaporating liquid water 1000

3.1.3 Governing equations

Based on the theoretical framework explained in Section 2.1.2, the governing equation

for the conduction-convection-model can again be stated as follows:

energy equation:
@(⇢cT )

@t
= r(krT )�r(⇢cT u) (2.5)

continuity equation: r(⇢u) = 0 (2.7)

Navier-Stokes equation: ⇢

✓
@u

@t
+ (u r)u

◆
�r (µru) +rp = f (2.8)

By assuming a constant density ⇢ over the whole operating temperature range and

neglecting the time and space dependency of the heat capactiy c, which is often found

in literature for PCM studies using the apparent heat capacity method [11], the energy

equation can be written as

⇢c
@(T )

@t
= r(�q)� ⇢cr(T u) , (3.1)
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with the flux q = �krT . Assuming constant density also means freedom of diver-

gence of the velocity field, thus equation (2.7) is reduced to

ru = 0 . (3.2)

To account for phase change in the material, the apparent heat capacity method is

used, as introduced in Section 2.2.2:

capp =

8
>>><

>>>:

csolid , solid: Tm � " > T
�lm+csolid (Tm+"�T )+cliquid (�Tm+"+T )

2" ,mushy: Tm � "  T  Tm + "

cliquid , liquid: T > Tm + "

(2.20)

For better readability, the apparent heat capacity capp is henceforth denoted only as

c.

The Navier-Stokes equation (2.8) cited in the previous chapter is already in a particu-

lar form, that of an incompressible Newtonian fluid with constant material properties

⇢, µ = const. A further approximation is to assume constant pressure and only ac-

count for density di↵erences in terms of the force density f . This is known as the

Boussinesq approximation, where the buoyancy force

f = �⇢g = �⇢0 (� (T � Tref ))g (3.3)

can be calculated by a linear thermal expansion coe�cient �, the reference density ⇢0

and a reference temperature Tref [33]. Thus, the Navier-Stokes equation to be solved

is

⇢0

✓
@u

@t
+ (u r)u

◆
� µr (r u) +rp = f . (3.4)

3.1.4 Boundary conditions

To successfully solve the system of partial di↵erential equations, certain initial and

boundary conditions must be given. An initial condition for the temperature in the

simulation domain must be specified, and the values can be fixed for each individual

node, if desired. Concerning the domain boundary conditions, the following types

have been implemented in the model:
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Robin boundary conditions (see (2.12)) have been applied to the east and west

domain boundaries:

|q(x = 0, y)| = |qin(y)| = ↵in (T (x)� Tin) and (3.5)

|q(x = Lx, y)| = |qout(y)| = ↵out (T (x)� Tout) . (3.6)

Adiabatic Neumann boundary conditions have been applied to the south and

north domain boundaries:
q(x, y = 0) = 0 and (3.7)

q(x, y = Ly) = 0 . (3.8)

The selectable thermal conductivities ↵in and ↵out and ambient temperatures Tin and

Tout can also be chosen to be dependent of time and x or y respectively. For the sake

of better readability, this is not explicitly depicted here. The values of Lx and Ly

denote the length of the domain in the corresponding dimension.

Regarding the velocity field u = [u, v]T , no slip boundary conditions are set for the

domain boundaries

u = [u, v]T = 0 , for x = Lx, y = Ly, x = 0, y = 0 , (3.9)

and the velocity is also set to zero if the PCM is solid, as well as for every non-melting

material

u = [u, v]T = 0 , for T < Tm � ✏ . (3.10)

3.2 Discretization

In the following section, the energy equation (3.1) is discretized using the standard

Galerkin finite element method, as introduced in Section 2.3.1. The time discretization

implemented later is chosen as the implicit backwards Euler scheme, as explained in

section 2.3.4.

The Navier-Stokes equation (3.4) is treated separately via a finite di↵erence discret-

ization, which will be explained in Section 3.3.
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3.2.1 Preliminary remarks

The two-dimensional domain (x 2 [0, Lx], y 2 [0, Ly]) is split into an equidistant

mesh of nnel = nx ny finite elements. In this thesis, four-noded bilinear rectangular

elements are used, which leads to the total sum of nnon = (nx + 1) (ny + 1). The

dependent variables, meaning the temperature T and the velocity u = [u, v]T , can

therefore be approximated by their nodal values as

T = [N ] {T} , (3.11)

u = [N ] {u} and (3.12)

v = [N ] {v} , (3.13)

where [N ] = [N1, N2, N3, ..., Nnon] is the vector of shape functions and the braces

denote a vector of node point values. In the notation used here, general matrices are

represented by square brackets.

The flux can be discretized as

q = �k [B] {T} (3.14)

when using the gradient of the shape function matrix

[B] =

2

664

@N1

@x

@N2

@x

@N3

@x
...

@N1

@y

@N2

@y

@N3

@y
...

3

775 . (3.15)

To illustrate the approximation via the four-noded bilinear elements, we consider a

finite element in the natural coordinate system ⇠, ⌘ with the length dx = 2 and height

dy = 2 (see Figure 3.1). A function �(⇠, ⌘) can then be approximated in terms of the

nodal values and shape functions as

�(⇠, ⌘) = N1�1 +N2�2 +N3�3 +N4�4 , (3.16)
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with the shape functions

N1 =
1

4
(1� ⇠)(1� ⌘) ,

N2 =
1

4
(1 + ⇠)(1� ⌘) ,

N3 =
1

4
(1 + ⇠)(1 + ⌘) ,

N4 =
1

4
(1� ⇠)(1 + ⌘) [19] .

(3.17)

Figure 3.1: Four-noded bilinear element in natural coordinate system ⇠, ⌘ [19] with

node coordinates in brackets

3.2.2 Galerkin’s method

Using Galerkin’s method on the energy equation (3.1) leads to

Z

V
[N ]T ⇢c

@T

@t
dV +

Z

V
[N ]T r(q) dV +

Z

V
[N ]T ⇢cr(Tu) dV = 0 . (3.18)

When applying the divergence theorem
R
V rF dV =

R
S F n dS [34] on the third

integral we obtain the following relation:
Z

V
[N ]T ⇢cr(T u) dV +

Z

V
r([N ]T )⇢cTu dV =

Z

V
⇢cr([N ]T Tu) dV =

Z

S
⇢c([N ]T Tu)T n dS .

(3.19)
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Because of boundary condition (3.9), the surface integral over the domain boundary

is equal to zero and the third integral of equation (3.18) can be written as:

Z

V
[N ]T ⇢cr(Tu) dV =

Z

V
r([N ]T )⇢cTu dV . (3.20)

Similarly, inserting the flux q = �krT into the second integral and applying the

divergence theorem leads to

Z

V
[N ]T r(q) dV =

Z

V
r([N ]T )krT dV +

Z

S
[N ]T q n dS , (3.21)

which is written as
Z

V
[B]T k [B] {T} dV +

Z

S1
[N ]T ↵out([N ] {T}� Tout) dS+

Z

S3
[N ]T ↵in(Tin � [N ] {T}) dS +

Z

S2
0 dS +

Z

S4
0 dS

(3.22)

when applying the boundary conditions for the boundary S, where the index S1

denotes the east boundary, S3 the west boundary and indices S2, S4 the south and

north boundaries, where zero flux is defined.

Finally, inserting the finite element approximations into equation (3.18) leads to the

system of ordinary di↵erential equations

[C]
n
Ṫ
o
+ [K] {T} = [R] , (3.23)

with the following system matrices:

[C] =

Z

V
[N ]T ⇢c [N ] dV , (3.24)

[K] =

Z

V
[B]T k [B] dV �

Z

V
([B]T )⇢cu [N ] dV

+

Z

S1
↵out([N ]T [N ] dS �

Z

S3
↵in([N ]T [N ] dS , (3.25)

[R] =

Z

S1
↵outTout [N ]T dS �

Z

S3
↵inTin [N ]T dS . (3.26)

The system matrix [R] is of the dimension non⇥1, while the matrices [C] and [K] are of

the dimension non⇥non, when the velocity u = [u, v]T and the thermal conductivity

k = [kx, ky]T = k [1, 1]T are evaluated. The time discretization of equation (3.23)
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is done by application of the implicit backwards Euler method as derived in Section

2.3.4 of this thesis:

{T}n+1 = {T}n +�t
n
Ṫ
o

n+1

{T}n +�t [M ]�1 ([R]� [K] {T}n) =

{T}n +�t ([C] +�t [K])�1 ([R]� [K] {T}n) .

(2.38)

3.2.3 Integration scheme

To numerically compute the system matrices derived in the previous section, the

integration is split into the finite domains of the defined elements. The integrals are

first transformed into the natural coordinate system 1  ⇠  ⌘  1, which leads to

simple integration limits:
Z

V
f(x, y) dV =

Z 1

�1

Z 1

�1
f(⇠, ⌘) |J| d⇠d⌘ (3.27)

The factor |J| is the determinant of the Jacobian matrix of the transformation J [19],

which is defined by
2

664

@N

@⇠

@N

@⌘

3

775 =

2

664

@x

@⇠

@y

@⇠

@x

@⌘

@y

@⌘

3

775

2

664

@N

@x

@N

@y

3

775 = J

2

664

@N

@x

@N

@y

3

775 . (3.28)

Now the numerical integration procedure known as Gaussian quadrature is applied,

which approximates a definite integral with a weighted sum over a finite set of points

[19]:
Z 1

�1

Z 1

�1
f(⇠, ⌘) |J| d⇠d⌘ ⇠=

ngpX

i=1

ngpX

j=1

WiWjf(⇠i, ⌘j) |J| . (3.29)

Wi are the weight factors, ⇠i and ⌘i are the Gauss points and ngp is the number

of Gauss integration points, which specify that a polynomial of degree 2ngp � 1 is

integrated exactly by the method of Gauss-Legendre [19].

This method, which is the most common form of Gaussian quadrature, is chosen for

the integration of the system matrices [C], [K] and [R], with the exception of the

velocity containing term

�
Z

V
([B]T )⇢cu [N ] dV (3.30)
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in the system matrix [K], where a three-point Gauss-Lobatto quadrature rule is ap-

plied. In this rule, two of the three Gauss points lie on the ends of the integration

interval. This was found to be more accurate due to the natural inclusion of bound-

ary conditions. This was not further studied in a mathematically rigorous way, but

rather, observed through testing. Because of the greater computational expense, this

was programmed in such a way, that the term (3.30) is only evaluated for u 6= 0.

Gauss points and weight factors of the mentioned integration rules are given in Table

3.3.

Table 3.3: Gauss points and weight factors of the used quadrature rules [35]

Type of Gauss quadrature Gauss points Weight factors

Gauss-Legendre, ngp = 2 ±1/
p
3 1

Gauss-Lobatto, ngp = 3 0

±1

4/3

1/3

3.3 Convection modelling

As previously mentioned, the Navier-Stokes equation (3.4) is treated separately from

the heat transfer part of the model via a finite di↵erence discretization. In the early

stages of this diploma work, an attempt was made to also discretize the Navier-

Stokes equation with the finite element method, similar to the published work [11].

However, this method, using a penalty formulation for the pressure, could not be

successfully implemented in the MATLAB code, as it did not lead to convergent solu-

tions. To avoid this problem, an open source code, available on the course homepage

(http://math.mit.edu/˜gs/cse/) of ‘Computational Science and Engineering’ at the

Massachusetts Institute of Technology, was implemented and extended. The doc-

umentation of this code can be found in [36]. In the following sections, the basic

functioning of the existing MIT code will be described and later on, the modifications

that were made in order to fit the here described problem will be explained.
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At this point, it is necessary to point out that the methods in the following sections

are merely a summary of the mentioned documentation [36] and not the author’s own

work, unless declared otherwise.

3.3.1 Two-dimensional Navier-Stokes equations

In two space dimensions, we derive for the nonlinear convective acceleration

(u r)u =

2

4

0

@u

v

1

A

0

@@/@x

@/@y

1

A

3

5

0

@u

v

1

A =

0

BB@

@u2

@x
+

@uv

@y
@uv

@x
+

@v2

@y

1

CCA (3.31)

and the term r (r u) can be written as

r (r u) = �u =

0

B@

@u

@x2
+

@u

@y2
@v

@x2
+

@v

@y2

1

CA . (3.32)

The Navier-Stokes equation (3.4) and continuity equation in two space dimensions

thus take the form

@u

@t
+

1

⇢0

@p

@x
= �@u2

@x
� @uv

@y
+

µ

⇢0

✓
@u

@x2
+

@u

@y2

◆
+

fx
⇢0

and (3.33)

@v

@t
+

1

⇢0

@p

@y
= �@v2

@y
� @uv

@x
+

µ

⇢0

✓
@v

@x2
+

@v

@y2

◆
+

fy
⇢0

, (3.34)

@u

@x
+

@v

@y
= �@⇢

@t
= 0 , (3.35)

whereby fx and fy are the components of the buoyancy force (3.3).

3.3.2 Numerical solution approach

The numerical approach to solving the time dependent problem is the fractional step

method [37], which splits the Navier-Stokes equations into equations that are signi-

ficantly simpler to work with. The solution is then found by following a three step

approach, which is outlined in the following, where ut denotes the solution at the time

t and ut+1 the final solution at the time t+ 1, while u⇤ and u⇤⇤ denote intermediate

solutions of the respective split equations.
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1. Explicit time step for nonlinear terms

The nonlinear convective acceleration term (3.31) is treated explicitly, which

circumvents the implicit solution of a large nonlinear system of equations.

u⇤ � ut ��t

✓
@u2

t

@x
+

@utvt
@y

◆
= 0 (3.36)

v⇤ � vt ��t

✓
@utvt
@x

+
@u2

t

@y

◆
= 0 (3.37)

This, however, introduces a Courant-Friedrichs-Lewy (CFL) condition, which

limits the time step by a constant times the spatial resolution [38]. For a first-

order upwind scheme, this CFL condition requires that, for stability, the condi-

tions

CFL(x) ⌘
|u|max �t

�x
 1 (3.38)

and

CFL(y) ⌘
|v|max �t

�y
 1 (3.39)

hold [39].

2. Implicit time step for viscosity terms

If the viscosity terms (3.32) were treated explicitly, this would result in a time

step restriction proportional to the spatial discretization squared. This part of

the equation is therefore handled by an implicit step, at the expense of two

linear systems of equations to be solved in each time step:

u⇤⇤ � u⇤ = �t
µ

⇢0

✓
@u⇤⇤
@x2

+
@u⇤⇤
@y2

◆
+�t

fx
⇢0

and (3.40)

v⇤⇤ � v⇤ = �t
µ

⇢0

✓
@v⇤⇤
@x2

+
@v⇤⇤
@y2

◆
+�t

fy
⇢0

. (3.41)

3. Pressure correction step

The intermediate velocity field (u⇤⇤, v⇤⇤) is corrected by the gradient of pressure

pt+1 to ensure incompressibility.

ut+1 � u⇤⇤ = ��t

⇢0

@pt+1

@x
(3.42)

vt+1 � v⇤⇤ = ��t

⇢0

@pt+1

@y
(3.43)
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The pressure pt+1 is only given implicitly and can be obtained by solving a

linear system of equations. Applying the divergence operator r on both sides

of equations (3.42) and (3.43), and taking into account the continuity equation

rut+1 = 0 leads to:

�pt+1 =
⇢0
�t

ru⇤⇤ (3.44)

The pressure correction step can therefore be implemented as follows:

(a) Compute the gradient ru⇤⇤.

(b) Solve the Poisson equation �pt+1 = ⇢0

�tru⇤⇤ for pt+1.

(c) Compute the pressure gradient rpt+1.

(d) Update the velocity field ut+1 = u⇤⇤ � �t
⇢0

rpt+1.

When solving the Poisson equation, the question arises on the appropriate choice

of boundary conditions for the pressure p. In the documentation [36], it is

stated that a standard approach is to prescribe homogenous Neumann boundary

conditions wherever no-slip boundary conditions are prescribed to the velocity

field, which, in this case is on every boundary. This implies that the pressure

is only defined up to a constant. However, absolute pressure information is not

needed because only the gradient of p is needed in the pressure correction step.

It can be noted that combining equations (3.36), (3.40) and (3.42) again yields the

full Navier-Stokes equation system (3.33). The same is of course true for the velocity

component v in equation (3.34).

3.3.3 Spatial discretization

The spatial discretization of the Navier-Stokes equation is done via the finite di↵erence

method, as introduced in Section 2.3.2. A staggered grid (see Figure 3.2) based on

the finite element grid is used to solve the heat transfer problem, where the pressure
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p is defined in the element centers, u is placed in the middle of the vertical element

borders and v is placed in the middle of the horizontal element borders.

Figure 3.2: Two-dimensional domain discretized into a staggered grid [36]

The second and first derivatives are approximated by centered finite di↵erence stencils,

as illustrated here for �ui,j and

✓
@u

@x

◆

i,j

at the grid point (i, j):

�ui,j =

✓
@2u

@x2

◆

i,j

+

✓
@2u

@y2

◆

i,j

⇡ ui�1,j � 2ui,j + ui+1,j

�2
x

+
ui,j�1 � 2ui,j + ui,j+1

�2
y

(3.45)✓
@u

@x

◆

i,j

⇡ ui+1,j � ui�1,j

2�x
. (3.46)

This approximation for the first derivative can yield instabilities [36], but the centered

stencil ✓
@u

@x

◆

i+ 1
2 ,j

⇡ ui+1,j � ui,j

�x
(3.47)

is a stable approximation for
@u

@x
between two grid points [36]. This aids the staggered

grid method, where this position is exactly the position of the pressure pi,j .
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For the nonlinear terms, a combination of the centered di↵erencing and upwinding

approach is implemented, with a transition parameter � 2 [0, 1] defined as

� = min

✓
1.2 �t max

✓
max
i,j

|ui,j | ,max
i,j

|vi,j |
◆
, 1

◆
. (3.48)

The value of � can be interpreted as the maximum fraction of a cell whose information

can travel in one time step, multiplied by 1.2, which is an empirical factor that brings

the approximation scheme more towards upwinding and is, from experience, more

accurate [40].

With the introduction of averaged quantities

ūh
i+ 1

2 ,j
=

ui+1,j + ui,j

2
and (3.49)

ūv
i,j+ 1

2
=

ui,j+1 + ui,j

2
, (3.50)

(equally for the component v) using the superscript h and v to indicate a horizontal

or vertical averaged quantity and denoting the di↵erenced quantities likewise with

ũh, ũv, etc., the nonlinear terms in equations (3.36) and (3.37) can be written as the

linear combinations

✓
@u2

@x
+

@uv

@y

◆
=

@

@x

⇣�
ūh

�2 � �
��ūh

�� ũh
⌘
+

@

@y

��
ūv v̄h

�
� �

��v̄h
�� ũv

�
and (3.51)

✓
@uv

@x
+

@u2

@y

◆
=

@

@x

��
ūv v̄h

�
� � |ūv| ṽh

�
+

@

@y

⇣
(v̄v)2 � � |v̄v| ṽv

⌘
, (3.52)

which are again approximated by centered finite di↵erence stencils.

3.3.4 Boundary conditions

The boundary conditions prescribed for the model were already stated in Section

3.1.4, but since a staggered grid was introduced, applying the correct boundary con-

ditions requires care, as some grid points lie on a boundary, while others have a

boundary between them. For the no-slip boundary conditions in place, we can obtain

the condition

ui,j = 0, if i = 1 and nx + 1 (3.53)
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at the west and east domain borders and

vi,j = 0, if j = 1 and ny + 1 (3.54)

at the south and north borders. To force zero velocity at the boundary, the conditions

ui,j=1 =� ui,j=2 and

ui,j=ny+1 =� ui,j=ny+2

(3.55)

at the south and north domain border and

vi=1,j =� vi=2,j and

vi=nx+1,j =� vi=nx+2,j

(3.56)

at the west and east border are also prescribed. The homogenous Neumann boundary

conditions for the pressure p yield the following conditions at the four boundaries:

pi=1,j =� pi=2,j

pi=nx+1,j =� pi=nx+2,j

pi,j=1 =� pi,j=2

pi,j=ny+1 =� pi,j=ny+2 .

(3.57)

3.3.5 Adaptations to the existing MATLAB code

Although the basic structure, which was explained in Section 3.3 and documented in

[36], was used as foundation for the implemented code, much of it had to be modified

in order to adapt it the problem described here.

External force term

As the existing code did not include outer force terms, the Boussinesq force term

was added to the code and treated implicitly in equations (3.40) and (3.41).

Solid phase modelling

To model the liquid and solid phases in the domain, another part of the force

term in the implicit equations mentioned above, was added. This can be seen

as an external force density, which inhibits fluid motion in the solid part [41]:

f = � (1� a)2

a3 + 0.001
108 u⇤⇤ (3.58)
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The large number 108 was chosen to force the velocity to zero via the damping

term. The liquid fraction parameter is a = 0 in the solid phase and rises over

the mushy region to a = 1 in the liquid phase.

Phase boundaries

The boundary conditions defined in 3.3.4 are in place at the domain boundaries

and the phase boundaries. To ensure this, the existing velocity field is modified

to suit the conditions before the explicit time step is performed.

For the pressure p, this step is more complex, as the boundary conditions are im-

plemented in the Laplace-operator to solve the Poisson equation (3.44). There-

fore, the Laplace-operator must be assembled anew in every time step.

38



Chapter 4

MATLAB implementation

This chapter deals with the final form of the MATLAB implementation of the nu-

merical model described in Chapter 3. The basic structure of the code is outlined in

Section 4.1, while the main functions are explained in some detail in Section 4.2. The

code of these important code parts is also listed in the appendix A and referred to in

this chapter.

For those interested in applying the code to conduct simulations on their own, it is

highly recommended to look up Section 4.3. Therein, a detailed guide on how to

specify input data for simulations is given.

It should be noted that the herein documented code was created over a period of

several months. Many extensions to the initial version have been made, and the

code was significantly modified several times. Although the code was written in

a very comprehensible manner in the early development, measures to reduce the

computational e↵ort, such as preprocessing, vectorization and the usage of the sparse

matrix format, made it much more complex and probably quite di�cult to read for

unfamiliar users. However, it should be stressed that readability was not of crucial

importance for this implementation, since this code was not developed for educational

purposes, but for a designated application.

For the sake of better readability, filenames, the names of MATLAB functions or

scripts and variable names are denoted by a di↵erent font: name.

4.1 Structure of the program

The MATLAB program developed was built as one main function with numerous

sub-functions. The execution procedure is represented by the flowchart in Figure
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4.1. The simulation program is executed by calling the main function PCMsolver and

passing the path to the input datafile, which specifies all simulation parameters as

input argument. This is discussed in detail in Section 4.3.

Preprocessing

In preprocessing, input data is loaded to the workspace where all important paramet-

ers are saved in the structure variable param. The finite element mesh is created by

calling the function mesh2d (see 4.2.1). All data arrays are initialized, most notably,

the initial temperature array T old and velocity arrays U old and V old. The function

shape mat preprocesses the shape function values at the Gauss integration points.

This is useful here, because all elements are of the same size and therefore the values

do not change. The calculated values are stored in the structure variable gauss.

The function FEM preprocessor adds further information to this structured variable.

It evaluates the values of the density, specific heat capacity and heat conductivity for

every Fauss point of every element in the domain. Although the specific heat capacity

must be recalculated at every time step for the PCM material, this step saves work

on the time iteration. Furthermore, boundary informations are preprocessed and

the relations for the sparse matrix assembly, which is carried out by the function

heat2Delem new, are defined.

Time stepping

The time stepping is done in a for-loop, calling firstly the function heat2Delem new,

which calculates the finite element matrices [C], [K] and [R], defined by the equations

(3.24), (3.25) and (3.26). The equation system (3.23) is then solved by the function

solve euler back for the nodal temperature values at the next time step T new.

If the simulation is run without considering convection, the body of the for-loop ends

after saving the simulation results of the time step and reinitializing the arrays of

variables T old = T new, U old = U new and V old = V new for the next time step.

Otherwise, the velocities are updated as will be discussed below.
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Structure of the program

START: Run PCM_solver with input datafile

Preprocessing
) Load input data

) Call mesh2d(param) to generate mesh

) Initialize data arrays (T_old, U_old, V_old, ..)

) Call shape_mat to calculate shape matrices

) Preprocess FEM data arrays by calling FEM_preprocessor

Call heat2Delem_new to compute FEM matrices [C], [K] and [R]

Call solve_euler_back to solve FEM equation system and obtain T_new

Model with convection?

Preprocess velocity and staggered grid data

Call solve_navierstokes to solve Navier-Stokes

equation and obtain U_new, V_new

Postprocess velocity data

Write to data saving arrays

Initialize data arrays for next time step
) T_old = T_new

) U_old = U_new

) V_old = V_new

Max. number of time steps reached?

Postprocessing
) Save results to output file

) Display information for user

END

Y ESNO

Y ESNO

Figure 4.1: Flowchart diagram of FEM model PCMsolver

Note. Code given in A.1
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Convection calculations

The velocity is updated in the function solve navierstokes, which essentially solves the

Navier-Stokes equations on a staggered grid by the finite di↵erence scheme explained

in Section 3.3. Although these updated velocity values are, at this point, close to zero

in solid domain areas, because of the force term introduced in the implicit viscosity

step (3.58), postprocessing must be performed. Therein, all velocity components,

enclosed in a completely solid finite element, are set to zero. The no-slip boundary

values are then newly prescribed to the updated velocities as stated by equations

(3.55) and (3.56). These steps are performed for the domain boundaries and also for

the liquid-solid phase boundaries, which can be observed in detail in lines 127 to 146

of listing A.1.

Postprocessing

After the last time step is performed, the complete simulated data is saved to the

results file and optional user information is displayed.

4.2 Description of the key functions

In this section, the most substantial sub-functions of the main program are explained.

This is done by highlighting the basic principles of implementing the model in MAT-

LAB, as described in Chapter 3. The main function PCMsolver was already discussed

in detail in the previous section, its listing A.1 can be found in the appendix A,

together with the other key functions.

4.2.1 Mesh generation in mesh2d

The finite element mesh is generated in the function mesh2d (A.2) by the call

[ param ] = mesh2d (param) ;
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in PCMsolver. As already mentioned in Section 3.2.1, the two-dimensional domain is

split into an equidistant mesh of nel = nx ny four-noded bilinear rectangular finite

elements, which yields the total sum of nn = (nx+1) (ny+1) nodes. These elements

and nodes are arranged in the domain from left to right and from bottom to top.

This is best understood by looking at Figure 4.2, which shows an example of the

element and node arrangement for a mesh with nx = 2 and ny = 2. The information

about the connectivity between the nodes and the elements is saved to the array

param.mesh.IEN.

Figure 4.2: Image of a 2x2 mesh, with numbered nodes and elements

Furthermore, this function not only generates the coordinates of element nodes, but

also those of the staggered grid points. Additionally, boundary elements are flagged,

which allows quick identification when calculating the heat flux at the boundaries,

and the array param.mesh.elem mat is created, which contains indexing information

about the element materials based on the geometry specifications.

4.2.2 Preprocessing operations

The main purpose of the functions shape mat (A.3) and FEM preprocessor (A.6) was

already highlighted in 4.1. These are executed once in the simulation by the call:

[ gauss ] = shape mat (param) ;
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[ gauss ] = FEM preprocessor ( T old , gauss , param) ;

In shape mat, all occurring terms of shape matrices [N ] and [B] in the system matrices

(3.24), (3.25) and (3.26) are evaluated for each Gauss integration point, as well as the

determinant of the Jacobian matrix (3.28). This very useful preprocessing method

is possible since, in this implementation, all elements are the same size and do not

change during the simulation. The shape functions are calculated by the sub-functions

NmatHeat2D and BmatHeat2D, which essentially contain the formulas (3.17) and

(3.15).

Function FEM preprocessor calculates further information for the FEM matrix as-

sembly. It evaluates the values of the density, specific heat capacity and heat con-

ductivity for every Gauss point of every element in the domain and preprocesses

boundary informations, as already explained in 4.1. In addition, sparse matrix as-

sembly relations are defined, to be used later in heat2Delem new. The sparse matrix

format in MATLAB provides e�cient storage of data and speeds up the processing of

that data. A good example of how the element matrices are assembled to the global

matrix can be found in [42], for example.

4.2.3 FEM Matrix calculation in heat2Delemnew

The main FEM processing is done in heat2Delem new (A.7), where the matrices [C],

[K] and [R], defined by the equations (3.24), (3.25), (3.26) are evaluated by an im-

plementation of these equations. The function is called in PCMsolver by:

[C,K,R, Qin e , Qout e ,H( t ) , H l ( t ) ] = ...

heat2Delem new ( t , T old ,Uwb,Vwb, p e l , gauss , param) ;

The heat conductivity and specific (apparent) heat capacities are evaluated at each

Gauss point, which is only done for elements containing PCM material. For the

remaining elements, the preprocessed data of FEM preprocessor is used, which also

included the preprocessed shape matrix terms. The global matrices are then assembled

using the relations defined in the aforementioned function. The apparent heat capacity
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is calculated by the function c var (A.8), which implements definition (2.20) to account

for phase change in the PCM material.

Regarding the convective term in matrix (3.25), the integration is performed by the

Gauss-Lobatto quadrature instead of the common Gauss-Legendre quadrature, as

already explained in Section 3.2.3. The arrays containing the velocity values u and

v are in line with the scheme of the staggered grid (see Section 3.3) with already

implemented boundary conditions. These values are used to interpolate the values at

the Gauss points.

4.2.4 Solving the matrix equations

The function solve euler back (A.10) is called thus:

T new = so l v e eu l e r b a ck ( T old ,C,K,R, param) ;

It contains only one definition:

Tnew = Told + param .mesh . d t ...

( (C + param . mesh . d t K) \(R�K Told ) ) ;

This is the MATLAB implementation of the applied backwards Euler step, yielding

the formula (2.38) for the updated temperature value. The sparse matrix format

allows very e�cient evaluation of this step.

4.2.5 Solving the Navier Stokes equations

The convection modelling discussed in detail in Section 3.3 is performed in the function

solve navierstokes (A.12), which is called in the main function PCMsolver thus:

[ U new , V new ] = s o l v e n av i e r s t o k e s ( U old , V old , T i j , p e l , param

) ;

Therein, the force terms, which inhibit fluid motion in the solid elements, are pre-

processed, as are the temperatures that are needed for the Boussinesq approximation

terms. The remaining function consists primarily of an implementation of the code

documented in [36].
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Worth mentioning is the function Laplace p (A.13). It was developed in order to

compute a finite di↵erence Laplace stencil for the pressure p which is consistent with

homogeneous Neumann boundary conditions on the domain boundaries, as well as

the internal phase boundaries.

4.3 Usage information

The main function PCMsolver must be run by passing a string as an input argument.

This string contains the path to the MATLAB file containing the simulation input

data. For instance, if the file is called input datafile.m the simulation is started by

calling:

PCMsolver ( i n p u t d a t a f i l e ) ;

All relevant simulation input data can be specified using such an input datafile. The

code Listing 4.1 gives an example of a typical declaration structure, which is recom-

mended. This file actually represents a typical input datafile used in the simulations

carried out for the parameter study discussed in Section 6.2. In the following, both

essential and optional input parameters are discussed in detail, referring to the re-

spective lines in code Listing 4.1.

Code Listing 4.1: Listing of a typical input datafile input datafile.m

1 %% Input Data File

2 % The material and computational parameters are specified and written to

3 % the structure array param.

4
5 %% name for file saving

6 param.save.name = results ;

7
8 %% simulate with convection

9 param.convection = 1; %(0 = off , 1 = on)

10
11 %% geometry specifications

12 % length of material domains in x-direction (left to right)

13 param.geom.x_length_vec = [0.002 0.118];

14 % length of material domains in y-direction (bottom to top)

15 param.geom.y_length_vec = [0.001 0.023 0.003];%

16 % structure of simulated domain (left to right and top to bottom)

17 param.geom.mat_mtrx = flipud ([3 3

18 3 1;

19 3 3]);

20 % definition of material specifier

21 % must be in accordance with definition of material properties below

22 % PCM material specifier must be 1

23 param.geom.material = {1, pcm ; % PCM material

24 2, stl ; % steel

25 3, alu ; % aluminium

26 4, air };% air

27
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28 param.geom.x_length = sum(param.geom.x_length_vec); % length of PCM in x-

direction

29 param.geom.y_length = sum(param.geom.y_length_vec); % length of PCM in y-

direction

30
31 %% mesh specifications

32 nx_min = param.geom.x_length /0.0005; % minimum number of elements in x

direction

33 ny_min = param.geom.y_length /0.0005; % minimum number of elements in y

direction

34 nx = calc_grid(nx_min ,param.geom.x_length_vec);

35 ny = calc_grid(ny_min ,param.geom.y_length_vec);

36 param.mesh.nx = nx;

37 param.mesh.ny = ny;

38 param.mesh.nel = nx*ny; % number of elements

39 param.mesh.non = (nx+1)*(ny+1); % number of nodes

40 param.mesh.ngp = 2; % number of gauss integration points

41 param.geom.dx = param.geom.x_length/nx;

42 param.geom.dy = param.geom.y_length/ny;

43
44 %% time step specifications

45 param.mesh.tt = 3*60*60; % total time

46 param.mesh.d_t = 0.05; % time step

47 param.mesh.not = ceil(param.mesh.tt/param.mesh.d_t); % number of time steps

48
49 %% initial and boundary condition

50 % T_init [ C ] = initial temperature for element nodes

51 param.icbc.T_init =218* ones(param.mesh.non ,1);

52 % T_in [ C ] = input temperature dependent of time

53 param.icbc.Tin = @(t,y) 230; %(t<= param.mesh.not)*200+(t>param.mesh.not)*100;

54 % alpha_in [W / m*K] = heat conductivity dependent of y and time

55 %yh = param.geom.y_length /2;

56 param.icbc.alpha_in = @(t,y) 700; %(y<yh)*100+(y>=yh)*20;

57 % T_out [ C ] = output temperature dependent of time

58 param.icbc.Tout = @(t,y) 20; % output temperature [ C ]

59 % alpha_out [W / m*K] = heat conductivity to environment

60 param.icbc.alpha_out = @(t,y) 1e-2; % heat conductivity [W / m*K]

61
62 %% material properties

63 % material properties of pcm

64 param.pcm.rho = 2050; % density [kg / m^3] (solid

)

65 param.pcm.Tm = 220; % melting temperature [ C ]

66 param.pcm.dTm = 1.0; % mushy region size [ C ]

67 param.pcm.c_s = 1350; % heat capacity of solid [J / kg*K]

68 param.pcm.c_l = 1492; % heat capacity of liquid [J / kg*K]

69 param.pcm.lh = 108*1000; % latent heat of PCM [J / kg]

70 param.pcm.k_s = 0.457; % heat conductivity , solid [W / m*K]

71 param.pcm.k_l = 0.435; % heat conductivity , liquid [W / m*K]

72 % convective properties of pcm

73 param.pcm.beta = 3.5e-4; % thermal expansion coeff. [1 / K]

74 param.pcm.grav = 9.81; % standard gravity [m / s^2]

75 param.pcm.mue = 5.8e-3; % viscosity [m^2 / s]

76 param.pcm.phi = 0; % angle of gravitation vector to y-axis

77 % examples of angle phi:

78 % phi = 0 (default option) -> gravitation in -y direction

79 % phi = pi -> gravitation in +y direction

80 % phi = pi/2 -> gravitation in -x direction

81 % phi = -pi/2 -> gravitation in +x direction

82
83 % material properties of aluminium

84 param.alu.rho = 2700; % density [kg / m^3] (solid

)

85 param.alu.Tm = 1000; % melting temperature [ C ]

86 param.alu.dTm = 0; % area of melting [ C ]

87 param.alu.c_s = 910; % heat capacity of solid [J / kg*K]

88 param.alu.lh = 0; % latent heat of PCM [J / kg]

89 param.alu.k_s = 237; % heat conductivity , solid [W / m*K]

90
91 % material properties of steel

92 param.stl.rho = 7800; % density [kg / m^3] (solid

)

93 param.stl.Tm = 1000; % melting temperature [ C ]

94 param.stl.dTm = 0; % area of melting [ C ]

95 param.stl.c_s = 540; % heat capacity of solid [J / kg*K]

96 param.stl.lh = 0; % latent heat of PCM [J / kg]

97 param.stl.k_s = 51; % heat conductivity , solid [W / m*K]

98
99 % material properties of air

100 param.air.rho = 1; % density [kg / m^3] (solid)
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101 param.air.Tm = 1000; % melting temperature [ C ]

102 param.air.dTm = 0; % area of melting [ C ]

103 param.air.c_s = 1000; % heat capacity of solid [J / kg*K]

104 param.air.lh = 0; % latent heat of PCM [J / kg]

105 param.air.k_s = 0.024; % heat conductivity , solid [W / m*K]

106
107 %% data recovery

108 param.save.intervall = 6*ceil (1/ param.mesh.d_t); % time step intervall

109 % for T,U,V to be saved

110 param.save.make_snapshot = 1; %(0 = off , 1 = on) % dump snapshots of data

111 param.save.snapshot_int = 120; % time step intervall to make snapshots

112
113 %% display information for user

114 % (0 = off , 1 = on)

115 param.display.waitbar = 1; % show waitbar during run

116 % info: each waitbar update needs about 0.2 seconds computation time

117 param.display.update = 10; % minimum time between waitbar updates in seconds

118 param.display.Tplot = 0; % plot temperature distribution at the end

119 param.display.Vplot = 0; % plot velocity distribution at the end

120 param.display.matplot = 0; % plot visualisation of material in domain

As mentioned above, all input parameters are specified in the structure array param.

For more clarity, the fields of param again contain structure arrays.

In line 6, the basic string for the filenames of the result files is declared. Line 9

contains binary information about whether the e↵ect of natural convection is to be

considered in this simulation.

Geometry specifications

The geometry specifications are defined in lines 11 to 30. The length of di↵erent

material domains is specified using vectors and the organisation can be easily under-

stood by looking at Figure 6.1. The field param.geom.mat mtrx contains a matrix

of indices specifying certain materials. These indices are to be defined arbitrarily in

param.geom.material, except for the fixed index 1, which refers to the PCM material.

The syntax of the matrix formulated material declaration chosen here can again be

best put into context by observing Figure 6.1.

Mesh specifications

The essential mesh specifications are defined in param.mesh.nx and param.mesh.ny

(lines 36 and 37), which are the number of elements in x direction and y direction

respectively. Lines 32 to 35 may be used by calling the created function calc grid to
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calculate a number of elements that is compatible with the material domains specified

in lines 13 and 15, in the means that no element contains more than one material.

Time step specifications

Lines 45 and 46 contain the time step specifications, which are the total simulation

time param.mesh.tt and the time step size param.mesh.d t.

Initial and boundary conditions

The possible values for initial and boundary conditions are defined in lines 49 to

60, which are the heat conductivities ↵in and ↵out and temperatures Tin and Tout

belonging to the Robin boundary conditions on the west and east side of the do-

main. The initial temperature field is prescribed for each element through the vector

param.icbc.T init.

Material properties

Material properties are defined in structure arrays and saved in fields of param, of

which the names must be declared in accordance with the definition of material spe-

cifiers in param.geom.mat mtrx. The basic thermophysical material properties for the

phase change material are defined in lines 64 to 71, and so is also the mushy region size

✏ in line 66. The same can be done for other materials, as given here for aluminium,

steel and air in lines 84 to 105. The convective simulation parameters are defined

in lines 73 to 76 and contain the thermal expansion coe�cient param.pcm.beta, the

viscosity param.pcm.mue and the angle param.pcm.phi. This angle, which is defined as

the angle of the gravitational vector to the y-axis, was introduced for the parameter

study in Section 6.2 to study di↵erent domain orientations. For the intuitive case

that the y-axis is aligned to the gravitational force vector, this angle takes the value

zero. Other values can be defined in radian units in a clockwise manner, as given in

the example values in lines 78 to 81.
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Data recovery

Some options are available regarding the recovery of the simulation data of the node

temperature values and velocity value matrices. param.save.intervall defines the num-

ber of time steps between moments at which the mentioned quantities are to be saved.

This is useful to keep the amount of aggregated data moderate. Snapshots of the data

can be saved by setting the binary variable param.save.make snapshot to the value 1,

at intervals defined by the associated variable param.save.snapshot int. This option

allows insights into the results of ongoing simulations.

Display parameters

With the binary variable param.display.waitbar, the display of a waitbar, showing the

progress of the simulation and remaining time until completion, can be switched on

or o↵. The corresponding variable param.display.update declares the time between

waitbar updates. However, this option comes with the disadvantage of significant

computational e↵ort for small update intervals, because of the rather slow MATLAB-

internal function draw. More visualization options are available in lines 118 to 120,

which can be enabled by setting them to the value 1 and disabled by setting them to

the value 0.
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Validation

In this chapter, the results of the model validation for the latent heat storage model

are presented. The validation was conducted in three steps.

The first validation step was to compare the results of a simulation where only heat

conduction was considered to those of the analytical solution of the Stefan problem,

introduced in Section 2.1.4.

The second test case is the classic problem described in [5], that is phase change in

a cavity filled with gallium with buoyancy forces. This test case aimed at validating

the convection model described in Section 3.3.

In the next step, a cross-validation with the CFD software ANSYS Fluent was per-

formed. As part of the parameter study, which will be discussed in Chapter 6, the

model results are compared to those replicated with the Fluent software package.

Another test case was performed which was lass a validation attempt than a test

of the model stability and feasibility in certain simulation scenarios. This test scen-

ario alternated between charging and discharging a PCM storage to see if numerical

problems arose and if the results complied with physical principles.

For the two validation attempts of the heat conduction model and convection model,

a mesh convergence analysis was performed to study the e↵ect of the discretization

parameters mesh size and time step on the numerical solution. Also, the e↵ect of the

chosen mushy region temperature range and possible complications are scrutinized,

as are the e↵ect of the aspect ratio of the chosen finite elements.
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5.1 Validation of heat conduction model

To validate the accuracy and convergence of the model without convection, the one-

dimensional Stefan problem was considered, as described in Section 2.1.4. The mater-

ial parameters used in this simulation are those of KNO3-NaNO3 given in Table 3.1,

but to simplify the analytical solution, the specific heat capacity cl = cs and thermal

conductivity kl = ks were set to the values of the solid substance. The melting point

was defined as Tm = 220 �C and the left wall input temperature as 235 �C. The initial

temperature of the simulated domain was naturally set to Tinit = Tm � ✏, with the

half width of the mushy region ✏. The heat conduction was simulated in a domain

with the length of 50mm and over a period of five hours, 5h, in which the melting

front could not quite spread over the whole domain.

This validation simulation was carried out for di↵erent values of the time step size

�t, mesh size �x and mushy region parameter ✏, where in each case the other two

parameters were held at a constant value. Therefore, the influence of the mentioned

numbers on the result was studied separately as given in the sections below.

The RMSE (root mean square error) statistical values [43]

RMSE =

vuut 1

n

nX

i=1

(sanalytical � ssimulations)
2 (5.1)

were used to compare analytical predictions and simulation results, where s is the

position of the melting front and n the number of comparison points. The melting

front positions were evaluated and compared at n = 1800 points in time, spread

equidistantly over the five hours of simulation time.

To quantify the convergence of the solution with finer mesh and smaller time steps,

the melting front positions were also compared to the most precise simulation in that

regard. For this purpose, the values sanalytical in equation (5.1) are compared with

those of the most precise simulation.
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E↵ect of mesh refinement

To study the e↵ect of mesh refinement, the Stefan problem was simulated for di↵erent

values of the mesh size �x, while the time step size �t = 1 s and mushy region

parameter ✏ = 1 �C were held constant. The RMSE compared to the analytical

prediction and the RMSE compared to the simulation with �x = 0.1mm are given

in Table 5.1.

Table 5.1: RMSE of melting front position for di↵erent values of mesh size or number

of elements compared to Stefan solution (analytical) and �x = 0.1mm simulation

(convergence)

Mesh size
�x

mm
5 2 1 0.5 0.25 0.1

Number of elements 10 25 50 100 200 500

RMSE

10�4 mm
(analytical) 9.36 2.03 1.86 2.01 2.02 2.03

RMSE

10�4 mm
(convergence) 11.0 2.07 0.76 0.07 0.02 -

With the RMSE compared to the most precise simulation with �x = 0.1mm, we

can observe very fast convergence with decreasing mesh size. However, it can be

noted that, compared to the analytical solution, the simulation does not become

more accurate with decreasing mesh size after �x = 2mm. Obviously, the accuracy

limiting factor, in this case, lies in other simulation parameters.

E↵ect of applied time step

In the next step, the mesh size �x = 0.5mm and mushy region parameter ✏ = 1 �C

were held constant, while the simulation of the Stefan problem was carried out for

di↵erent values of the time step size �t. Again, the RMSE values are given in Table

5.2, in the same fashion as in Section 5.1.
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Table 5.2: RMSE of melting front position for di↵erent values of time step size com-

pared to Stefan solution (analytical) and �t = 0.1 s simulation (convergence)

Time step size
�t

s
10 5 1 0.5 0.1

RMSE

10�4 mm
(analytical) 3.66 2.16 2.01 2.10 2.12

RMSE

10�4 mm
(convergence) 4.34 2.19 0.33 0.08 -

Again, the RMSE compared to the most precise simulation with �t = 0.1 s indicates

very fast convergence with decreasing time step size. The error compared to the

analytical solution remains at a rather steady value for time steps �t = 5 s and

smaller. This, however, can be very di↵erent for other mushy region sizes ✏. For

smaller values of the latter, the time step size should also be decreased. Otherwise,

the phase change is partly or completely skipped in certain finite elements, which is

a known problem of the apparent heat capacity method and which will be clearer in

the next subsection.

E↵ect of mushy region size

The e↵ect of the mushy region size ✏ on the simulation result of the Stefan problem

was examined under constant values of mesh size �x = 0.5mm and time step size

�t = 1 s. The error values of the melting front position compared to the analytical

solution are given in Table 5.3.

Table 5.3: RMSE of melting front position for di↵erent values of mushy region size ✏

compared to Stefan solution (analytical)

Mushy region size
✏

�C
4 2 1 0.5 0.2 0.1

RMSE

10�4 mm
(analytical) 8.00 4.04 2.01 1.06 3.04 8.28
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The quantities in Table 5.3 are best put into context by looking at the time evolution

of the melting fronts of these di↵erent simulations, given in Figure 5.1. The melting

front lags slightly behind the analytical solution for large mushy region size values,

which can be explained by the distinctly altered actual physical problem, the Stefan

problem, where no mushy region exists. Having said this, for small values of the

mushy region size, the simulation does not become accurate, due to the nature of

the apparent heat capacity method. As mentioned above, the phase change is partly

or completely skipped in certain finite elements if the mushy region is small and the

time step is large. This causes a higher RMSE value for the simulations with mushy

region size ✏ = 0.2 �C and ✏ = 0.1 �C, compared to the simulation with ✏ = 0.5 �C.

In addition, the e↵ect of this error can be seen very clearly for the simulated melting

front with mushy region size ✏ = 0.1 �C, which is plotted as a dashed red line in Figure

5.1.
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Figure 5.1: Time evolution of the melting front of simulations with di↵erent values of

the mushy region size ✏ compared to the melting front of the analytical solution
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Looking at Figure 5.1, we can obtain that the error values for the simulations with

mushy region size ✏ = 1 �C and ✏ = 0.5 �C given in Table 5.3 should be taken into

consideration with care. These small deviations from the analytical solution most

probably arise from two competing sources of error, which cancel each other out.

Firstly, phase change is partly skipped in some elements during the early stage of

the simulation with high temperature gradient, which causes the melting front to be

slightly more advanced, compared to the analytical solution. Secondly, the physical

problem is distinctly altered by introducing a mushy region, which causes a slower

progress of the melting front, which therefore cancels out the first mentioned error.

Based on the findings of the last section, it is suggested that the magnitudes of the

time step and mushy region size be chosen so that the mushy region always overlaps

its previous position, ensuring that no finite element skips the phase change. Due

to the nature of the apparent heat capacity method, these elements would not be

exposed to the e↵ect of latent heat. These parameters should thus be chosen with

care, and the findings of this section might help to give a basic idea of the necessary

scaling.

Final 1D validation result

A final 1D simulation was carried out, aiming for an excellent prediction of the Stefan

problem. For this, the mesh size was chosen as �x = 0.5mm, which was already seen

as a good approximation. The time step size �t = 0.02 s was chosen very small to

easily handle a small mushy region of ✏ = 0.1 �C.

The RMSE value compared to the analytical solution was found to be 1.08 10�4 mm

but the absolute deviation decreased with growing simulation time. Thus, the relative

error of the melting front prediction was well under 1%, except for the early stages

of the simulation. On the basis of the above, it can be concluded that the developed

model gives an excellent approximation of heat conduction problems if the simulation

parameters are carefully chosen.
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5.2 Validation of convection model

5.2.1 Test case

The validation of the convection model is based on the report [5], in which the role

of natural convection in solid-liquid-interface motion is studied during melting and

solidification of the metal gallium on a vertical wall.

The rectangular test cell (8.89 cm in height, 6.35 cm in width) was heated on one side

and a heat sink was located on the opposite side wall. The other walls were insulated

with Plexiglass, and the front and back sidewalls contained an air gap between two

Plexiglass plates. These sidewalls were assumed to be adiabatic in the validation

simulations. In the experiment used for this validation, the heat sink was held at a

constant temperature of 28.3 �C, which is also the initial temperature of the gallium

in the domain, whereas the heated wall was held at constant 38.0 �C. Since the

mathematical model of this problem is naturally described with Dirichlet boundary

conditions, prescribing a constant temperature at the walls, but Robin boundary

conditions are implemented in the FEM model, the thermal conductivity at the wall

was chosen to have a very high value ↵boundary = 1010 W/mK.

The gallium used in the experiments [5] had a purity of 99.6% and a melting temper-

ature of 29.78 �C. All material properties needed for the simulation of this test case

were extracted from the article [44], where a numerical investigation of exactly this

experiment was conducted. A total of 26 equally spaced thermocouples were installed

on the top and bottom walls and another 17 thermocouples along the center line, to

measure the horizontal temperature distributions and therefore allow for tracing the

interface of the melting front.

The shape of the melting front is given at nine di↵erent moments in the experiment,

namely at minutes 2, 3, 6, 8, 10, 12.5, 15, 17 and 19 and was extracted from the

graphic in the paper. From these melting fronts, the melted fraction in the gallium

cavity was deduced and used as a quantity of comparison. Since the shape of the
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melting front, calculated from simulation results, is not a mesh-independent solution,

the liquid fraction is calculated via the current latent heat stored in the cavity. To

draw comparisons, again the RMSE (root mean square error) value

RMSE =

vuut 1

n

nX

i=1

(aexperiment � asimulations)
2 (5.2)

is used with the n = 9 time comparison points, where a is the liquid fraction in the

cavity.

5.2.2 Validation and convergence analysis

A convergence analysis was performed on the e↵ect of mesh resolution, timestep size,

mushy region temperature range and also aspect ratio on the simulation accuracy

compared to the experimental solution in the explained test case (see Section 5.2.1).

Thus, a validation for di↵erent values of these parameters is given.

E↵ect of mesh refinement

To study the e↵ect of mesh refinement, the gallium test case, as described above, was

simulated for di↵erent values of the mesh size, while the time step size �t = 25ms

and mushy region parameter ✏ = 0.1 �C were held constant. The mesh was chosen

so that �x=�y. Therefore, the particular mesh size is labelled only by the value of

�x in the following. The RMSE compared to the experimental data and the RMSE

compared to the simulation with �x = 0.5mm are given in Table 5.4.

With the RMSE compared to the most precise simulation with �x = 0.5mm, we can

observe a significant improvement from the coarsest mesh to the mesh with �x =

2.0mm. From this value on, the convergence is very slow and the simulations do not

considerably increase in accuracy compared to the experimental data.
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Table 5.4: RMSE of liquid fraction for di↵erent values of mesh size or number of

elements compared to test case (experimental) and �x = 0.5mm simulation (conver-

gence)

Mesh size
�x

mm
4 2 1.6 1 0.8 0.5

Number of elements 352 1408 2200 5632 8800 22528

RMSE

100
(experimental) 4.72 2.32 2.26 2.31 2.16 1.95

RMSE

100
(convergence) 2.84 0.53 0.39 0.38 0.25 -

E↵ect of applied time step

The gallium test case was simulated for di↵erent time step sizes, while the mesh

size �x = �y = 1mm and mushy region temperature range ✏ = 0.1 �C were held

constant. The RMSE compared to the experimental data and the RMSE compared

to the finest simulation with �t = 2ms are shown in Table 5.5.

Table 5.5: RMSE of liquid fraction for di↵erent values of the time step size compared

to test case (experimental) and �t = 2ms simulation (convergence)

Time step size
�t

ms
50 25 15 10 5 2

RMSE

100
(experimental) 2.62 2.31 1.87 1.50 1.12 1.34

RMSE

100
(convergence) 2.77 2.63 2.22 1.65 0.94 -

Looking at the RMSE values, convergence of the simulation result with decreasing

time step size was found, although not quite as fast as with refinement of the mesh.

The same can be said about the improvement of accuracy compared to the experi-

mental data. Still, a root mean square error of below 2%, which accounts to a relative
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deviation of around 3% of the experimentally obtained liquid fraction, can be seen as

a very good validation of the convection model.

E↵ect of mushy region size

The e↵ect of the mushy region size ✏ on the simulation result of the gallium test case

was examined under constant values of mesh size �x = 1mm and time step size

�t = 25ms. Again, the RMSE compared to the experimental data is shown in Table

5.6. The RMSE values in Table 5.6 are similar to the findings in Section 5.1. Again,

the melting front lags slightly behind the compared solution, which in this case is the

liquid fraction, for large values of the mushy region size, but it is not causing large

errors. For small values of the mushy region size, the simulation gets poorer, for the

same reasons already explained for the 1D validation. We can therefore conclude that

when using the apparent heat capacity method for isothermal phase change problems,

approximated by a very small mushy region, a very small time step size must also be

used.

Table 5.6: RMSE of liquid fraction for di↵erent values of the mushy region size com-

pared to test case (experimental)

Mushy region size
✏

�C
0.5 0.25 0.1 0.05 0.02

RMSE

100
(experimental) 1.58 1.14 2.31 2.52 9.70

E↵ect of the aspect ratio

Another question with respect to stability and convergence of the developed model

was whether large aspect ratios �x
�y or �y

�x cause any problems for the simulation.

Such a choice of mesh might be convenient for simulation domains with large aspect

ratios, because of the reduced total number of elements. To answer this question, the

gallium test case was simulated for di↵erent values of the aspect ratio, while the time
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step size �t = 25ms and mushy region parameter ✏ = 0.1 �C were held constant. The

melted volume fraction of such simulations, where the aspect ratio was tested with

respect to larger values of �x, is shown in Figure 5.2. The same analysis was done

for larger values of �y, and the melted volume fraction is shown in figure 5.3.
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Figure 5.2: Time evolution of liquid fraction for di↵erent aspect ratio values ar =
�x

�y
relative to the base case �x = �y = 0.5mm compared to experimental data with

variable �x

It can be seen that the deviation from the experiment gets larger with increasing

aspect ratio, but still does not exceed the range of error of the coarsest mesh �x =

4mm,�y = 4mm, which is denoted by the aspect ratio 8/8 in both figures mentioned.

Therefore, this approximation error can be traced back to the coarseness of the mesh,

and no complications that come with large aspect ratios have been found.

Comparing Figures 5.2 and 5.3, we can obtain that the refinement of �x has the

same e↵ect as the refinement of �y. Furthermore, it can be observed that reasonably
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fine meshes already produce good simulation results, which was previously stated in

Section 5.2.2.

It should be noted though, that it cannot be ruled out that complications during sim-

ulations with large aspect ratios of the mesh could occur for di↵erent domain designs,

and it is therefore recommended to test this in an analysis of mesh convergence, as

was conducted in this chapter.
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Figure 5.3: Time evolution of liquid fraction for di↵erent aspect ratio values ar =
�x

�y
relative to the base case �x = �y = 0.5mm compared to experimental data with

variable �y

Final validation results of the convection model

To conclude the validation of the convection model via the gallium test case, the shape

of the melting front for selected simulations is discussed here.

In Figure 5.5, the melting fronts of two of the simulations already described in Section

5.2.2, with di↵erent mesh sizes �x=�y, a time step size of �t = 0.25ms and mushy
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region parameter ✏ = 0.1 �C are plotted at di↵erent comparison moments. Although

the RMSE compared to the experimental data of these two simulations (see Table

5.4) was similar, there is still a significant di↵erence in the shape of the developing

melting fronts. The same is true for the two simulations with �t = 5ms and �t =

50ms, both with �x=�y = 1mm and ✏ = 0.1 �C, which are given in Figure 5.4.

Interestingly, the shape of the melting front of the coarser simulation seems to fit the

experimentally obtained melting front better than the one with the finer parameters.

A possible explanation of this is the separation of physical and numerical e↵ects,

whereby expected modelling and discretization errors might cancel each other out

on a coarse mesh compared to a finer mesh solution [45]. This e↵ect of course is

already well known in CFD simulations and was reported numerous times, in the

reference [46], for example, where it was found that reasonably coarse meshes might

yield better results compared to finer mesh structures and that further refinements

might even deteriorate the results.
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Figure 5.4: Melting fronts of two simulations with di↵erent time step size compared

to experimental data, given at five time points
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In spite of the peculiarities explained in this section, overall a good agreement of the

model predictions with the experimental results published in [5] was found.
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Figure 5.5: Melting fronts of two simulations with di↵erent mesh size compared to

experimental data, given at five time points

5.3 Cross-validation with ANSYS Fluent

In the course of conducting the parameter study, which will be discussed in Chapter 6,

simulations were carried out in the developed MATLAB model and also run in ANSYS

Fluent. Thus, a cross-validation with the renowned CFD software is performed, a brief

illustration of which is shown here.

In the cases which could be compared using the two simulation methods, a maximum

relative deviation of 13% at any time step in the simulated liquid fraction was found

when compared to the prediction of Fluent. In general though, the observed discrep-

ancy was considerably smaller than that. As an example, the comparison for the case

of a standard PCM cavity (as will be described in Chapter 6) in horizontal position
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and heated from the left side, shall be given here. Figure 5.6 shows the phase structure

in the cavity at di↵erent times calculated by Fluent on the left side and calculated

by the MATLAB model on the right side. Not only the extent of the liquid phase,

but also the shape of the melting front, simulated by the developed FEM model, were

found to be in very good agreement with the results from Fluent.
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(a) after 15 minutes

(b) after 30 minutes

(c) after 60 minutes

(d) after 90 minutes

(e) after 120 minutes

(f) after 150 minutes

(g) after 180 minutes

Figure 5.6: Phase structure in PCM cavity at di↵erent times

Note. The solid region is portrayed in blue and the liquid region is portrayed in red

for the Fluent simulation (left side) and yellow for the FEM simulation (right side).
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5.4 Test of a fluctuating charging/discharging

scenario

To determine the stability of the developed model in a simulation of operating latent

heat hybrid storage, a test scenario with multiple irregular charging and discharging

cycles was performed. The goal was to discern whether two or even more separated

liquid cells could develop in this PCM storage and to observe whether any numerical

problems thereby occur.

It should be pointed out that, the CFL condition, which is introduced when the

nonlinear Navier-Stokes term is treated explicitly (see Section 3.3.2), is necessary for

the stability of the simulation. This condition implies that the maximum velocity

occurring in the domain must be smaller than the ratio of the spatial resolution to

the time step size.

The geometry and material properties used in this examination are those of the gal-

lium validation case, described in Section 5.2. The input temperature on the left side

wall of the domain was specified di↵erently, and in an irregularly fluctuating man-

ner, which is shown as a dashed line in Figure 5.7. The mean temperature in the

gallium cavity, as well as the maximum velocity appearing in the molten gallium, are

presented in this Figure as solid blue and orange lines respectively.

It can be found that the velocity in the cavity builds up very quickly to the max-

imum value and is later diminished by declining driving forces, namely, temperature

di↵erences in the domain. This reaction can be seen for examples at around 7, 27

and 37 minutes, when the gallium is fully liquefied, and when the input temperature

drops and a solid layer develops at the left side wall. Hence, no further adaption to

the model to slow down the convective motion must be made. Furthermore, no nu-

merical di�culties or ‘unphysical behaviour’ was observed during this test simulation

scenario.

As to the development of separated liquid cells in the gallium cavity, no more than

two of them could be observed at any time in the simulation. The dynamic of the
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convective heat transfer leads to the separated zones merging very quickly and there-

fore makes more than two of these zones coexisting rather unlikely. Although these

improbable scenarios might occur in very wide and flat cavities, the shape of the melt-

ing front studied later in Chapter 6 leads to the assumption that they will not occur

in this kind of cavity with aluminium fins. An example snapshot of the temperature

and velocity field during the merge of two separated liquid cells is shown in Figures

5.8 and 5.9. The solid fraction can be easily obtained from the representation of the

velocity distribution in 5.9.
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Figure 5.8: Temperature distribution in the gallium cavity at the simulation time of

26 minutes during charging/discharging scenario
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Figure 5.9: Velocity distribution in the gallium cavity at the simulation time of 26

minutes during charging/discharging scenario
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Chapter 6

Parameter studies

As an example of what can be done with the developed FEM MATLAB model, a

parameter study conducted to investigate di↵erent designs specifics of latent heat

storage cavities is shown here. Also, the dynamics of melting and solidification for

di↵erent orientations of a selected PCM cavity were examined for the charging and

discharging mode. For this selected cavity design, the e↵ect of natural convection is

presented in contrast to simulations which do not consider convection.

6.1 Study of di↵erent cavity designs

As already mentioned in this thesis, a number of di↵erent designs are currently under

consideration for the PCM cavity of the HyStEPs hybrid latent heat storage. At this

point, the properties of the materials and operation parameters are not yet known.

The parameter study of di↵erent cavity dimensions discussed in this section was con-

ducted at a very early stage in the project. Many properties were still unknown

or open for discussion. Also, natural convection was not yet implemented into the

model, which is why this parameter study considers only heat conduction. There-

fore, the simulations conducted and the results obtained might not be of great value

for future considerations. However, some unique characteristics of the cavity design

discussed here could also be found for di↵erent dimensions of the cavity simulated

here. Furthermore, the methodical approach to accomplish first estimations of the

behaviour of chosen designs can be adopted in the future.

The basic design of the latent heat storage in consideration is that of an aluminium-

framed PCM cavity attached to the steel containment of the steam storage, while the

outward-facing side of the cavity is insulated. Of course, the real life implementation

will most probably look di↵erent due to engineering reasons, but nevertheless, should
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be well approximated by this model. To enhance the heat transfer in the PCM cavity,

aluminium fins should be placed in the plane of the axis of the cylindric steam storage.

A sketch of such a fin section is shown in Figure 6.1.

Vienna University of Technology 1Dominik Pernsteiner

Steel

Aluminum

PCM

Xsteel
Xaluminium

XPCM

Yaluminium

YPCM

Yaluminium

Figure 6.1: Sketch of a typical PCM cavity fin section attached to the steel contain-

ment of the steam storage

6.1.1 Simulated parameters

The simulation domain of the PCM cavity was defined as shown in Figure 6.1, with

sections of di↵erent materials. The material properties are those shown in Table 3.1.

The width of the steel containment was assumed to be 10mm, and the heat transfer

from the steam to the steel containment was described by the thermal conductivity

↵in = 100 W
m2K . The heat transfer through the well insulated outwards facing wall

was described by the thermal conductivity ↵out = 0.02 W
m2K . Again, these paramet-

ers might be very di↵erent in reality and should be thoroughly discussed for future

evaluations.

Regarding the computational parameters for these studies, a mesh of 80 times 80

elements was chosen. The mushy region parameter was set to ✏ = 2.0 �C, together

with a time step size of �t = 10 s. The initial temperature in the domain was set to

190 �C and the input temperature was set to 235 �C for one hour of time and back to
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190 �C for a second hour, which should represent a simplification of a typical operation

cycle of the steam storage, where melting and solidification can be observed.

The aim of the conducted parameter study was to obtain an ‘ideal’ value of the geo-

metric aspects of a fin section, meaning the dimensions of the PCM XPCM and YPCM

and the width of the aluminium fins Yaluminium for this kind of storage operation.

The width of the aluminium between the steel containment and the PCM was set to

a constant Xaluminium = 5mm and the steel containment width was set to a constant

Xsteel = 10mm.

A total of 32 simulations were carried out, of which 16 simulated a fin width of

Yaluminium = 5mm and 16 a fin width of Yaluminium = 2.5mm. The dimensions of

the PCM were varied between XPCM , YPCM = 5mm and XPCM , YPCM = 50mm.

The simulated cases together with the associated tagging are given in Tables 6.1 and

6.2.

Table 6.1: Simulated parameter study cases and associated tags with fin width

Yaluminium = 5mm

YPCM

mm

50 25 10 5

50 10v10 10v20 10v30 10v40

XPCM

mm

25 20v10 20v20 20v30 20v40

10 30v10 30v20 30v30 30v40

5 40v10 40v20 40v30 40v40
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Table 6.2: Simulated parameter study cases and associated tags with fin width

Yaluminium = 2.5mm

YPCM

mm

50 25 10 5

50 11v10 11v20 11v30 11v40

XPCM

mm

25 21v10 21v20 21v30 21v40

10 31v10 31v20 31v30 31v40

5 41v10 41v20 41v30 41v40

6.1.2 Simulation results

To analyse the simulation results and compare the di↵erent cavity dimensions, the

evolution of the enthalpy change per surface area
�H

A
was calculated, where A is

the surface area between the PCM fin section and the steam storage. The surface

therefore takes the value

A = (YPCM + 2Yaluminium) 1m . (6.1)

In Figures 6.2 and 6.3, this quantity and the latent heat fraction of it is plotted for

the di↵erent simulated cases. In the parameter studies conducted here, the latent

heat fraction of the total enthalpy change �H is evidently relatively small. This is

because the containment of 10mm steel and 5mm aluminium was also considered,

which o↵ers a larger storage of sensible heat.

It can be obtained that, for the selection of longer cavities (XPCM = 50mm, 25mm),

the lower cavities can store more enthalpy per surface area and the charging and dis-

charging process is also quicker. This di↵erence in speed of charging and discharging

between the cavity heights can also be obtained for the shorter cavities, as long as
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(b) cases with constant XPCM = 25mm
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(c) cases with constant XPCM = 10mm
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(d) cases with constant XPCM = 5mm

Figure 6.2: Enthalpy per surface area of the simulated cases with fin width

Yaluminium = 5mm

Note. The total enthalpy change �H is plotted using solid lines, the latent heat

fraction using dashed lines.

the PCM is not fully liquefied. At that point, the higher cavities are able to store

more enthalpy because of the higher ratio of PCM to aluminium. After all, the di-

mensioning of the cavity is also a question of cost. If unused PCM material must be
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(b) cases with constant XPCM = 25mm
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(c) cases with constant XPCM = 10mm
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(d) cases with constant XPCM = 5mm

Figure 6.3: Enthalpy per surface area of the simulated cases with fin width

Yaluminium = 2.5mm

Note. The total enthalpy change �H is plotted using solid lines, the latent heat

fraction using dashed lines.

avoided because of budgetary reasons, a cavity as in case 41v10 should be preferred.

If the material costs are not considered and the total storable enthalpy should be

maximized, cavity dimensions as in case 11v40 are the optimal choice.
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Looking at Figure 6.4, we can conclude that the smaller fin width of Yaluminium =

2.5mm should be preferred over the version with Yaluminium = 5.0mm because the

over all storage capacity is higher and the charging/discharging speed is not dimin-

ished by the thin fins. This could of course be di↵erent for PCM materials with higher

thermal conductivity, in which case the heat transfer could be limited by the width

of the aluminium fins. However, convection, which leads to an e↵ectively higher heat

conductivity, could also provoke this e↵ect. Finally, constructive constraints must

also be considered, which generally include a lower limit for the minimum width of

aluminium fins.
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YPCM = 50mm

Figure 6.4: Enthalpy per surface area of the simulated cases with di↵erent fin width

Yaluminium

Note. The total enthalpy change �H is plotted using solid lines, the latent heat

fraction using dashed lines.

Considering the width of the fins, it should be stressed that the results obtained in

this study should not lead to the assumption that thinner fins are always the better

choice. In fact, further investigations on the fin dimensions of a cavity, as described
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in Section 6.2.2 with XPCM = 118mm, showed a significant influence of the fin width

on charging/discharging speed. Although these investigations are not particularized

in this thesis, this should again emphasize the importance of further studies on the

dimensioning of the HyStEPs cavity.

6.2 Comparison of di↵erent cavity orientations

In this section, the e↵ect of the orientation of a typical PCM cavity with respect to

its position on the steam storage is studied. The term ‘typical’ PCM cavity is of

course very subjective, in that it is problem-dependent and based on many di↵erent

assumptions. As mentioned earlier, the cavity dimensions studied in Section 6.1 were

later found to be of little relevance for future application. Based on an assessment of

fellow HyStEPs project partners, the amount of PCM needed to produce a desired

latent heat storage capacity for a designated application case could be estimated and

leads to a required PCM coating of the steam storage of around 120mm thickness.

Thus, the geometry of an, at this point, more representative PCM cavity fin section,

described in detail in the following, is simulated in this section.

6.2.1 Simulations in ANSYS Fluent

The simulations carried out here in the developed MATLAB model were also run in

ANSYS Fluent. This was done to double-check the results and to have a second tool

ready and parametrized for future simulations. In Section 5.3, the successful cross-

validation was already reported. As the simulations in Fluent are not essentially part

of this thesis, these will not be discussed in detail. It should only be noted, that all

results obtained from the two simulation methods were very similar (see for example

5.6) and can be interpreted the same way.

Another observation worth mentioning is the negligible e↵ect of small mushy regions

for the kind of phase change problems simulated. A comparison of a typical parameter

study case, as reviewed in this section and simulated in Fluent once with a mushy
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region parameter of 0.1 �C and once with isothermal phase change (which Fluent can

handle), showed a relative di↵erence in the results of less than 1.5%. This is a further

convenience of the developed MATLAB model with regard to the apparent heat ca-

pacity method, because it means that isothermal materials can also be approximated

fairly well by a very small mushy region.

6.2.2 Simulation parameters

The simulated domain still represents the PCM cavity fin section illustrated in Figure

6.1, except for the steel containment, which was not implemented in this study in

order to lower the computational e↵ort. This can be justified by the finding during

the preliminary parameter study, explained in Section 6.1, that the steel containment

has a negligible e↵ect on the transient behaviour of the whole cavity. The dimensions

of the fin section took fixed values in the simulations described here. The PCM was

defined by XPCM = 118mm and YPCM = 23mm, the width of the aluminium fins

was set to Yaluminium = 1mm, and between the PCM and the steam storage an

aluminium layer of Xaluminium = 2mm was defined.

The material properties used for these simulations can again be found in Table 3.1.

The heat transfer from the steam to the aluminium layer (via the neglected steel

containment) was described by the thermal conductivity ↵in = 700 W
m2K . The heat

transfer through the outward facing wall was assumed as adiabatic.

Regarding the computational parameters, a convergence analysis with respect to mesh

and time step size was performed. For the chosen mushy region parameter of ✏ =

0.1 �C, convergence was reached with a time step size of �t = 0.1 s. A mesh with

quadratic elements of 0.5mm length was chosen for the simulations, which agreed

best with the comparative results from ANSYS Fluent.

For the simulation of the charging process of the PCM fin section, the initial temper-

ature in the domain was set to 218 �C and the input temperature was set to 230 �C for

three hours of simulation time. For the discharging simulation, an input temperature

of 200 �C was assumed and the initial temperature set to 230 �C.
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Figure 6.5: Schematic illustration of the five simulated cavity orientations in relation

to the gravity vector

The simulations for charging and discharging of the PCM cavity, which included

both the modelling of heat conduction and natural convection, were carried out for

five di↵erent positions on the steam storage with characteristic angles in relation to

the gravity vector. The five di↵erent orientations 0�, 45�, 90�, 135� and 180� are

illustrated in Figure 6.5.

6.2.3 Simulation results

The change of total enthalpy during the charging process, as well as the latent heat

fraction, are presented in Figure 6.6. Another representation of the simulation results

is shown in Figure 6.7, where the evolution of the melted volume fraction during the

charging and discharging process of the cavity is charted for the di↵erent orientations,

as is the case in which only heat conduction is considered.

The horizontal cavity (90�) just reaches total liquefaction and, therefore, the fully

charged state, only at the very end of the three hour simulation time, while for

the upward facing cavities (0�, 45�), this state is already reached at two and a half

hours. The downward facing cavities (135� and 180�) could not be completely charged
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during the three hours of simulation time and a solid PCM fraction of more than 10%

remained. Furthermore, these two downward facing cavities show almost the exact

same transient behaviour and only slightly outperform the charging process of the

simulated case, where natural convection was neglected.
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Figure 6.6: Change of enthalpy during the charging process

Note. The total enthalpy change �H is plotted using solid lines, the latent heat

fraction using dashed lines.

Looking at Figure 6.7(b), it can be concluded that the orientation had no influence

on the performance of the discharging process and that the latter is e↵ectively the

same as for the case in which natural convection was neglected.

In the appendix B, some plots of the temperature and velocity distribution of the

simulation results for the five di↵erent cavity orientations are given, to illustrate the

discussion in this chapter.

81



Chapter 6. Parameter studies

0 0.5 1 1.5 2 2.5 3
time [h]

0

10

20

30

40

50

60

70

80

90

100
m

el
te

d 
vo

lu
m

e 
fra

ct
io

n 
[%

]

0 degrees
45 degrees
90 degrees
135 degrees
180 degrees
conduction only

(a) charging

0 0.5 1 1.5 2 2.5 3
time [h]

0

10

20

30

40

50

60

70

80

90

100

m
el

te
d 

vo
lu

m
e 

fra
ct

io
n 

[%
]

0 degrees
45 degrees
90 degrees
135 degrees
180 degrees
conduction only

(b) discharging

Figure 6.7: Evolution of the melted volume fraction during charging (a) and dischar-

ging (b) of the cavity for di↵erent orientations

6.3 Discussion of conduction vs. convection

simulations

Based on the results given in the previous section, we can conclude that the e↵ect

of natural convection on the charging process of the PCM cavity is highly dependent

on the respective orientation. It cannot be neglected for upward facing cavities and

is still a significant factor for cavities in horizontal position. For downward facing

cavities however, the e↵ect of natural convection is negligible and its behaviour can

be described by heat conduction only, although it may be possible to improve accuracy

by introducing a convective enhancement factor [47].

During discharging, the e↵ect of natural convection was found to be insignificant,

regardless of the cavity orientation.
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Conclusion

This last chapter presents a short summary of the overall approach to the stated prob-

lems and the main findings during the work on this diploma thesis. The findings are

evaluated and put into perspective using previous research and possible applications.

Finally, future investigation objectives and extensions to the developed MATLAB

model are suggested.

7.1 Summary

The main task of this diploma thesis was the development of a MATLAB model,

preferably via the finite element method, to solve phase change problems in typical

latent heat storage geometries, considering both heat conduction and natural con-

vection. To this end, comprehensive literature research was conducted to search for

modelling techniques that are easily applicable to phase change problems, as occur

in the HyStEPs hybrid latent heat storage. The necessary theoretical framework to

understand the development of the numerical model was outlined in Chapter 2.

Chapter 3 explained the assumptions and discretization made to model the phase

change problem. The simple-to-use apparent heat capacity method (see Section 2.2.2)

was chosen to account for latent heat implementation in the material. To discretize

the energy equation (3.1), the finite element method was applied, using a rectangular

mesh of four-noded bilinear elements to approximate the simulated domain. For

the modelling of convection via the Navier Stokes equation (3.4), an existing finite

di↵erence approximation method, documented in [36], was implemented, adapted to

the problem and extended to fit the desired functionality. It should be noted though,

that this code was used after unsuccessful attempts to discretize the Navier-Stokes

equation by finite elements, using a penalty formulation for the pressure. In this case,
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the e↵ort to get a convergent numerical solution unfortunately failed. Nonetheless,

this should not discourage fellow programmers from trying to apply this method for

similar problems, as it was already done in [11].

A solid MATLAB implementation of the model explained in Chapter 3 was developed

and documented in Chapter 4. This code can handle any desired layout of mater-

ials arranged on a rectangular domain, which is especially useful for PCM storage

modelling with internal fins. The programming also aimed to achieve a high degree

of vectorization to minimize the computational e↵ort. While simulations considering

only heat conduction considered lead to very fast solutions, the sparsity patterns of

the matrix equation systems to solve cannot be exploited the same way for simulations

considering natural convection. For large numbers of elements, the large systems of

equations to be solved decreases the computational performance significantly.

The simulation results could be successfully validated in three steps, as documented

in Chapter 5. The modelling of heat conduction could be verified as very accurate,

when compared to the analytical solution of the one-dimensional Stefan problem.

Depending on the choice of computational parameters, relative errors of the evaluated

quantities of well under 1% could be obtained. Also, fast convergence of the solution

with decreasing time step size and refinement of the mesh size were observed.

Regarding the validation of the convection model, a good agreement of the model pre-

dictions with the experimental results published in [5] was found, whilst the results of

the mesh convergence analysis were not as promising as those for the one-dimensional

heat conduction model.

Additionally, a cross-validation of the convection model, given by simulations run in

the CFD software ANSYS Fluent, was presented in Section 5.3, which also showed

only small discrepancies between the two simulation methods.

Finally, parameter studies conducted with the developed MATLAB model, are given

in Chapter 6. Di↵erent cavity designs were analysed with respect to total enthalpy

input per surface area on the steam storage, while sustaining a fast charging and

discharging speed.
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Di↵erent cavity orientations were studied with respect to their position on the steam

storage, which, in the charging process, showed a significant influence of natural con-

vection for upwards facing cavities and horizontal cavities, but diminishing influence

for downwards facing cavities. During discharging, the e↵ect of natural convection

was found to be insignificant, regardless of the cavity orientation.

7.2 Scope and limitations

The developed MATLAB model has proven to be an e↵ective tool for modelling phase

change problems, considering both conduction and natural convection heat transfer, in

typical PCM cavities. This was shown by conducting informative parameter studies,

which provide an example of the methodology for further investigations.

The code can also be used as a basis for model order reduction, which will be carried

out by fellow research colleagues. This will ultimately lead to a reduced order model,

which is essential for the real-time operation and control of the HyStEPs hybrid latent

heat storage.

In comparison to commercially available code, such as ANSYS Fluent, the developed

MATLAB model provides high usability in regards to running and evaluating para-

meter studies, which can be run parallel on any desired number of sessions/computing

units. Furthermore, modifications to the existing code can be easily made, aiding

model order reduction by using MATLAB directly. This is a major benefit for future

work carried out in the HyStEPs project.

Having said this, some issues remain with the current MATLAB model. The nature

of the apparent heat capacity method brings some di�culties in handling isothermal

phase change problems. Although it could be obtained from Fluent simulations (see

Section 6.2.1) that isothermal phase change can be approximated well by a very small

mushy region, these simulations still require careful selection of computational para-

meters. As advised in the validation in Section 5.1, the magnitudes of the time step

and mushy region size should ensure that the area of the mushy region progresses

by overlapping its previous position. Otherwise, finite elements would skip the phase
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change and would not be exposed to the e↵ect of the latent heat. Even if these limit-

ations are considered, an approximation error still remains, which is not the case for

certain implementations of the enthalpy method, introduced in Section 2.2.1. Another

option is source-based methods, in which the latent heat evolution is accounted for

by the definition of a source term, instead of accounting for the latent heat in the

specific heat coe�cient. Such an approach was followed for some time to further im-

prove the model capabilities, though it could not completely be put into practice, for

reasons of limited time during this work. However, it is highly suggested to take up

this approach again, which is outlined in more detail in the next section (see Section

7.3.3).

Although the parameter studies reported in Chapter 6 were based on preliminary

design and material choices of the HyStEPs cavity, at least the methodological ap-

proach can be used for the purpose of future parameter studies. The findings of

Section 6.3, with regard to the e↵ect of natural convection in a typical PCM cavity,

could prove to be a valuable insight for the development of the operating and con-

trol strategy in the HyStEPs project. For example, these results indicate a far less

complicated charging behaviour for some cavity orientations, which implies a reduced

number of sensors to be placed in the latter.

The observed e↵ects can of course occur very di↵erently for another PCM mater-

ial or a modified cavity design. PCM materials with higher viscosity might lead to

larger di↵erences between the simulated cavity orientations, as will be opposite for

low viscosity substances. The aspect ratio of PCM cavities has a significant e↵ect on

the heat transfer performances, as shown in reference [48], where, based on computa-

tional results, it was obtained that the melting rate increases as the aspect ratio of a

rectangular cavity increases.

The reported e↵ect of natural convection during charging and the su�cient approxim-

ation of the discharging process by only considering heat conduction was also reported

in reference [27] for similar PCM cavity geometry.
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7.3 Suggested future objectives

7.3.1 Subsequent parameter studies

As mentioned before, the design of the latent heat cavities, which will be mounted

on a Ruths steam storage as part of the HyStEPs project, is not fixed at this time.

Therefore, the parameter studies conducted in this thesis may not be particularly

valuable for further investigations. Further parameter studies like the ones conducted

in this thesis are suggested for the final design decision and to thoroughly analyse the

characteristics of the chosen PCM cavity.

Building on the results of work, a more thorough parameter study is currently un-

derway to provide a detailed foundation for design optimization of the considered

PCM cell geometry [49]. Therein, varying aluminium proportions, varying fin spa-

cings and di↵erent orientations of the PCM cell were simulated and their impact on

charging/discharging speed was analysed.

7.3.2 Improvements of the existing MATLAB model

Some improvements to the developed MATLABmodel may help reduce computational

e↵ort while maintaining the same level of accuracy. One suggestion is to implement

adaptive time stepping, like for example presented in [50], instead of a fixed time step.

Choosing a lager time step automatically could help speed up simulations in which

temperature gradients are small and fluid flow is slow.

Another option is to specify separate fixed time steps or adaptive time step schemes

for the finite element heat conduction problem and the finite di↵erence Navier-Stokes

solution method. Since the time step is generally limited by the CFL condition and

not by the desired accuracy of the much faster FEM solution method, this would

probably only lead to slightly better computational performance.
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Furthermore, adaptive mesh or even moving mesh discretization methods, as docu-

mented in [11], could be considered for implementation. However, in this case, many

of the faster preprocessing methods in the current code could note be used, and the

benefit to performance is questionable

7.3.3 Fundamental modifications to the existing MATLAB

model

Source-based method

As mentioned in Section 7.2, the implementation of a source-based method was at-

tempted for some time during this work. Although the existing code was altered by

the guidelines given in several references ([51] and [52]), the outcome was not satisfying

since the simulation results were not reliable. For further reference, a brief explan-

ation of the source-based method, is given here. This method could be especially

important for accurately modelling isothermal phase change problems.

In the source-based method, the governing energy equation (2.5) for the apparent

heat capacity method is written as

@(⇢cT )

@t
= r(krT )�r(⇢cT u) + S . (7.1)

In this form however, c takes a fixed value instead of the apparent heat capacity, and

the source term

S = ��H
�a

�t
(7.2)

is added to the equation. Applying Galerkin’s method to this equation, as done in

Section 3.2.2, yields again a finite element system of the form

[C]
n
Ṫ
o
+ [K] {T} = [R] . (3.23)

Here, the source term is incorporated in the system matrices [K] and [R], and the

equation system (3.23) can be solved in each time step by an iterative scheme as

highlighted in the following:
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1. The source term (7.2) is approximated by using an estimate of the liquid fraction

field a.

2. Equation (3.23) can be evaluated and solved by a backwards Euler step.

The obtained solution for the temperature field will not necessarily be consistent with

the current liquid fraction field. For instance, a predicted nodal temperature T 6= Tm

would not be consistent with a liquid fraction a 2 (0, 1). That is why the value of the

nodal liquid fraction field is updated so that on subsequent iterations of step 1 and 2

the predicted nodal temperature is ‘driven’ to Tm, until a desired accuracy is reached.

Besides the approximation of the source term, the key to the source-based iteration

is the method of updating the liquid fraction a. Numerous schemes for this purpose

are found in literature, of which the reference [51] is emphasized here.

Enthalpy method

A di↵erent approach to the phase change problem would be to consider enthalpy H

as dependent variable, instead of the temperature T . Although this approach would

require serious modifications to the existing MATLAB implementation, it is possible

to build on this work and reuse the existing formalism. For further reference, a good

example of a finite element implementation of the enthalpy method can be found in

[9].
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[13] S. Braun. Strömungslehre für TPh. TU Wien, Institut für Strömungsmechanik
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Appendix A

MATLAB code listings

This appendix contains listings of the main functions of the developed MATLAB

model.

Code Listing A.1: Code of main function PCMsolver

1 %% PCM Solver

2 % Author: Lukas Kasper

3 % Last modified: 03.05.2019

4 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

5
6 function PCMsolver(input_data)

7 dbstop if error;

8 %clearvars -except input_data;

9 %close all;

10
11 strTimestamp = datestr(now() ,30); tic; % get timestamp

12 fprintf( Starting simulation / timestamp %s\n ,strTimestamp);

13
14 %% preprocessing

15 % load input variables

16 eval(input_data);

17 % additional input variables

18 non = param.mesh.non;

19 not = param.mesh.not;

20
21 % initialize waittime bar

22 if param.display.waitbar == 1

23 f = waitbar(0, Fortschritt ); timearray = 0; up = 0;

24 end

25
26 % mesh generation

27 [param] = mesh2d(param);

28 v2struct(param.geom);

29 v2struct(param.mesh);

30 v2struct(param.icbc);

31
32 % visualize material in domain

33 if param.display.matplot == 1

34 scatterbar3(center_coord (1,:) , center_coord (2,:) ,...

35 elem_mat ,x_length/max(nx,ny));

36 end

37
38 % initialize arrays for data saving

39 Tt = zeros(non ,ceil(not/param.save.intervall));

40 s = 1;

41 if param.convection == 1

42 Ut = zeros(nx -1,ny,ceil(not/param.save.intervall));

43 Vt = zeros(nx,ny -1,ceil(not/param.save.intervall));

44 end

45
46 % initialize nodal temperature matrix

47 T_new = zeros(non ,1);

48 T_old = T_init (:);

49 T_0 = zeros(not ,1);

50
51 % initialize staggered grid velocity matrices

52 U_old = zeros(nx -1,ny);

53 V_old = zeros(nx,ny -1);

54 U_new = zeros(nx -1,ny);

55 V_new = zeros(nx,ny -1);

56
57 % add boundaries to the velocity matriced
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58 Uwb = [zeros(1,ny); U_old (:,:) ;zeros(1,ny)]; % east and west boundaries

59 Uwb = [-Uwb(:,1) Uwb -Uwb(:,end)]; % north and south boundaries

60 Vwb = [zeros(nx ,1) V_old (:,:) zeros(nx ,1)]; % north and south boundaries

61 Vwb = [-Vwb(1,:); Vwb ;-Vwb(end ,:)]; % east and west boundaries

62 Ue = avg(Uwb ) ;

63 Ve = avg(Vwb);

64
65 % initialize solid parts

66 elempcm = elem_mat(reshape (1:nel ,nx,ny)) == 1;

67 T_ij = reshape(T_old (:),nx+1,ny+1); % staggered grid temperatures

68 %Tl = param.pcm.Tm+param.pcm.dTm; % temperature of complete

liquidification

69 Tl = param.pcm.Tm-param.pcm.dTm; % temperature of partial

liquidification

70 % p_el = phase of element [0 = solid , 1 = liquid]

71 p_el = false(nx,ny);

72
73 % initialize heat flow and enthalpy arrays

74 Q_in = zeros(not ,1);

75 Q_out = zeros(not ,1);

76 H = zeros(not ,1);

77 H_l = zeros(not ,1);

78
79 %% FEM preprocessing

80 % calculate shape matrices

81 [gauss] = shape_mat(param);

82 % preprocess FEM data

83 [gauss] = FEM_preprocessor(T_old ,gauss ,param);

84
85 %% time stepping

86 for t = 1:not

87
88 %% FEM calculation

89 [C,K,R,Qin_e ,Qout_e ,H(t),H_l(t)] = ...

90 heat2Delem_new(t,T_old ,Uwb ,Vwb ,p_el ,gauss ,param);

91
92 % heat flows and enthalpy

93 %%{

94 if t > 1

95 Q_in(t) = Q_in(t-1) + Qin_e; % input heat flow

96 Q_out(t) = Q_out(t-1) + Qout_e; % output heat flow

97 else

98 Q_in(t) = Qin_e; % input heat flow

99 Q_out(t) = Qout_e; % output heat flow

100 end

101 %}

102
103 %% solve equation for temperatures at t+1

104 T_new = solve_euler_back(T_old ,C,K,R,param);

105
106 % refresh staggered grid temperatures

107 T_ij = reshape(T_new ,nx+1,ny+1); % staggered grid temperatures

108 if param.convection == 1

109 p_el = min(min( T_ij (1:end -1,1:ny),T_ij (1:end -1,2:ny+1)),...

110 min(T_ij (2:end ,1:ny),T_ij (2:end ,2:ny+1) ))>Tl...

111 & elempcm;

112 end

113
114 %% solve velocities at t+1

115 if any(any(p_el)) == 1

116
117 %% operating temperature for boussinesq term

118 % mean temperature in liquid region

119 T_0(t) = mean(sum(T_new(IEN(:,reshape(p_el ,[] ,1) ==1)))/4);

120 % fixed temperature

121 %T_0(t) = 230;

122 param.pcm.T_0 = T_0(t);

123
124 %% solve navier stokes equations

125 [U_new ,V_new] = solve_navierstokes(U_old ,V_old ,T_ij ,p_el ,param);

126
127 %% reset velocities in solid part

128 U_new = U_new .*( p_el (1:nx -1,:) & p_el (2:nx ,:));

129 V_new = V_new .*( p_el (:,1:ny -1) & p_el (:,2:ny));

130
131 %% add boundary values to velocitiy matrices

132 % in domain phase boundary

133 U_new (:,1:end -1) = U_new (:,1:end -1)-U_new (:,2:end).*...

134 (p_el (1:end -1,2:end)==1 & p_el (1:end -1,2:end)~=p_el (1:end -1,1:end

-1));
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135 U_new (:,2:end) = U_new (:,2:end)-U_new (:,1:end -1).*...

136 (p_el (1:end -1,1:end -1) ==1 & p_el (1:end -1,1:end -1)~=p_el (1:end

-1,2:end));

137 V_new (1:end -1,:) = V_new (1:end -1,:)-V_new (2:end ,:).*...

138 (p_el (2:end ,1:end -1)==1 & p_el (2:end ,1:end -1)~=p_el (1:end -1,1:end

-1));

139 V_new (2:end ,:) = V_new (2:end ,:)-V_new (1:end -1,:).*...

140 (p_el (1:end -1,1:end -1) ==1 & p_el (1:end -1,1:end -1)~=p_el (2:end ,1:

end -1));

141
142 % domain boundaries

143 Uwb = [zeros(1,ny+2); [-U_new (:,1) U_new (:,:) -U_new(:,end)];...

144 zeros(1,ny+2)];

145 Vwb = [[0 -V_new (1,:) 0] ;[zeros(nx ,1) V_new (:,:) zeros(nx ,1)];...

146 [0 -V_new(end ,:) 0]];

147
148 else

149 U_new = U_old;

150 V_new = V_old;

151 end

152
153 %% waitbar update

154 if param.display.waitbar == 1

155 [f,timearray ,up] = waitbar2D_simple(f,param ,timearray ,toc ,t,up);

156 end

157 %% dump variables

158 if mod(t,param.save.intervall) == 0

159 Tt(:,s) = T_new;

160 if param.convection == 1

161 Ut(:,:,s) = U_new;

162 Vt(:,:,s) = V_new;

163 end

164 s = s+1;

165 end

166 if param.save.make_snapshot == 1

167 if mod(t,param.save.snapshot_int)==0

168 strFilename = sprintf( results/dump_%s_t%03d.mat ,param.save.name

,t);

169 if param.convection == 1

170 save(strFilename , C , K , R , t , T_new , T_old , U_new ,...

171 V_new , U_old , V_old , H , Q_in , Q_out , H_l , param );

172 else

173 save(strFilename , C , K , R , t , T_new , T_old ,...

174 H , Q_in , Q_out , H_l , param );

175 end

176 end

177 end

178
179 %% initialize T,U,V for next timestep

180 T_old = T_new;

181 U_old = U_new;

182 V_old = V_new;

183 end

184
185 %% postprocessing

186 % delete waitbar

187 if param.display.waitbar == 1

188 delete(f);

189 end

190 % save data

191 strFilename = sprintf( results/dump_%s_t%03 d_final.mat ,param.save.name ,t);

192 save(strFilename);

193
194 % plots after total time

195 if param.display.Tplot == 1

196 makeplot(T_new ,param);

197 end

198 if param.display.Vplot == 1

199 makeplot_konv(U_new ,V_new ,param);

200 end

201
202 % show simulation time

203 strTimestamp = datestr(now() ,30); % get timestamp

204 fprintf( Simulation complete / timestamp %s\n ,strTimestamp);

205 sim_time = toc;

206 fprintf( Total simulation time [s]: %5.0f\n ,toc);

207 end
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Code Listing A.2: Code of function mesh2d

1 %% creation of the 2D mesh

2 function [param] = mesh2d(param)

3 % The 2D mesh is created. Coordinates and connectivities of nodes are

4 % computed. Boundary elements and element materials are flagged.

5 % All information is written to the structure array param.

6
7 %% load input data

8 nx = param.mesh.nx;

9 ny = param.mesh.ny;

10 non = param.mesh.non;

11 nel = param.mesh.nel;

12 v2struct(param.geom);

13
14 %% generate coordinates of nodes

15 x0 = linspace(0,x_length ,nx+1); % equal bisection of the x nodes

16 y0 = linspace(0,y_length ,ny+1); % equal bisection of the y nodes

17 x = zeros(1,non);

18 y = zeros(1,non);

19 for i = 1:(ny+1)

20 for j = 1:(nx+1)

21 x( (i-1)*(nx+1)+j ) = x0(j);

22 y( (i-1)*(nx+1)+j ) = y0(i);

23 end

24 end

25 param.mesh.x = x;

26 param.mesh.y = y;

27
28 %% generate the IEN connectivity array

29 % IEN = identify element nodes

30 IEN = zeros(4,nel);

31 rowcount = 0;

32 for elementcount = 1:nel

33 IEN(1, elementcount) = elementcount + rowcount;

34 IEN(2, elementcount) = elementcount + 1 + rowcount;

35 IEN(3, elementcount) = elementcount + (nx + 2) + rowcount;

36 IEN(4, elementcount) = elementcount + (nx + 1) + rowcount;

37 if mod(elementcount ,nx) == 0

38 rowcount = rowcount + 1;

39 end

40 end

41 param.mesh.IEN = IEN;

42
43 %% flag boundary elements

44 flag = zeros(nel ,2);

45 for e = 1:nel

46 if mod(e,nx) == 1

47 flag(e,1) = 3; % 3 = left side element

48 elseif mod(e,nx) == 0

49 flag(e,1) = 1; % 1 = right side element

50 end

51 for i = 1:nx

52 flag(i,2) = 4; % 4 = lower side element

53 flag((nel -i+1) ,2) = 2; % 2 = upper side element

54 end

55 end

56 param.mesh.flag = flag;

57
58 %% flag element matieral

59 % coordinates of element center

60 center_coord = zeros(2,nel);

61 center_coord (:,:) = [(x(IEN(2,:))+x(IEN(1,:)))/2;(y(IEN(3,:))+y(IEN(2,:)))

/2];

62
63 % flag element matieral

64 elem_mat = zeros(nel ,1);

65 for i = length(x_length_vec):-1:1

66 for j = length(y_length_vec):-1:1

67 x = sum(x_length_vec (1:i));

68 y = sum(y_length_vec (1:j));

69 elem_mat(center_coord (1,:)<x & center_coord (2,:)<y) = mat_mtrx(j,i);

70 end

71 end

72 param.mesh.elem_mat = elem_mat;

73 param.mesh.center_coord = center_coord;

74
75 %% generate staggered grid coordinates for convection

76 stag = zeros(param.mesh.nel ,2);

77 for e = 1:param.mesh.nel
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78 if mod(e,param.mesh.nx) == 0

79 stag(e,1) = param.mesh.nx;

80 else

81 stag(e,1) = mod(e,param.mesh.nx);

82 end

83 stag(e,2) = ceil(e/param.mesh.nx);

84 end

85 param.mesh.stag = stag;

Code Listing A.3: Code of function shape mat

1 %% shape function calculation

2 function [gauss] = shape_mat(param)

3 % If all elements are the same size , use this function to calculate the

4 % shape functions , derivate of shape functions and Jacobian to be later

5 % used in the FEM Calculation heat2Delem_2.

6
7 nodes = param.mesh.IEN(:,1);

8 coord = [param.mesh.x(nodes); param.mesh.y(nodes)] ;

9 gp = [ -0.57735027 , 0.57735027 ]; % gauss points (2 Point Gauss -Legendre)

10
11 % for element terms

12 gauss.N1 = NmatHeat2D(gp(1),gp(1));

13 gauss.N1_q = gauss.N1 * gauss.N1;

14 [gauss.B1, gauss.detJ] = BmatHeat2D(gp(1),gp(1),coord);

15 gauss.B1_q = gauss.B1 * gauss.B1;

16
17 gauss.N2 = NmatHeat2D(gp(2),gp(1));

18 gauss.N2_q = gauss.N2 * gauss.N2;

19 gauss.B2 = BmatHeat2D(gp(2),gp(1),coord);

20 gauss.B2_q = gauss.B2 * gauss.B2;

21
22 gauss.N3 = NmatHeat2D(gp(2),gp(2));

23 gauss.N3_q = gauss.N3 * gauss.N3;

24 gauss.B3 = BmatHeat2D(gp(2),gp(2),coord);

25 gauss.B3_q = gauss.B3 * gauss.B3;

26
27 gauss.N4 = NmatHeat2D(gp(1),gp(2));

28 gauss.N4_q = gauss.N4 * gauss.N4;

29 gauss.B4 = BmatHeat2D(gp(1),gp(2),coord);

30 gauss.B4_q = gauss.B4 * gauss.B4;

31
32 % for boundary terms

33 eta = 1;

34 gauss.Ne1 = NmatHeat2D(eta ,gp(1));

35 gauss.Ne1_q = gauss.Ne1 * gauss.Ne1;

36 gauss.Ne2 = NmatHeat2D(eta ,gp(2));

37 gauss.Ne2_q = gauss.Ne2 * gauss.Ne2;

38 gauss.dS_e = 0.25*[eta -1 -eta -1 1+eta 1-eta]*coord (:,2);

39 eta = -1;

40 gauss.Nw1 = NmatHeat2D(eta ,gp(1));

41 gauss.Nw1_q = gauss.Nw1 * gauss.Nw1;

42 gauss.Nw2 = NmatHeat2D(eta ,gp(2));

43 gauss.Nw2_q = gauss.Nw2 * gauss.Nw2;

44 gauss.dS_w = - 0.25*[eta -1 -eta -1 1+eta 1-eta]*coord (:,2);

45
46 % for convection terms

47 gp = [-1,0,1]; % convection gauss points

48 w = [1/3 ,3/4 ,1/3]; % convection gauss weights

49 gauss.Nc1 = NmatHeat2D(gp(1),gp(1)); % eta -1, psi -1

50 [B1 , detJ] = BmatHeat2D(gp(1),gp(1),coord);

51 mat_const = param.pcm.rho*param.pcm.c_l*detJ;

52 gauss.NBc1u = w(1)*w(1)*mat_const*gauss.Nc1 * B1(1,:);

53 gauss.NBc1v = w(1)*w(1)*mat_const*gauss.Nc1 * B1(2,:);

54
55 gauss.Nc2 = NmatHeat2D(gp(1),gp(2)); % eta -1, psi 0

56 B2 = BmatHeat2D(gp(1),gp(2),coord);

57 gauss.NBc2u = w(1)*w(2)*mat_const*gauss.Nc2 * B2(1,:);

58 gauss.NBc2v = w(1)*w(2)*mat_const*gauss.Nc2 * B2(2,:);

59
60 gauss.Nc3 = NmatHeat2D(gp(1),gp(3)); % eta -1, psi 1

61 B3 = BmatHeat2D(gp(1),gp(3),coord);

62 gauss.NBc3u = w(1)*w(3)*mat_const*gauss.Nc3 * B3(1,:);

63 gauss.NBc3v = w(1)*w(3)*mat_const*gauss.Nc3 * B3(2,:);

64
65 gauss.Nc4 = NmatHeat2D(gp(2),gp(1)); % eta 0, psi -1

66 B4 = BmatHeat2D(gp(2),gp(1),coord);
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67 gauss.NBc4u = w(2)*w(1)*mat_const*gauss.Nc4 * B4(1,:);

68 gauss.NBc4v = w(2)*w(1)*mat_const*gauss.Nc4 * B4(2,:);

69
70 gauss.Nc5 = NmatHeat2D(gp(2),gp(2)); % eta 0, psi 0

71 B5 = BmatHeat2D(gp(2),gp(2),coord);

72 gauss.NBc5u = w(2)*w(2)*mat_const*gauss.Nc5 * B5(1,:);

73 gauss.NBc5v = w(2)*w(2)*mat_const*gauss.Nc5 * B5(2,:);

74
75 gauss.Nc6 = NmatHeat2D(gp(2),gp(3)); % eta 0, psi 1

76 B6 = BmatHeat2D(gp(2),gp(3),coord);

77 gauss.NBc6u = w(2)*w(3)*mat_const*gauss.Nc6 * B6(1,:);

78 gauss.NBc6v = w(2)*w(3)*mat_const*gauss.Nc6 * B6(2,:);

79
80 gauss.Nc7 = NmatHeat2D(gp(3),gp(1)); % eta 1, psi -1

81 B7 = BmatHeat2D(gp(3),gp(1),coord);

82 gauss.NBc7u = w(3)*w(1)*mat_const*gauss.Nc7 * B7(1,:);

83 gauss.NBc7v = w(3)*w(1)*mat_const*gauss.Nc7 * B7(2,:);

84
85 gauss.Nc8 = NmatHeat2D(gp(3),gp(2)); % eta 1, psi 0

86 B8 = BmatHeat2D(gp(3),gp(2),coord);

87 gauss.NBc8u = w(3)*w(2)*mat_const*gauss.Nc8 * B8(1,:);

88 gauss.NBc8v = w(3)*w(2)*mat_const*gauss.Nc8 * B8(2,:);

89
90 gauss.Nc9 = NmatHeat2D(gp(3),gp(3)); % eta 1, psi 1

91 B9 = BmatHeat2D(gp(3),gp(3),coord);

92 gauss.NBc9u = w(3)*w(3)*mat_const*gauss.Nc9 * B9(1,:);

93 gauss.NBc9v = w(3)*w(3)*mat_const*gauss.Nc9 * B9(2,:);

94
95 end

Code Listing A.4: Code of shape matrix function NmatHeat2D

1 %% N matrix Heat2D

2 function N = NmatHeat2D(eta ,psi)

3 % Computes shape functions matrix N

4
5 N = 0.25 * [(1-psi)*(1-eta) (1-psi)*(1+ eta) ...

6 (1+psi)*(1+ eta) (1+psi)*(1-eta)]; % shape functions

Code Listing A.5: Code of shape matrix function BmatHeat2D

1 %% B matrix Heat2D

2 function [B, detJ] = BmatHeat2D(eta ,psi ,coord)

3 % Computes B matrix

4 % = derivative of the shape functions matrix N

5
6 % Calculate the Grad(N) matrix

7 GN = 0.25 * [psi -1 1-psi 1+psi -psi -1;

8 eta -1 -eta -1 1+eta 1-eta];

9
10 J = GN*coord; % compute Jacobian matrix

11 detJ = det(J); % Jacobian

12
13 B = J\GN; % compute the B matrix

Code Listing A.6: Code of FEM preprocessing function FEM preprocessor

1 %% FEM preprocessor

2 function [gauss] = FEM_preprocessor(T_old ,gauss ,param)

3 % preprocesses element properties for FEM calculation

4
5 % load important variables

6 elem_mat = param.mesh.elem_mat;

7 IEN = param.mesh.IEN;

8 nel = param.mesh.nel;

9 elem_pcm = find(elem_mat ==1); % element indices of PCM

10
11 %% intialize preprocessed data arrays

12 c1 = zeros(nel ,1);

13 c2=c1;c3=c1;c4=c1;k1=c1;k2=c1;k3=c1;k4=c1;rho=c1;

14 flag_el=c1;calc_h=c1;
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15
16 %% preprocess data for 4 gauss points per element

17
18 % heat capacities and heat conductivities

19 % gauss point 1

20 T1 = gauss.N1*T_old(IEN(:,:));

21 c1(elem_mat ==1) = c_var(T1(elem_mat ==1),param.pcm);

22 k1(elem_mat ==1) = k_var(T1(elem_mat ==1),param.pcm);

23 for m = 2:size(param.geom.material ,1)

24 str1 = strcat( param. ,param.geom.material{m,2}, .c_s );

25 str2 = strcat( param. ,param.geom.material{m,2}, .k_s );

26 c1(elem_mat ==m) = eval(str1);

27 k1(elem_mat ==m) = eval(str2);

28 end

29 % gauss point 2

30 T2 = gauss.N2*T_old(IEN(:,:));

31 c2(elem_mat ==1) = c_var(T2(elem_mat ==1),param.pcm);

32 k2(elem_mat ==1) = k_var(T2(elem_mat ==1),param.pcm);

33 for m = 2:size(param.geom.material ,1)

34 str1 = strcat( param. ,param.geom.material{m,2}, .c_s );

35 str2 = strcat( param. ,param.geom.material{m,2}, .k_s );

36 c2(elem_mat ==m) = eval(str1);

37 k2(elem_mat ==m) = eval(str2);

38 end

39 % gauss point 3

40 T3 = gauss.N3*T_old(IEN(:,:));

41 c3(elem_mat ==1) = c_var(T3(elem_mat ==1),param.pcm);

42 k3(elem_mat ==1) = k_var(T3(elem_mat ==1),param.pcm);

43 for m = 2:size(param.geom.material ,1)

44 str1 = strcat( param. ,param.geom.material{m,2}, .c_s );

45 str2 = strcat( param. ,param.geom.material{m,2}, .k_s );

46 c3(elem_mat ==m) = eval(str1);

47 k3(elem_mat ==m) = eval(str2);

48 end

49 % gauss point 4

50 T4 = gauss.N4*T_old(IEN(:,:));

51 c4(elem_mat ==1) = c_var(T4(elem_mat ==1),param.pcm);

52 k4(elem_mat ==1) = k_var(T4(elem_mat ==1),param.pcm);

53 for m = 2:size(param.geom.material ,1)

54 str1 = strcat( param. ,param.geom.material{m,2}, .c_s );

55 str2 = strcat( param. ,param.geom.material{m,2}, .k_s );

56 c4(elem_mat ==m) = eval(str1);

57 k4(elem_mat ==m) = eval(str2);

58 end

59
60 % density of element

61 for m = 1:size(param.geom.material ,1)

62 str = strcat( param. ,param.geom.material{m,2}, .rho );

63 rho(elem_mat ==m) = eval(str);

64 end

65
66 % constants for enthalpy calculation

67 for m = 1:size(param.geom.material ,1)

68 str1 = strcat( param. ,param.geom.material{m,2}, .rho );

69 str2 = strcat( param. ,param.geom.material{m,2}, .c_s );

70 calc_h(elem_mat ==m) = eval(str1)*gauss.detJ*eval(str2);

71 end

72
73 %% preprocess boundary information

74 % flag boundary elements by one identifier

75 flag_el(param.mesh.flag (:,1) == 3) = 3; % left side element

76 flag_el(param.mesh.flag (:,1) == 1) = 1; % right side element

77 flag_el(param.mesh.flag (:,2) == 2) = 2; % upper side element

78 flag_el(param.mesh.flag (:,2) == 4) = 4; % lower side element

79 flag_el (( param.mesh.flag (:,1) == 3)&(param.mesh.flag (:,2) == 4) ) = 34;

80 flag_el (( param.mesh.flag (:,1) == 3)&(param.mesh.flag (:,2) == 2) ) = 32;

81 flag_el (( param.mesh.flag (:,1) == 1)&(param.mesh.flag (:,2) == 4) ) = 14;

82 flag_el (( param.mesh.flag (:,1) == 1)&(param.mesh.flag (:,2) == 2) ) = 12;

83
84 gauss.west = find(param.mesh.flag (:,1) == 3);

85 gauss.east = find(param.mesh.flag (:,1) == 1);

86 yr=param.mesh.y(param.mesh.IEN(:,:));

87 yr1 = yr(1,:)+(yr(4,:)-yr(1,:))*(1 -0.57735027) /2;

88 yr2 = yr(1,:)+(yr(4,:)-yr(1,:))*(1+0.57735027) /2;

89 gauss.Tout1 = @(t) param.icbc.Tout(t,yr1);

90 gauss.Tout2 = @(t) param.icbc.Tout(t,yr2);

91 gauss.alpha_out1 = @(t) param.icbc.alpha_out(t,yr1);

92 gauss.alpha_out2 = @(t) param.icbc.alpha_out(t,yr2);

93
94 yl=param.mesh.y(param.mesh.IEN(:,:));

103



Appendix A. MATLAB code listings

95 yl1 = yl(1,:)+(yl(4,:)-yl(1,:))*(1 -0.57735027) /2;

96 yl2 = yl(1,:)+(yl(4,:)-yl(1,:))*(1+0.57735027) /2;

97 gauss.Tin1 = @(t) param.icbc.Tin(t,yl1);

98 gauss.Tin2 = @(t) param.icbc.Tin(t,yl2);

99 gauss.alpha_in1 = @(t) param.icbc.alpha_in(t,yl1);

100 gauss.alpha_in2 = @(t) param.icbc.alpha_in(t,yl2);

101
102 %% preprocess sparse assembling relation

103 sp_mat_e = cell(nel ,1);

104 sp_vec_e = cell(nel ,1);

105 for e = 1:nel

106 je = param.mesh.IEN(:,e);

107
108 k = [je;je;je;je];

109 l = [je(1);je(1);je(1);je(1);...

110 je(2);je(2);je(2);je(2);...

111 je(3);je(3);je(3);je(3);...

112 je(4);je(4);je(4);je(4)];

113
114 sp_mat_e{e} = [k,l];

115 sp_vec_e{e} = [je ,[1;1;1;1]];

116 end

117 sp_mat = cell2mat(sp_mat_e);

118 sp_vec = cell2mat(sp_vec_e);

119
120 %% load variables to struct variable gauss

121 gauss.rho = rho;

122 gauss.elem_pcm = elem_pcm;

123 gauss.sp_mat = sp_mat;

124 gauss.sp_vec = sp_vec;

125 gauss.flag_el = flag_el;

126 gauss.calc_h = calc_h;

127 gauss.c1 = c1;

128 gauss.c2 = c2;

129 gauss.c3 = c3;

130 gauss.c4 = c4;

131 gauss.k1 = k1;

132 gauss.k2 = k2;

133 gauss.k3 = k3;

134 gauss.k4 = k4;

135
136 end

Code Listing A.7: Code of FEM matrix assembly function heat2Delem new

1 %% heat 2D element new

2 function [C,K,R,Qin ,Qout ,H,H_l] = heat2Delem_new(t,T,U,V,p_el ,gauss ,param)

3 % Computes the finite element matrices

4
5 %% initialize variables and matrix cells

6 nel = param.mesh.nel;

7 non = param.mesh.non;

8 nx = param.mesh.nx;

9 elem_pcm = gauss.elem_pcm;

10 not_pcm = param.mesh.elem_mat ~= 1;

11 sp_mat = gauss.sp_mat;

12 sp_vec = gauss.sp_vec;

13 flag_el = gauss.flag_el;

14 calc_h = gauss.calc_h;

15 calc_h1 = gauss.calc_h;

16 calc_h2 = gauss.calc_h;

17 calc_h3 = gauss.calc_h;

18 calc_h4 = gauss.calc_h;

19 hl_1 = gauss.calc_h;

20 hl_2 = gauss.calc_h;

21 hl_3 = gauss.calc_h;

22 hl_4 = gauss.calc_h;

23 c1 = gauss.c1;

24 c2 = gauss.c2;

25 c3 = gauss.c3;

26 c4 = gauss.c4;

27 k1 = gauss.k1;

28 k2 = gauss.k2;

29 k3 = gauss.k3;

30 k4 = gauss.k4;

31
32 p_el_FEM = reshape(p_el ,[],1);

33 %C_e = cell(nel ,1);
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34 %K_e = cell(nel ,1);

35 %R_e = cell(nel ,1);

36
37 %% vectorized preprocessing of element data

38 % temperatures at gauss points

39 T1 = gauss.N1*T(param.mesh.IEN(:,:));

40 T2 = gauss.N2*T(param.mesh.IEN(:,:));

41 T3 = gauss.N3*T(param.mesh.IEN(:,:));

42 T4 = gauss.N4*T(param.mesh.IEN(:,:));

43 Te1 = gauss.Ne1*T(param.mesh.IEN(:,:));

44 Te2 = gauss.Ne2*T(param.mesh.IEN(:,:));

45 Tw1 = gauss.Nw1*T(param.mesh.IEN(:,:));

46 Tw2 = gauss.Nw2*T(param.mesh.IEN(:,:));

47
48 % for conductive terms

49 % heat capacities and heat conductivities at gauss points of pcm elements

50 c1(elem_pcm) = c_var(T1(elem_pcm),param.pcm);

51 k1(elem_pcm) = k_var(T1(elem_pcm),param.pcm);

52 c2(elem_pcm) = c_var(T2(elem_pcm),param.pcm);

53 k2(elem_pcm) = k_var(T2(elem_pcm),param.pcm);

54 c3(elem_pcm) = c_var(T3(elem_pcm),param.pcm);

55 k3(elem_pcm) = k_var(T3(elem_pcm),param.pcm);

56 c4(elem_pcm) = c_var(T4(elem_pcm),param.pcm);

57 k4(elem_pcm) = k_var(T4(elem_pcm),param.pcm);

58 % constants for enthalpy calculation at gauss points of pcm elements

59 [calc_h1(elem_pcm),hl_1(elem_pcm)] = h_var(T1(elem_pcm),param ,gauss.detJ);

60 [calc_h2(elem_pcm),hl_2(elem_pcm)] = h_var(T2(elem_pcm),param ,gauss.detJ);

61 [calc_h3(elem_pcm),hl_3(elem_pcm)] = h_var(T3(elem_pcm),param ,gauss.detJ);

62 [calc_h4(elem_pcm),hl_4(elem_pcm)] = h_var(T4(elem_pcm),param ,gauss.detJ);

63
64 % for convective terms

65 % velocities at gauss points of pcm elements

66 if any(p_el_FEM) == 1

67 ie = param.mesh.stag (:,1);

68 je = param.mesh.stag (:,2);

69 % eta -1, psi -1

70 u1 = (U(sub2ind(size(U),ie,je))+U(sub2ind(size(U),ie,je+1)))/2;

71 v1 = (V(sub2ind(size(V),ie,je))+V(sub2ind(size(V),ie+1,je)))/2;

72 % eta -1, psi 0

73 u2 = U(sub2ind(size(U),ie,je+1));

74 v2 = (V(sub2ind(size(V),ie,je))+V(sub2ind(size(V),ie,je+1))+...

75 V(sub2ind(size(V),ie+1,je))+V(sub2ind(size(V),ie+1,je+1)) )/2;

76 % eta -1, psi 1

77 u3 = (U(sub2ind(size(U),ie,je+1))+U(sub2ind(size(U),ie,je+2)))/2;

78 v3 = (V(sub2ind(size(V),ie,je+1))+V(sub2ind(size(V),ie+1,je+1)))/2;

79 % eta 0, psi -1

80 u4 = (U(sub2ind(size(U),ie,je))+U(sub2ind(size(U),ie,je+1))+...

81 U(sub2ind(size(U),ie+1,je))+U(sub2ind(size(U),ie+1,je+1)) )/2;

82 v4 = V(sub2ind(size(V),ie,je+1));

83 % eta 0, psi 0

84 u5 = (U(sub2ind(size(U),ie,je+1))+U(sub2ind(size(U),ie+1,je+1)))/2;

85 v5 = (V(sub2ind(size(V),ie+1,je))+V(sub2ind(size(V),ie+1,je+1)))/2;

86 % eta 0, psi 1

87 u6 = (U(sub2ind(size(U),ie,je+1))+U(sub2ind(size(U),ie,je+2))+...

88 U(sub2ind(size(U),ie+1,je+1))+U(sub2ind(size(U),ie+1,je+2)) )/2;

89 v6 = V(sub2ind(size(V),ie+1,je+1));

90 % eta 1, psi -1

91 u7 = (U(sub2ind(size(U),ie+1,je))+U(sub2ind(size(U),ie+1,je+1)))/2;

92 v7 = (V(sub2ind(size(V),ie+1,je))+V(sub2ind(size(V),ie+2,je)))/2;

93 % eta 1, psi 0

94 u8 = U(sub2ind(size(U),ie+1,je+1));

95 v8 = (V(sub2ind(size(V),ie+1,je))+V(sub2ind(size(V),ie+1,je+1))+...

96 V(sub2ind(size(V),ie+2,je))+V(sub2ind(size(V),ie+2,je+1)) )/2;

97 % eta 1, psi 1

98 u9 = (U(sub2ind(size(U),ie+1,je+1))+U(sub2ind(size(U),ie+1,je+2)))/2;

99 v9 = (V(sub2ind(size(V),ie+1,je+1))+V(sub2ind(size(V),ie+2,je+1)))/2;

100
101 %% velocity correction

102 % mark elements for velocity correction

103 correct_u = zeros(nel ,1);

104 correct_v = zeros(nel ,1);

105 solid=p_el_FEM ==0;

106
107 % middle element

108 correct_u(flag_el ==0) = solid(circshift(flag_el ==0,1))*1+...

109 solid(circshift(flag_el ==0,-1))*(-1)+...

110 ( solid(circshift(flag_el ==0,1)) & ...

111 solid(circshift(flag_el ==0,-1)))*2;

112 correct_v(flag_el ==0) = solid(circshift(flag_el ==0,nx))*1+...

113 solid(circshift(flag_el==0,-nx))*(-1)+...
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114 ( solid(circshift(flag_el ==0,nx)) & ...

115 solid(circshift(flag_el==0,-nx)) )*2;

116 % left side element

117 correct_u(flag_el ==3) = -1+solid(circshift(flag_el ==3,1))*3;

118 correct_v(flag_el ==3) = solid(circshift(flag_el ==3,nx))*1+...

119 solid(circshift(flag_el==3,-nx))*(-1)+...

120 ( solid(circshift(flag_el ==3,nx)) & ...

121 solid(circshift(flag_el==3,-nx)) )*2;

122 correct_u(flag_el ==32) = -1+solid(circshift(flag_el ==32 ,1))*3;

123 correct_v(flag_el ==32) = 1+solid(circshift(flag_el ==32,-nx))*1;

124 correct_u(flag_el ==34) = -1+solid(circshift(flag_el ==34 ,1))*3;

125 correct_v(flag_el ==34) = -1+solid(circshift(flag_el ==32,nx))*3;

126 % right side element

127 correct_u(flag_el ==1) = 1+solid(circshift(flag_el ==1,-1))*1;

128 correct_v(flag_el ==1) = solid(circshift(flag_el ==1,nx))*1+...

129 solid(circshift(flag_el==1,-nx))*(-1)+...

130 ( solid(circshift(flag_el ==1,nx)) & ...

131 solid(circshift(flag_el==1,-nx)) )*2;

132 correct_u(flag_el ==12) = 1+solid(circshift(flag_el ==12,-1))*1;

133 correct_v(flag_el ==12) = 1+solid(circshift(flag_el ==12,-nx))*1;

134 correct_u(flag_el ==14) = 1+solid(circshift(flag_el ==14,-1))*1;

135 correct_v(flag_el ==14) = -1+solid(circshift(flag_el ==14,nx))*3;

136 % upper side element

137 correct_u(flag_el ==2) = solid(circshift(flag_el ==2,1))*1+...

138 solid(circshift(flag_el ==2,-1))*(-1)+...

139 ( solid(circshift(flag_el ==2,1)) & ...

140 solid(circshift(flag_el ==2,-1)) )*2;

141 correct_v(flag_el ==2) = 1+solid(circshift(flag_el==2,-nx))*1;

142 % lower side element

143 correct_u(flag_el ==4) = solid(circshift(flag_el ==4,1))*1+...

144 solid(circshift(flag_el ==4,-1))*(-1)+...

145 ( solid(circshift(flag_el ==4,1)) & ...

146 solid(circshift(flag_el ==4,-1)) )*2;

147 correct_v(flag_el ==4) = -1+solid(circshift(flag_el ==4,nx))*3;

148
149 % perform velocity correction

150 u=[u1,u2,u3,u4,u5,u6,u7,u8,u9];

151 v=[v1,v2,v3,v4,v5,v6,v7,v8,v9];

152 u(correct_u ==2,:) = 0;

153 u(correct_u ==1,:) = max(0,u(correct_u ==1,:));

154 u(correct_u ==-1,:) = min(0,u(correct_u ==-1,:));

155 v(correct_v ==2,:) = 0;

156 v(correct_v ==1,:) = max(0,v(correct_v ==1,:));

157 v(correct_v ==-1,:) = min(0,v(correct_v ==-1,:));

158 u1 = u(:,1); u2 = u(:,2); u3 = u(:,3); u4 = u(:,4); u5 = u(:,5);

159 u6 = u(:,6); u7 = u(:,7); u8 = u(:,8); u9 = u(:,9);

160 v1 = v(:,1); v2 = v(:,2); v3 = v(:,3); v4 = v(:,4); v5 = v(:,5);

161 v6 = v(:,6); v7 = v(:,7); v8 = v(:,8); v9 = v(:,9);

162 end

163
164 %% calculate element matrices

165 Ce2 = gauss.detJ*(...

166 bsxfun (@times ,gauss.N1_q ,permute(gauss.rho .* c1 ,[3 1 2]))+...

167 bsxfun (@times ,gauss.N2_q ,permute(gauss.rho .* c2 ,[3 1 2]))+...

168 bsxfun (@times ,gauss.N3_q ,permute(gauss.rho .* c3 ,[3 1 2]))+...

169 bsxfun (@times ,gauss.N4_q ,permute(gauss.rho .* c4 ,[3 1 2])));

170 C_e = reshape(Ce2 ,4*4*nel ,1);

171
172 KCe = gauss.detJ*(...

173 bsxfun (@times ,gauss.B1_q ,permute(k1 ,[3 1 2]))+...

174 bsxfun (@times ,gauss.B2_q ,permute(k2 ,[3 1 2]))+...

175 bsxfun (@times ,gauss.B3_q ,permute(k3 ,[3 1 2]))+...

176 bsxfun (@times ,gauss.B4_q ,permute(k4 ,[3 1 2])));

177
178 right = param.mesh.flag (:,1) == 1; % right side of PCM

179 KB1e = gauss.dS_e*( ...

180 bsxfun (@times ,gauss.Ne1_q ,permute(right .* gauss.alpha_out1(t) ,[3 1

2]))+...

181 bsxfun (@times ,gauss.Ne2_q ,permute(right .* gauss.alpha_out2(t) ,[3 1

2])));

182
183 RB1e = gauss.dS_e*( ...

184 bsxfun (@times ,gauss.Ne1 , permute(right .* gauss.alpha_out1(t).*gauss.

Tout1(t) ,[3 1 2]))+...

185 bsxfun (@times ,gauss.Ne2 , permute(right .* gauss.alpha_out2(t).*gauss.

Tout2(t) ,[3 1 2])));

186
187 left = param.mesh.flag (:,1) == 3; % left side of PCM

188 KB3e = -gauss.dS_w*( ...
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189 bsxfun (@times ,gauss.Nw1_q ,permute(left .* gauss.alpha_in1(t) ,[3 1 2]))

+...

190 bsxfun (@times ,gauss.Nw2_q ,permute(left .* gauss.alpha_in2(t) ,[3 1 2]))

);

191
192 RB3e = -gauss.dS_w*( ...

193 bsxfun (@times ,gauss.Nw1 , permute(left .* gauss.alpha_in1(t).*gauss.

Tin1(t) ,[3 1 2]))+...

194 bsxfun (@times ,gauss.Nw2 , permute(left .* gauss.alpha_in2(t).*gauss.

Tin2(t) ,[3 1 2])));

195
196 % convection term

197 if any(p_el_FEM) == 1

198 KCe = KCe + bsxfun (@times ,gauss.NBc1u ,permute(p_el_FEM .* u1 ,[3 1 2]))+

...

199 bsxfun (@times ,gauss.NBc2u ,permute(p_el_FEM .* u2 ,[3 1 2]))+

...

200 bsxfun (@times ,gauss.NBc3u ,permute(p_el_FEM .* u3 ,[3 1 2]))+

...

201 bsxfun (@times ,gauss.NBc4u ,permute(p_el_FEM .* u4 ,[3 1 2]))+

...

202 bsxfun (@times ,gauss.NBc5u ,permute(p_el_FEM .* u5 ,[3 1 2]))+

...

203 bsxfun (@times ,gauss.NBc6u ,permute(p_el_FEM .* u6 ,[3 1 2]))+

...

204 bsxfun (@times ,gauss.NBc7u ,permute(p_el_FEM .* u7 ,[3 1 2]))+

...

205 bsxfun (@times ,gauss.NBc8u ,permute(p_el_FEM .* u8 ,[3 1 2]))+

...

206 bsxfun (@times ,gauss.NBc9u ,permute(p_el_FEM .* u9 ,[3 1 2]))+

...

207 bsxfun (@times ,gauss.NBc1v ,permute(p_el_FEM .* v1 ,[3 1 2]))+

...

208 bsxfun (@times ,gauss.NBc2v ,permute(p_el_FEM .* v2 ,[3 1 2]))+

...

209 bsxfun (@times ,gauss.NBc3v ,permute(p_el_FEM .* v3 ,[3 1 2]))+

...

210 bsxfun (@times ,gauss.NBc4v ,permute(p_el_FEM .* v4 ,[3 1 2]))+

...

211 bsxfun (@times ,gauss.NBc5v ,permute(p_el_FEM .* v5 ,[3 1 2]))+

...

212 bsxfun (@times ,gauss.NBc6v ,permute(p_el_FEM .* v6 ,[3 1 2]))+

...

213 bsxfun (@times ,gauss.NBc7v ,permute(p_el_FEM .* v7 ,[3 1 2]))+

...

214 bsxfun (@times ,gauss.NBc8v ,permute(p_el_FEM .* v8 ,[3 1 2]))+

...

215 bsxfun (@times ,gauss.NBc9v ,permute(p_el_FEM .* v9 ,[3 1 2]));

216 end

217 K_e = reshape(KCe + KB1e + KB3e ,4*4*nel ,1);

218 R_e = reshape(RB1e + RB3e ,4*nel ,1);

219
220 %% assemble to global matrices and vectors

221 C = sparse(sp_mat (:,1),sp_mat (:,2),C_e ,non ,non);

222 K = sparse(sp_mat (:,1),sp_mat (:,2),K_e ,non ,non);

223 R = sparse(sp_vec (:,1),sp_vec (:,2),R_e ,non ,1);

224
225 %% calculate enthalpy values

226 H = sum( calc_h1(elem_pcm)+calc_h2(elem_pcm)+...

227 calc_h3(elem_pcm)+calc_h4(elem_pcm)) + ...

228 sum( calc_h(not_pcm) .*( T1(not_pcm)+...

229 T2(not_pcm)+T3(not_pcm)+T4(not_pcm)));

230
231 H_l = sum( hl_1(elem_pcm)+hl_2(elem_pcm)+hl_3(elem_pcm)+hl_4(elem_pcm) );

232
233 Qout = gauss.dS_e*param.mesh.d_t*sum(...

234 gauss.alpha_out1(t).*( gauss.Tout1(t) - Te1).*right +...

235 gauss.alpha_out2(t).*( gauss.Tout2(t) - Te2).*right ) ;

236
237 Qin = -gauss.dS_w*param.mesh.d_t*sum(...

238 gauss.alpha_in1(t).*( gauss.Tin1(t) - Tw1).*left +...

239 gauss.alpha_in2(t).*( gauss.Tin2(t) - Tw2).*left ) ;

240
241 %old version

242 %{

243 for e = 1:nel

244 KB1e = zeros (4,4);

245 KB3e = zeros (4,4);

246 RB1e = zeros (4,1);

247 RB3e = zeros (4,1);
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248 %Ce = rho(e)*gauss.detJ*(c1(e).* gauss.N1_q +...

249 % c2(e).* gauss.N2_q +c3(e).* gauss.N3_q +...

250 % c4(e).* gauss.N4_q);

251 KCe = gauss.detJ*(k1(e).* gauss.B1_q + ...

252 k2(e).* gauss.B2_q + k3(e).* gauss.B3_q +...

253 k4(e).* gauss.B4_q );

254
255 % calculate enthaply

256 if param.mesh.elem_mat(e) == 1

257 H{e} = calc_h1(e)+calc_h2(e)+calc_h3(e)+calc_h4(e);

258 H_l{e} = hl_1(e)+hl_2(e)+hl_3(e)+hl_4(e);

259 else

260 H{e} = calc_h(e)*(T1(e)+T2(e)+T3(e)+T4(e));

261 end

262
263 if param.mesh.flag(e,1) == 1 % right side of PCM

264 nodes = param.mesh.IEN(:,e);

265 coord = [param.mesh.x(nodes); param.mesh.y(nodes)] ;

266 y1 = coord (1,2)+( coord (4,2)-coord (1,2))*( -0.57735027/2);

267 y2 = coord (1,2)+( coord (4,2)-coord (1,2))*(0.57735027/2);

268
269 KB1e = param.icbc.alpha_out*gauss.dS_e*( ...

270 gauss.Ne1_q + gauss.Ne2_q);

271
272 RB1e = param.icbc.alpha_out*gauss.dS_e *...

273 (param.icbc.Tout(t,y1)*gauss.Ne1 +...

274 param.icbc.Tout(t,y2)*gauss.Ne2 ) ;

275
276 % calculate heat flow

277 Qout{e} = gauss.dS_e*param.icbc.alpha_out*param.mesh.d_t *(...

278 param.icbc.Tout(t,y1) - Te1(e) + ...

279 param.icbc.Tout(t,y2) - Te2(e));

280
281 elseif param.mesh.flag(e,1) == 3 % left side of PCM

282 nodes = param.mesh.IEN(:,e);

283 coord = [param.mesh.x(nodes); param.mesh.y(nodes)] ;

284 y1 = coord (1,2)+( coord (4,2)-coord (1,2))*( -0.57735027/2);

285 y2 = coord (1,2)+( coord (4,2)-coord (1,2))*(0.57735027/2);

286
287 KB3e = -gauss.dS_w*( param.icbc.alpha_in(t,y1)*gauss.Nw1_q ...

288 + param.icbc.alpha_in(t,y2)*gauss.Nw2_q);

289
290 RB3e = -gauss.dS_w*( param.icbc.alpha_in(t,y1)*...

291 param.icbc.Tin(t,y1)*gauss.Nw1 +...

292 param.icbc.alpha_in(t,y2)*param.icbc.Tin(t,y2)...

293 *gauss.Nw2 ) ;

294
295 % calculate heat flow

296 Qin{e} = -gauss.dS_w*param.mesh.d_t *(...

297 param.icbc.alpha_in(t,y1)*( param.icbc.Tin(t,y1)-Tw1(e))...

298 +param.icbc.alpha_in(t,y2)*( param.icbc.Tin(t,y2)-Tw2(e)));

299 end

300
301 % convection term

302 if p_el_FEM(e) == 1

303
304 KCe = KCe + u1(e)*gauss.NBc1u+v1(e)*gauss.NBc1v +...

305 u2(e)*gauss.NBc2u+v2(e)*gauss.NBc2v +...

306 u3(e)*gauss.NBc3u+v3(e)*gauss.NBc3v +...

307 u4(e)*gauss.NBc4u+v4(e)*gauss.NBc4v +...

308 u5(e)*gauss.NBc5u+v5(e)*gauss.NBc5v +...

309 u6(e)*gauss.NBc6u+v6(e)*gauss.NBc6v +...

310 u7(e)*gauss.NBc7u+v7(e)*gauss.NBc7v +...

311 u8(e)*gauss.NBc8u+v8(e)*gauss.NBc8v +...

312 u9(e)*gauss.NBc9u+v9(e)*gauss.NBc9v;

313 end

314 K_e{e} = reshape(KCe + KB1e + KB3e ,4*4 ,1);

315 R_e{e} = RB1e + RB3e ;

316 C_e{e} = reshape(Ce ,4*4 ,1);

317 end

318
319 %% assemble to global matrices and vectors

320
321 %C = sparse(sp_mat (:,1),sp_mat (:,2),cell2mat(C_e),non ,non);

322 %K = sparse(sp_mat (:,1),sp_mat (:,2),cell2mat(K_e),non ,non);

323 %R = sparse(sp_vec (:,1),sp_vec (:,2),cell2mat(R_e),non ,1);

324 %}

325 end
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Code Listing A.8: Code of function c var

1 %% c_var

2 function [c]=c_var(T,mat)

3 % Computes heat capacity c from the value of temperature T

4
5 c = mat.c_s*( T <= (mat.Tm - mat.dTm) )+...

6 mat.c_l*( T >= (mat.Tm + mat.dTm) )+...

7 (mat.lh + mat.c_s*(mat.Tm + mat.dTm - T) + ...

8 mat.c_l*(T-mat.Tm + mat.dTm))/(2* mat.dTm).*...

9 ( T > (mat.Tm - mat.dTm) & T < (mat.Tm + mat.dTm) );

10 end
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Code Listing A.9: Code of function k var

1 %% k_var

2 function [k]=k_var(T,mat)

3 % Computes heat conductivity k from the value of temperature T

4
5 k = mat.k_s*( T <= (mat.Tm - mat.dTm) )+...

6 mat.k_l*( T >= (mat.Tm + mat.dTm) )+...

7 (mat.k_s*(mat.Tm + mat.dTm - T) + ...

8 mat.k_l*(T-mat.Tm + mat.dTm))/(2* mat.dTm).*...

9 ( T > (mat.Tm - mat.dTm) & T < (mat.Tm + mat.dTm) );

10 end

Code Listing A.10: Code of function solve euler back

1 %% solve euler back

2 function [Tnew] = solve_euler_back(Told ,C,K,R,param)

3 % Solves the system of FEM equations via the backwards euler method

4
5 Tnew = Told +param.mesh.d_t*...

6 ( (C + param.mesh.d_t*K)\(R-K*Told) );

7 % long version:

8 %{

9 % build equation system A*X=b

10 M_eff = C + param.mesh.d_t*K;

11 b = R-K*Told (:);

12
13 % solve equation system A*X=b

14 X = M_eff\b;

15 Tnew = Told +param.mesh.d_t*X;

16 %}

Code Listing A.11: Code of function waitbar2D simple

1 %% waitbar 2D simple

2 function [f,timearray ,up] = waitbar2D_simple(f,param ,timearray ,toc ,t,up)

3 % updates waitbar in a simple way

4
5 wait = t/param.mesh.not;

6 timearray(t) = toc -sum(timearray);

7 % moving average of computation time

8 average = movmean(timearray ,[20 0], Endpoints ,timearray(end));

9 waittime = (param.mesh.not -t)*average(end);

10
11 if (toc -up) > param.display.update

12 % wait at least a specified time between updates

13 up = toc;

14
15 if waittime < 60

16 waitbar(wait ,f,sprintf(...

17 Fortschritt: %2.1f %%, Restdauer: ~ %2.1f s ,100*wait ,waittime));

18 else

19 waittime_s = mod(waittime ,60);

20 waittime_m = floor(waittime /60);

21 waitbar(wait ,f,sprintf(...

22 Fortschritt: %2.1f %%, Restdauer: ~ %3.0f min %2.0f s ,...

23 100*wait ,waittime_m ,waittime_s));

24 end

25 end

26 end
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Code Listing A.12: Code of function solve navierstokes

1 %% solve navier stokes

2 function [U_new ,V_new ,grad ,U,V] = solve_navierstokes(U,V,T_ij ,p_el ,param)

3 % Solves the navier stokes equations via finite difference method

4
5 %% preprocessing

6 nx = param.mesh.nx;

7 ny = param.mesh.ny;

8 f_u = reshape ((p_el (1:nx -1,:) & p_el (2:nx ,:)) ,[],1);

9 f_v = reshape ((p_el (:,1:ny -1) & p_el (:,2:ny)) ,[],1);

10 % temperatures for boussinesque approximation

11 T_v = reshape(avg(T_ij (:,2:end -1)) ,[],1);

12 T_u = reshape(avg(T_ij (2:end -1,:) ) ,[] ,1);

13
14 f2_v = 0+(T_v >=param.pcm.Tm+param.pcm.dTm).*1+...

15 (T_v >param.pcm.Tm-param.pcm.dTm & T_v <param.pcm.Tm+param.pcm.dTm).*...

16 (T_v -param.pcm.Tm+param.pcm.dTm)/(2* param.pcm.dTm);

17 f2_u = 0+(T_u >=param.pcm.Tm+param.pcm.dTm).*1+...

18 (T_u >param.pcm.Tm-param.pcm.dTm & T_u <param.pcm.Tm+param.pcm.dTm).*...

19 (T_u -param.pcm.Tm+param.pcm.dTm)/(2* param.pcm.dTm);

20
21 %% nonlinear terms / explicit time step

22 gamma = min (1.2* param.mesh.d_t*max( ...

23 max(max(abs(U)))/param.geom.dx,max(max(abs(V)))/param.geom.dy ) ,1);

24 % add boundary conditions

25 Ue = [zeros(1,ny+2); [-U(:,1) U -U(:,end)] ;zeros(1,ny+2)];

26 Ve = [0 -V(1,:) 0; [zeros(nx ,1) V zeros(nx ,1)];0 -V(end ,:) 0];

27
28 % upwinding

29 Ua = avg(Ue ) ; % vertical average of U

30 Ud = diff(Ue ) /2; % vertical finite difference of U

31 Va = avg(Ve); % horizontal average of V

32 Vd = diff(Ve)/2; % horizontal finite difference of V

33 UVx = diff(Ua.*Va-gamma*abs(Ua).*Vd)/param.geom.dx; % d(UV)/dx

34 UVy = diff((Ua.*Va-gamma*Ud.*abs(Va)) ) / param.geom.dy; % d(UV)/dy

35 Ua = avg(Ue(:,2:end -1)); % horizontal average of U

36 Ud = diff(Ue(:,2:end -1))/2; % horizontal finite difference of U

37 Va = avg(Ve(2:end -1,:) ) ; % vertical average of V

38 Vd = diff(Ve(2:end -1,:) ) /2; % vertical finite difference of V

39 U2x = diff(Ua.^2-gamma*abs(Ua).*Ud)/param.geom.dx; % d(UU)/dx

40 V2y = diff((Va.^2-gamma*abs(Va).*Vd) ) / param.geom.dy; % d(VV)/dx

41 % explicit time step

42 U = U-param.mesh.d_t*(UVy(2:end -1,:)+U2x);

43 V = V-param.mesh.d_t*(UVx(:,2:end -1)+V2y);

44
45 %% viscosity terms / implicit time step

46 % implicit step for U

47 Ex=sparse (2:nx -1,1:nx -2,1,nx -1,nx -1);

48 Ax=Ex+Ex -2* speye(nx -1);

49 Ey=sparse (2:ny ,1:ny -1,1,ny,ny);

50 Ay=Ey+Ey -2* speye(ny);

51 Ay(1,1)=-3; Ay(ny,ny)=-3; %Neumann B.Cs

52 A=kron(Ay/param.geom.dy^2,speye(nx -1))+kron(speye(ny),Ax/param.geom.dx^2);

53
54 Uo=reshape(U,[] ,1);

55 mue = param.pcm.mue *(1+(1 - f2_u).^4*10^3);

56 Fu = (1-f_u).^2./( f_u .^3+0.001) *10^8;

57 Un = (speye(length(Uo)).*(1+Fu) - param.mesh.d_t/param.pcm.rho*mue.*A) \ ...

58 (Uo - sin(param.pcm.phi)*param.mesh.d_t*param.pcm.grav*...

59 param.pcm.beta*(param.pcm.T_0 - T_u));

60 U=reshape(Un,nx -1,ny);

61
62 % implicit step for V

63 Ex=sparse (2:nx ,1:nx -1,1,nx,nx);

64 Ax=Ex+Ex -2* speye(nx);

65 Ax(1,1)=-3; Ax(nx,nx)=-3; %Neumann B.Cs

66 Ey=sparse (2:ny -1,1:ny -2,1,ny -1,ny -1);

67 Ay=Ey+Ey -2* speye(ny -1);

68 A=kron(Ay/param.geom.dy^2,speye(nx))+kron(speye(ny -1),Ax/param.geom.dx^2);

69
70 Vo=reshape(V,[] ,1);

71 mue = param.pcm.mue *(1+(1 - f2_v).^4*10^3);

72 Fv = (1-f_v).^2./( f_v .^3+0.001) *10^8;

73 Vn = (speye(length(Vo)).*(1+Fv) - param.mesh.d_t/param.pcm.rho*mue.*A) \ ...

74 (Vo - cos(param.pcm.phi)*param.mesh.d_t*param.pcm.grav*...

75 param.pcm.beta*(param.pcm.T_0 - T_v));

76 V=reshape(Vn,nx,ny -1);

77
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78 %% pressure correction

79 grad = reshape(diff([zeros(1,ny);U;zeros(1,ny)])/param.geom.dx...

80 +diff([zeros(nx ,1) V zeros(nx ,1) ] ) / param.geom.dy ,[],1);

81
82 Lp_p = Laplace_p(p_el ,param);

83 p = Lp_p\(param.pcm.rho/param.mesh.d_t*grad);

84
85 P = reshape(p,nx,ny);

86 U_new = U-param.mesh.d_t/param.pcm.rho*diff(P)/param.geom.dx;

87 V_new = V-param.mesh.d_t/param.pcm.rho*diff(P ) / param.geom.dy;

88
89 end

Code Listing A.13: Code of function Laplace p

1 %% Laplace p

2 function [Lp_p] = Laplace_p(p_el ,param)

3 % Computes the finite difference 2D Laplace stencil for the pressure p.

4 % Includes homogeneous Neumann boundary conditions on the internal phase

5 % boundaries.

6
7 dxq = param.geom.dx^2;

8 dyq = param.geom.dy^2;

9 nx = param.mesh.nx;

10 ny = param.mesh.ny;

11
12 ps = reshape ([false(nx ,1) p_el (:,1:end -1)],[],1);

13 pn = reshape ([p_el (:,2:end) false(nx ,1)],[],1);

14 pw = reshape ([false(1,ny); p_el (1:end -1,:)],[],1);

15 pe = reshape ([p_el (2:end ,:); false(1,ny)],[],1);

16 p_el = reshape(p_el ,[],1);

17
18 i = param.mesh.stag (:,1);

19 j = param.mesh.stag (:,2);

20
21 Lp_val = [i+(j-1)*nx, i+(j-1)*nx,...

22 0.1-1/dxq*(p_el==pw) -1/dxq*(p_el==pe) -1/dyq*(p_el==ps) -1/dyq*(p_el

==pn);

23 i+(j-1)*nx, i-1+(j-1)*nx, 0+1/ dxq*(p_el==pw);

24 i+(j-1)*nx, i+1+(j-1)*nx, 0+1/ dxq*(p_el==pe);

25 i+(j-1)*nx, i+(j-2)*nx, 0+1/ dyq*(p_el==ps);

26 i+(j-1)*nx, i+(j)*nx, 0+1/ dyq*(p_el==pn);

27 ];

28 % small Value 0.1, so that Lp_p is not singular.

29 Lp_val = Lp_val(find(( Lp_val (:,2) >0)&( Lp_val (:,2) <=param.mesh.nel)) ,:);

30
31 Lp_p = sparse(Lp_val (:,1),Lp_val (:,2),Lp_val (:,3),param.mesh.nel ,param.mesh.

nel);

32
33 end
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Additional plots

To illustrate the simulation results of the parameter study discussed in Section 6.2,

additional plots which show the temperature and velocity distribution in the simulated

cavities at six time points during the respective simulations are presented here.

For the sake of improving comparability of the given plots, the illustrations begin on

the following double page, so that each double page contains the temperature and

velocity distributions of a particular cavity orientation case.
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Appendix B. Additional plots
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Figure B.1: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 0�
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Figure B.1: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 0�
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Appendix B. Additional plots
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Figure B.2: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 45�
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Appendix B. Additional plots
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Figure B.2: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 45�
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Figure B.3: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 90�
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Appendix B. Additional plots
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Figure B.3: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 90�
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Appendix B. Additional plots
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Figure B.4: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 135�
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Appendix B. Additional plots
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Figure B.4: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 135�

121



Appendix B. Additional plots
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Figure B.5: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 180�
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Appendix B. Additional plots
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Figure B.5: Temperature and velocity distribution at di↵erent simulation times for

cavity orientation 180�
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To increase the efficiency of energy- 
intensive industrial processes, thermal 
energy storages can offer new possibi-
lities. A novel approach is investigated 
in the project HyStEPs. In this concept, 
containers filled with PCM are placed at 
the shell surface of a Ruths steam storage, 
to increase storage efficiency.

In this work, a two-dimensional model  
using the finite element method is  
developed to simulate the PCM of the 
hybrid storage as designed in the HyStEPs 
project. The apparent heat capacity 
method is applied in a MATLAB imple- 

mentation, considering heat transfer by 
both conduction and natural convection. 
This successfully validated code can 
handle any desired layout of materials 
arranged on a rectangular domain. 

Furthermore, a parameter study of diffe-
rent dimensions and orientations of the 
PCM cavity was conducted. The impact 
of natural convection was found to lead 
to significantly varying behaviour of the 
studied cavities with different orientation 
during the charging process, while it 
was found to be negligible during the  
discharging process.
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