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Editorial

Preface
Honesty, responsibility and accountability in all facets of research and university 
education are the foundations of society’s faith in science and technology. These 
principles serve as the foundation for academic independence and the highest 
ethical and integrity standards. Therefore, “Technology for People” is the uni-
versity’s mission statement. We want to transform what is technologically feasi-
ble into what is desirable from a human-centered perspective. Innovative goods, 
services and procedures ought to make the world a better place to live in terms 
of compassion and social responsibility. TU Wien has made significant financial 
investments in multidisciplinary research carried out in doctoral colleges to ad-
dress urgent societal concerns to further this purpose and uphold the highest 
standards of science and ethics. The doctoral college “Trust in Robots”, led by 
Sabine Koeszegi & Markus Vincze, was established in 2018 to understand how 
we can build disruptive robotic and artificial intelligence (AI) technologies that 
people trust. Robotics and AI have the potential to help us overcome several 
problems, including the aging population crisis and climate catastrophe. The doc-
toral college “Trust in Robots” addresses this area of friction and bargains over 
the compatibility of technology and moral principles.

“Trust in Robots” has been set up as a transdisciplinary doctoral college in 
which postgraduate students and professors of various academic disciplines col-
laborate to understand the same phenomenon from different perspectives. From 
an institutional standpoint, the College’s setup has been difficult because the 
systems and policies currently in place are not appropriate for admitting students 
with different academic backgrounds into the same study program for transdisci-
plinary research. However, the success of this doctoral college proves that this is 
how we must perform research in the future to overcome the existing silos of dis-
ciplines. The college has inspired certain changes that have been implemented 
in the Doctoral School of TU Wien and can serve as a model for future research 
projects. The introduction of the lecture “Responsible Research” for all doctoral 
students at TU Wien is one of the Trust Robots Doctoral College’s most import-
ant accomplishments from our perspective. In this lecture, we consider ethical 
standards and the societal effects of innovation and science while preparing our 
students with morally sound design and trustworthy research techniques.

The doctoral college “Trust in Robots” is an unqualified success for TU Wien. 
The results of a four-year project at TU Wien are summarized in the twelve chap-
ters of this book, which we are happy to release to the public. 

      Kurt Matyas (Vice Rector for Academic Affairs) 
Johannes Fröhlich (Vice Rector for Research and Innovation)
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Editorial
Robots are gradually becoming a part of our daily lives, populating our living and 
working spaces. We hope that robots will come to relieve us from chores and 
dangerous, dull, or dirty work. We believe that they can make our lives more 
comfortable, easier, and even more enjoyable by providing companionship and 
care. Hence, robots will change how we collaborate and assign tasks to human 
and machine agents and even—more fundamentally—how we live and perceive 
ourselves and our roles in society. Although we believe we have control over the 
machines we have built, this belief may fade as devices become more significant, 
autonomous, and influential. The independent actions of robots can be frighten-
ing. Thus, developing technology for people requires that we are—at all times—in 
control of the technology or that we can rely on the good intentions and safety of 
autonomous systems over which we have no control. Therefore, building trust in 
(autonomous) robot systems is necessary.

Trust has been an essential issue in automation and technology research 
since the 1980s. According to studies on interpersonal trust, trust as an attitude 
develops into reliance and so plays a crucial role in technology acceptance and 
appropriate use of automation. Furthermore, research indicates that the same 
social heuristics used in human–human interactions may apply to human–robot 
interactions (HRIs) because robots trigger similar social attributes as humans. 
Although previous research revealed disparities between trust in and reliance on 
technology and trust among people, this difference may become more blurred as 
robots increasingly mimic human interaction patterns and exhibit anthropomor-
phic appearance and behavior.

This problem is reflected in the title of this book, “Trust in robots—Trusting 
robots,” which carries different notions and unifies various research areas. While 
“Trust in robots” addresses the subject of how to develop technology that users 
are willing to rely on, “Trusting robots” focuses on the process of establishing a 
trusting relationship with robots, thereby extending previous research. This latter 
interpretation of trusting robots—although still to a great extent futuristic—poses 
the question of how to develop artificial intelligence and robotic technology that 
allows a robot to exhibit trusting skills when interacting with humans. It considers 
that humans may develop relationships with robots that go beyond technology 
acceptance and reliance. Thus, trust in this context does not only refer to the 
one-sided confidence of users toward robots but also to users’ need to be as-
sured that robots incorporate notions of the meaning of objects and social norms, 
including biases, and have an understanding of scenes and situations to be ca-
pable of interacting with users socially. However, the mere possibility that we may 
develop bonding and emotional attachment to machines raises several ethical 
questions and concerns. Is it ethical to design devices that trigger trust and rela-
tionship building? Should robots simulate trustworthy behavior to start reciproca-
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tion by their users? Does trust in robots increase the vulnerability of users? How 
can we increase transparency regarding the capabilities of robots to ensure that 
users understand what robots can and should do? Should robots mimic other 
human qualities—such as empathy or emotions—to enhance trust?

These questions and topics have been the core of the “Trust Robots” doctoral 
college at TU Wien. The main aim was to comprehensively analyze trust in the 
context of robotic technology from various perspectives. The book presents the 
results of the 4 year endeavor of doctoral students—from fall 2018 to fall 2022. 
Before summarizing their contributions, let us briefly discuss the critical scientific 
challenges in transdisciplinary research.

Scientific Challenges and Transdisciplinary Research

On the one hand, building trust in robot systems entails endowing robots with 
capabilities and skills to perceive and understand human communication and 
behavior (for example, through natural language processing, by recognizing fa-
cial expressions, voice, gestures, and emotions); to recognize and ideally predict 
human intentions; and to adequately respond to all of these stimuli. Furthermore, 
any robot reaction must guarantee users that they are safe at all times and that 
human rights are respected and ensured. On the other hand, humans must per-
ceive robots as safe and reliable. Since it is impossible to foresee or enumerate 
all possible situations, autonomous (social) robots must respond securely to un-
expected and unforeseen encounters. They must be able to learn and adapt, as 
they will be tasked with making independent decisions that go far beyond the pre-
programmed security rules and algorithms. In such a context, robots are ascribed 
and will have (social) agency.

To address these research issues, researchers from different disciplines must 
collaborate to pool their expertise, methodologies, and knowledge. The envi-
sioned assistance from robots to improve the quality of life and work can only be 
realized responsibly when the issues associated with this technology are con-
sidered appropriately. Consequently, there is a need to discuss and understand 
possible future scenarios from different perspectives: technological (i.e., imple-
menting aspects of trust on robots), human (i.e.,., deployment of trustworthy ro-
bots in work and social contexts), and societal (i.e., legal, ethical, political, and 
sociocultural aspects).

Our research is based fundamentally on the sociomateriality paradigm, which 
holds that sociocultural processes and technology and its applications are inher-
ently entangled and cannot be analyzed separately.

Furthermore, since industrial and social robots are intelligent, autonomous 
machines that lack moral capacity, scientists and developers must assume re-
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sponsibility for ethically aligned design from the outset. Hence, ethical robotics 
begins with R&D rather than mitigating the adverse effects and harm caused by 
new technologies after they are introduced. Therefore, our research is guided by 
the principles of the responsible robotics paradigm and focuses on the ethical 
concerns associated with the incorporation of robots into society.

The faculty and students of the doctoral college are truly interdisciplinary: they 
have backgrounds in the philosophy of science, design science, labor science, 
economics, social science, psychology, computer science, mechanical engineer-
ing, and electrical engineering, and they have worked on 12 different topics arch-
ing from a principle design-perspective on sociotechnical systems over joint at-
tention and motion planning to adaptive task sharing in human–robot collaboration 
and a general reflection of trustworthy robots in society. Figure 1 shows an over-
view of the transdisciplinary research at the doctoral college.

Figure 1 Transdisciplinary fundamental technical and applied research on 
implementing aspects of trust in robots

This work completed in the doctoral college is genuinely transdisciplinary. 
Students from different disciplines collaborated to develop implementations on 
robots, design experiments and demonstrations, analyze data, and draw con-
clusions from the findings for the field of HRI and their core disciplines. This 
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has led to the profound understanding that studying robots requires considering 
the entire sociotechnical system and context. This comprehensive perspective 
allows for designing meaningful and ethical robotic technology that will meet our 
expectations of making our lives easier and more enjoyable.

Summary of Results

The collection of articles in this book presents the highlights of the work on trust-
worthy robotics. We divide the summary into five sections: designing trustworthy 
robots, discussing trust and plausibility, implementing aspects of faith in robots, 
proposing that trustworthy robots must be viewed in the work context, and sug-
gesting that trustworthy robots should be regarded in society.

Designing of Trustworthy Robots

In the first chapter of this book, Frijns & Schürer analyzed the contributions and 
importance of design work in the field of HRI research. They proposed that how 
interaction is conceptualized fundamentally impacts the design space and hence 
has to be considered in robotics research. Frijns et al. convincingly argued that 
the design space(s) for HRI must be extended beyond the individual aspects 
of humans and robots and encompass the sociotechnical system for which the 
robot is built. They make significant contributions to HRI through these design 
practice lenses.

Trust and Plausibility

The practical value of trust is founded on previous research findings that trust 
facilitates technology acceptance. Hannibal, Weiss & Purgathofer expanded on 
the perspective of “Trusting Robots” by providing a systematic identification of sit-
uational, robot-specific vulnerabilities in HRI. Hence, Hannibal, Weiss & Purgath-
ofer shifted our focus to the contextual setting in which HRI occurs, challenging 
the prevalent negative association between interpersonal trust and vulnerability 
from both a theoretical—philosophical—and empirical perspective.

Based on the same fundamental idea of the relevance of context for HRI, Pa-
pagni & Koeszegi argued that for robots to be accepted within society, nonexpert 
users must find them valuable and trustworthy. They proposed to design robots 
that explain their decisions and actions to nonexpert users within the context of 
everyday interactions. Furthermore, they propose a model in which the plausi-
bility of explanations resulting from contextual negotiations between the parties 
involved determines the understanding and supporting trust.

Bauer & Vincze applied this plausibility of explanations to the concrete sce-
nario of scene interpretation, a core element of robots interacting in the world 
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and with people. It first presents the technical approach to creating an object 
hypothesis using learned methods and then employs a verification process to 
obtain relationships between objects in the scene. The work shows that such 
scene-level information should be used to estimate object poses. Their primary 
assumption is that all object hypotheses concerning their visual observation and 
the physical scene in which they reside must be plausible. These scene interpre-
tations are then employed in reasoning strategies to explain to the user what the 
robot perceives during HRI.

Implementing Aspects of Trust in Robots

The following studies focused on how to implement these various aspects of trust 
in robots and trusting robots into technology.

Stoeva & Gelautz presented a framework for a human–robot imitation sys-
tem and examined the system requirements imposed by different interactions 
for communicative, functional, artistic, or abstract movements. The analysis 
identifies open challenges for designing and developing human–robot imitation 
systems, such as the difficulty of observing and accurately replicating human 
motions and how to transfer human to robot motions given different embodiments 
(correspondence) and even measuring the deviations. The study also addresses 
ethical issues, such as keeping privacy, not deceiving interactants, and correctly 
employing the robot system as intended and agreed upon.

Following the interpretation of human gestures, the robot might contact the 
human, as in a hand-over scenario. Beck & Kugi investigated motion planning 
specifically for such trustworthy human–robot collaboration, emphasizing the 
significance of ensuring human safety and comfort during the interaction. Con-
cerning comfort, the study emphasizes fluency (a high level of coordination be-
tween humans and robots, resulting in accurately timed, and efficient sequences 
of action), legibility (a measure of how well the robot conveys its intent), and 
human-like motion. The study introduces a receding horizon trajectory optimiza-
tion approach to achieve such behavior, where the requirements for safety and 
comfort during the interaction are formulated in objective functions.

Another critical aspect of fluent interaction is for the robot to understand the in-
tention of the human user and to build a mutual understanding of the subsequent 
actions. Koller, Weiss & Vincze studied this joint attention perspective using a 
robot and human gaze behavior during collaborative actions. The study reviews 
research on joint attention and the theory of mind as foundational elements for 
the success of collaborative tasks in human–human interaction. The authors em-
ploy the research approaches of roboticists to provide robots with a joint attention 
capability or at least the technically feasible equivalent. The idea is that mechan-
ical gaze behavior, which humans can easily comprehend, will improve the inter-
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action capability of a social robot. This is evaluated in an already established HRI 
joint action benchmark scenario of collaboratively building a tower out of different 
blocks.

Finally, it would be great if robots could continue to learn from humans in ev-
eryday life scenarios. To achieve this, Hirschmanner & Vincze proposed using a 
grounded language learning approach to connect words and references in social 
spaces, such as objects. The authors presented a Pepper robot-based incre-
mental word learning system. Then, they introduce how to learn specific low-level 
activities through demonstrations. Furthermore, they present systems with an 
industrial robotic arm and a dexterous robotic hand as concrete examples. Addi-
tionally, they address the role of the teacher in the learning process, determining 
which human factors are essential to facilitate the learning process.

Trustworthy Robots in Work Contexts

As previously stated, developing trustworthy robots requires considering the sys-
tem’s context. Thus, we must also study the context in which robots are deployed. 
The imagination of the role of robots is often driven by technology and top–down 
ideological agendas, without regard for the practical realities of everyday life 
and work contexts. Schwaninger, Weiss & Fitzgerald explored bottom–up HRI 
research in the context of home environments and robot support for older adults. 
Furthermore, the study presents an overview of assistive technology for home 
environments, the building blocks for HRI research in these contexts, and the 
issues of elderly support and care.

Zafari & Koeszegi addressed questions regarding the extent to which robots 
are accepted in work settings, as well as the impact human–robot collaboration 
has on workers and their perceptions of their own and the robot’s role, agen-
cy, and efficacy. They show how agency is ascribed to nonhuman entities and 
present two experiments that analyze this impact. Zafari et al. provided valuable 
recommendations for both the design of artificial agents and organizational strat-
egies in terms of which social practices and changes in the working context must 
provide opportunities for a successful collaboration.

Schmiedbauer & Schlund addressed another essential aspect of successful 
human–robot collaboration: how to allocate tasks between humans and robots. 
Instead, of automating all that can be automated and leaving the rest to humans, 
they employed a human factors approach and focused on the needs and capa-
bilities of workers and economic targets at the center of analysis. They designed, 
developed, demonstrated, and evaluated a model for adaptive task sharing be-
tween humans and cobots (collaborative robots) and showed avenues for further 
development based on their insights.
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Trustworthy Robots in Society

Finally, DePagter provided a macrolevel analysis, i.e., an analysis of the process 
of building trust in robots on a societal level. They proposed a narrative approach 
and argued that robots are a prominent example of a technology that has caught 
many people’s imagination of the future. The analysis of these future imaginaries 
of robots provides a deep understanding of how technology is perceived by the 
general public, what fears and hopes are associated with this technology, what 
roles are given to robots, and what challenges are associated with them. This 
narrative approach provides avenues for policymakers and developers to shape 
future imaginaries of robots.

Sabine T. Koeszegi, Markus Vincze
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Design as a Practice in Human-Robot Interaction 
Research

Helena Anna Frijns , Oliver Schürer  

Abstract

This chapter reflects on the scope, methods, knowledge contributions, and normative orientation of design for the 
research field Human-Robot Interaction (HRI). The design space of interactions between humans and robots is 
characterized as being influenced by the way interaction is understood. Underlying views of interactions merit con-
sideration, as they influence the research questions, methods, and aims of HRI design research. It is argued that 
we need to understand the concept of the design space(s) for HRI as extending beyond individual aspects that can 
be varied in the design of interactions between humans and robots to encompass the socio-technical system that 
the robot is developed for. This chapter further characterizes the practice of HRI designers as comprising multiple 
overlapping activities, operating in a complex problem context in a design team with multiple sets of expertise from 
different disciplines, comparable to or functioning as transdisciplinary research. This chapter contains a discussion 
of knowledge contribution that can be achieved through design practice and concludes with reflections on the re-
sponsibility of designers.

Keywords

Human-Robot Interaction, Interaction Design, Design Research

1 Introduction

Human-Robot Interaction (HRI) is a multidisciplinary research field that integrates 
disciplines such as engineering, psychology, sociology, philosophy, and more1. 
Collaboration between different disciplines is necessary to achieve goals (such 
as developing robotic systems for human-aware navigation), but can be com-
plicated as each discipline has a different jargon, uses different methods, and 
knows different practices and paradigms. Design is frequently described one of 
the disciplines of relevance in HRI. Lupetti et al. define designerly HRI as “the 
body of work in HRI that has a strong orientation toward design (i.e., work devel-
oping novel robotic artifacts and/or engaging with design methodologies)” [2021, 
p. 389]. They consider designerly HRI as a methodology or form of research, a 
“means for investigation” [Lupetti et al. 2021, p. 381] extending beyond individ-
ual robot designs or designed features. As it is necessary to collaborate across 
disciplines, this chapter aims to further clarify the role of (interaction) design in 
HRI and how it contributes (both in terms of knowledge and prototypes) to HRI 
research and the development of robotic systems.

This chapter is a position statement and literature review on the scope of the 
HRI design practice, activities that are part of design practice, the potential of 
design to contribute knowledge, and the normative orientation that design work 

1 Key characteristics of disciplines include that they have a specific focus on certain phenomena, 
concepts, methods and theories, and that they subscribe to particular ‘rules of the game’ and 
specific disciplinary perspectives [Szostak et al. 2016, p. 10].

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.34727/2022/isbn.978-3-85448-052-5_1
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-3866-7380
https://orcid.org/0000-0003-1613-1227


4

Helena Anna Frijns, Oliver Schürer  

implies. Whereas design of robot appearances and behaviors for interactions be-
tween humans and robots has been a topic for several decades (see for instance 
the special issue on design for HRI [Holmquist and Forlizzi 2014] and work on 
social robot embodiment design and anthropomorphism [Blow et al. 2006; He-
gel 2013; Deng et al. 2018]), and to an extent design methodology (for instance 
[Bartneck and Forlizzi 2004; Drury et al. 2004], and work on Value-Sensitive De-
sign [Dignum et al. 2018; Van Wynsberghe 2016; Cheon and Su 2016]), recently 
there is an uptake of interest in reflecting on design methodology for HRI and how 
design research can contribute knowledge to the HRI community. This is exem-
plified by a series of recent papers and workshops on topics such as designerly 
HRI [Lupetti et al. 2021, 2020], integration of User eXperience (UX) design in a 
human-robot interaction design workflow [Prati et al. 2021], use of metaphors to 
inspire HRI design [Alves-Oliveira et al. 2021], combination of UX design and 
ethics in the design of social robot behavior [Fronemann et al. 2021], Research 
through Design (RtD) [Luria et al. 2021], exploratory prototyping for HRI [Zam-
firescu-Pereira et al. 2021], and Design-Centered HRI and Governance [Weng 
et al. 2021]. Questions relevant to these workshops and papers include what an 
HRI design epistemology could be, evaluation of knowledge resulting from HRI 
design practices [Lupetti et al. 2020, 2021], and reflection on which RtD methods 
are relevant for HRI [Luria et al. 2021]. The recent interest in design methodolo-
gy, design practice for HRI, and the necessity to collaborate across disciplines in 
HRI make the topics of design practices and design knowledge both timely and 
relevant.

This chapter references work in Human-Computer Interaction (HCI) and theory 
on design research that is relevant for HRI designers, as there is a certain ma-
turity in those discussions that will be informative. This chapter seeks to answer 
several questions: why is design relevant for HRI? What can it be useful for? 
What do designers know or what can they do that can contribute to solving prob-
lems? Why is design positioned (perhaps uniquely positioned) to solve specific 
problems?

This chapter discusses the concept of design space(s), characterizations of 
the practice of designers, and characterizations of knowledge contributions that 
design can offer. It reflects on the ways of thinking about the activity of designing 
as part of an HRI research practice. Finally, the chapter argues that responsibility 
is inherent to the design practice as a result of one of the main aims of design, 
namely to change or impact people, societies, and the world.
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2 The Design Space of Human-Robot Interactions - From 
the User Interface to the Socio-Technical System

2.1. The Concept of the Design Space

In this section, we discuss various levels at which we can consider design. What 
can designers affect? What is part of the “material” of a designer’s practice? One 
concept we can start with is that of the design space. A design space can be de-
scribed as the set of possible design alternatives or aspects of a design that can 
be altered. The term design space is frequently used to indicate that the design 
problem, object or system has various features that can be varied: design deci-
sions have to be made regarding these features. The concept is commonly used 
in computational design, and it is gradually making its way into HRI as a way to 
describe a design problem.

Halskov and Lundqvist elucidate the concept of design spaces in a HCI context: 
“ (...) a design space may be represented in a number of ways, such as a Carte-
sian space, a network graph, or a conceptual space. The scope of a design space 
ranges from a class of technologies, over all accumulated knowledge during a 
specific design process, to the design space of a collection of designs, ideas, 
and sketches.” [2021, p. 3]. They note that the term design space can refer to the 
physical space where design activities take place. Thinking of a design problem 
in terms of its design space can also take the specific form of representing design 
aspects computationally, with requirements that need to be satisfied represented 
as objective functions that need to be optimized. Design space exploration refers 
to the idea that a large space in which designs are represented in a specific way 
can be traversed computationally [Woodbury and Burrow 2006]. Computational 
methods for exploring the design space can be useful for finding a solution that 
satisfies design objectives while exploring more of the design space. It assumes 
that the problem can be modeled as a combination of parameters to be adjusted 
to satisfy constraints [Chan et al. 2022]. A computational approach to the design 
space concept can be useful for restricting the problem scope and finding new 
design solutions within said restricted problem space. However, certain require-
ments or constraints are not easily (or at all) possible to represent as an equation 
or numerical condition/value that can be met. These operate at different levels, 
e.g. in interaction with one or multiple users, or only become apparent when the 
technology is introduced to society on a large scale.

The design space term can also refer to a metaphorical space containing 
possibilities and alternatives that are taken into consideration to satisfy design 
requirements [Halskov and Lundqvist 2021]. Botero et al. describe the design 
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space as “the space of possibilities for realizing a design” [2010, p. 1] and “the 
space of potentials that the available circumstances afford for the emergence of 
new designs” [2010, p. 3].

In the context of HRI, the design space term is often used in its conceptual or 
metaphorical sense. Deng et al. [2018]. describe the design space in terms of 
changes that can be made regarding the appearance, behavior, and structure 
of interactive technologies such as social robots. Baraka et al. [2019] propose 
a framework with seven dimensions for characterizing social robots, which they 
describe as forming a design space. The framework contains the following di-
mensions: appearance, social capabilities, purpose and application area, rela-
tional role, autonomy and intelligence, proximity, and temporal profile. The design 
spaces sketched by Deng et al. [2018] and Baraka et al. [2019] have a strong 
focus on the robot as a socially interactive device with a specific appearance and 
function. Other frameworks have been developed for describing HRI. Goodrich 
and Schultz [2007] describe the dimensions that HRI designers can affect (au-
tonomy, information exchange, team structure, adaptation and learning, and task 
shape) with a focus on human-robot teamwork. In the HCI context, Forlizzi and 
Ford [2000]’s design framework of user-product interaction includes the user, the 
product, context of use, social and cultural factors. On the human side they in-
clude the factors emotions, values and prior experience; on the product side they 
include aesthetic qualities, form language, features, and usefulness.

2.2. Interaction Design, UI & UX

In discussing the main topic of design for HRI, the focus of the current chapter 
is on interaction design, that is, designing for interaction. Interaction design has 
been described as “the shaping of digital materials — software, electronics, tele-
communication, etc. — with a particular focus on the use of the resulting digital 
artifacts” [Löwgren 2007, p. 1].

An interaction designer affects the appearance of a system, its behavior in 
response to stimuli, and the quality of interaction and User eXperience (UX) in a 
way that fits the context, with the aim to improve a current situation by changing 
existing systems and creating new systems [Smith 2006; Fallman 2008; Good-
man et al. 2011]. A host of aspects can be considered; the control method, the 
usability of the user interface (UI), familiarity, timeliness and correctness of action 
execution by the system, clarity of communicative cues used by the system, how 
well the system recognizes human cues, which cues the system can recognize, 
information quality, the embodiment of the robot, aesthetic qualities, and so on. 
Interaction design can be considered at different levels, from the micro level of 
button clicks on a graphical user interface (GUI) to the macro level of societal 
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effects of technical systems. Although the scope of a design project may be re-
stricted to, for instance, certain aspects of embodiment design, we would consid-
er it of high importance that the setting that the robotic system is designed for, as 
well as broader ethical and societal implications, are taken into account during 
the design process.

First, the ‘micro’ level of human-technology interaction will be discussed here, 
by starting with the classical HCI design topics of UI and UX design before ex-
panding the discussion to include a broader perspective on designing interac-
tions, to argue that all these levels need to be considered in the design of techni-
cal systems such as robots.

To start off, we consider the UI. User interface design is highly relevant when 
discussing the topic of designing interactions with technical systems such as ro-
bots. UIs have been described as components or mechanisms that enable two-
way human-machine communication, presentation of information, and human 
control of systems and processes to achieve specific tasks [International Organi-
zation for Standardization (ISO) 2010; Marvel et al. 2020]. The UI can also be de-
scribed as all the means of input and output that offer humans interacting with the 
system the possibility to obtain information from a robot and affect the technical 
system across different modalities. This can include a GUI, motor sounds, ges-
tures, sound alerts, and movement. Applying the concept of the user interface as 
familiar from other interactive technologies such as computers and smartphones 
is problematized in the case of HRI [Frijns et al. 2021]. Especially in the case of 
co-located robots, a human interacting with a robot will gain information from the 
robot via many other channels than just a GUI or other parts of the system that 
have been intentionally designed to convey information to an end user and allow 
an end user to act on the robotic system, as the embodiment of the robot and the 
way it moves and sounds (perhaps even smells and tastes) are informative and 
can be impacted.

Conceptually, restricting the UI to the input/output devices or mechanisms spe-
cific to the system renders the interaction rather flat, as interaction can never be 
just restricted to operations on the UI - the interaction is connected to the person, 
system, situation, and the world in addition to those specific input/output mecha-
nisms employed in the UI. Consider for instance the concept of so-called intuitive 
use, a process that involves prior, partially automatic nonconscious knowledge 
(familiarity) [Naumann et al. 2007]. To achieve such a high level of ease of use, 
the design of the UI has to appeal to previous knowledge of the user, in other 
words, it should appeal and be connected to culture, prior experiences, motor 
memory, and so on. As soon as we talk about designing a UI, or consider a UI in 
interaction, we need to take the broader context into account, including one or 
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multiple users, other people (including other stakeholders), objects, and technol-
ogies.

Where the UI is conceptually restricted to the input/output aspects of an inter-
action and information exchange, the concept User eXperience (UX) is intended 
to cover the more experiential aspects, which still leaves some space for con-
sidering the whole experience of the system as well as unintended inputs and 
outputs, such as motor sounds, which are generally not intended to be part of 
the UI but do provide information to an end user. UX can be described as part 
of the design space of human-robot interactions, focused on the experience of 
interaction of an end user. Perceptions and understanding of and responses to 
(anticipated) use of the system, suitability to the context, and how the system 
serves human needs are seen as part of UX [International Organization for Stan-
dardization (ISO) 2010; Weiss et al. 2009]. Taking UX into consideration as part 
of the design space of social robots already accounts for more aspects than just 
looking at operations on a UI, but in focusing purely on the user and their expe-
riences, it is clear that more aspects need to be considered when designing HRI 
systems - other effects and actors not considered in the UX concept.

2.3. Waves of HCI and Views of Interaction

The different ways of approaching the design space of interactions between hu-
mans and robots depend on the ways interaction itself is viewed. Harrison et al. 
[2007] discuss Kuhn’s concept of the paradigm shift, and argue that similarly, HCI 
is characterized by paradigms that are dependent on the paradigm’s metaphor 
for interaction. These metaphors influence the goals for the interaction, research 
questions that are asked, and the methods used. Consequently, research that is 
conducted with different foundational views of interaction subscribes to different 
epistemological bases.

In the HCI community, several shifts in focus and thinking have been identified 
and described as the three waves of HCI. Work that is conducted within (or across) 
such ways of thinking is informed by particular views of interaction. During the 
first wave, cognitive science and psychology were adopted as a way to inspire 
technology design, with a focus on information processing, human factors and 
model-driven thinking. The second wave entailed a shift from disembodied sin-
gle-user interaction to collaborative communities working in a particular context, 
but still with a focus on users, exemplified by for instance the use of participatory 
design methods. During the third wave the focus shifted to design-oriented, more 
exploratory, critical, value-oriented technology development for daily life acknowl-
edging the importance of such things as complexity, experience, meaning, and 
emotion [Bødker 2015; Fallman 2011; Harrison et al. 2007; Frauenberger 2019]. 
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The metaphors reported by Harrison et al. [2007] as central to each wave are 
interaction as [hu]man-machine coupling, as information communication, and as 
phenomenologically situated, respectively. Where most authors distinguish three 
waves, Frauenberger [2019] proposes a fourth wave called Entanglement HCI. 
According to Frauenberger, HCI researchers/designers cannot “design interac-
tion”; instead, they work on “configuring material conditions” [2019, p. 12].

Several theories, frameworks and accounts have attempted to describe what 
happens in the interactions between humans and technology, for instance the 
Product Ecology [Forlizzi 2008], Actor-Network Theory (ANT) [Law 1992], Activity 
Theory [Bertelsen and Bødker 2003], distributed cognition, and computational 
rationality [Oulasvirta et al. 2022]. Interaction can be understood or framed in dif-
ferent ways, as demonstrated by Hornbæk and Oulasvirta [2017] and by Frijns et 
al. [2021]. For instance, interaction has been conceptualized in the context of HCI 
as dialogue, transmission, tool use, optimal behavior, embodiment, experience, 
and control [Hornbæk and Oulasvirta 2017]. Naumann et al. [2007] describe in-
teraction as information and energy exchange. Interaction and communication in 
HRI can be described, for example, as the sending of signals, as communicative 
action, as joint action or as a dynamic system, and main ways of framing inter-
action include interaction as control and as social interaction [Frijns et al. 2021]. 
Besides dyadic models of HRI, the attention on non-dyadic interaction is increas-
ing [Schneiders et al. 2022].

Inherent to describing a communication process is the consideration where the 
communication is “located”, or the question who is participating. What is social 
here, the relation between a human user and one or multiple robots, the relation 
of a user to the system’s designers/developers, or social interactions that the 
robot enables between other agents? We can describe this as sociality in the 
artifact, sociality through the artifact, or sociality with the artifact. Conversely, we 
may describe sociality as located across a network, as in ANT.

Breazeal [2003] and Fong et al. [2003] distinguish several paradigms for social 
HRI that range from robots being socially evocative systems to robots being so-
cially intelligent. Such paradigms are exemplary of a view of sociality residing in 
the artifact or as being a property of the robotic system or a human’s relation with 
the robotic system: the artifact relates socially itself.

Another view of the communication process is that of the designer(s) of a sys-
tem communicating with the end user, sociality through the artifact. For example, 
De Souza [2005] proposes semiotic engineering as a theory of HCI that con-
strues computer systems as messages that are sent from the interactive sys-
tem’s designers to its users. The system functions as a deputy of the designer. It 
speaks for the designer, and this is described as a metacommunication process 
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- the designer’s message is unpacked over the course of the user’s repeated 
interactions with the system. De Souza states that computer systems encode a 
problem and a specific solution to that problem. Through exploration and negoti- 
ation of meaning with the system, the user is able to apply the designer’s vision 
creatively to new problem situations.

Technologies such as robots can also be viewed as serving a mediating role; 
sociality with the artifact, where the artifact enables social relations between oth-
er actors. Such a role is described in the Domestic Robot Ecology [Sung et al. 
2010]. See also the Product Ecology by Forlizzi [2008] and Raptis et al. [2014], 
who describe various ecology concepts that have been proposed within HCI, 
such as the information ecology, artefact ecology, and personal ecology. Van 
Wynsberghe and Li [2019] propose a reframing of the HRI model from dyadic 
interaction to a model of human-robot-system interaction (HRSI). A dyadic inter-
action model does not account for all the effects of introducing a robot in a care 
context, such as impacts on the healthcare system as a whole. In the model they 
propose, the bot is viewed as a mediator between the healthcare system and the 
patient. In this case, the bot is seen as closely connected to the company that 
developed it (for data collection, data processing, and upgrades).

Finally, sociality can be located across a network. Law [1992] characterizes 
ANT as a sociological approach that describes humans, machines, objects, orga-
nizations, society, and alike, as heterogeneous networks or the effects produced 
by heterogeneous networks. Actors are themselves networks (which is why actor 
and network are coupled in the name actor-network): “(...) a machine is also a 
heterogeneous network - a set of roles played by technical materials but also by 
such human components as operators, users and repair persons.” [Law 1992, 
p. 384]. The concept of punctualizations describes the phenomenon that complex 
heterogeneous networks are masked by simple actions and that which causes 
the action, which comes to stand in for the complex network. This is applicable to 
a complex system such as a robotic system that comprises, for example, various 
devices and a human operator, but what is perceived is simply the robot perform-
ing actions. ANT scholars suggested that there is no distinction between the so-
cial and the material. Socio-materiality indicates that what is material constitutes 
the social, and the social constitutes the material [Leonardi 2012]. Yaneva [2009] 
discusses the application of ANT to design, arguing that design can be viewed 
as a connector that shapes social interactions. How something is designed is di-
rectly tied to the particular way in which it mediates social relationships; the way 
something is designed shapes the social in a particular way. Vallès-Peris and 
Domènech [2021] propose “Caring in the In-Between”, an approach toward re-
sponsible technological development of robotics and AI technologies in the care 
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sector. The approach considers the robot as embedded in a network instead of 
as partaking in a dyadic HRI.

Alternatively, Verbeek [2008] describes technologies as not being neutral, and 
instead technologies serve a mediating role for human action, impacting human 
decision-making and configuring the conditions in which they can act and thus 
the conditions of their freedom. Verbeek distinguishes three forms of agency: hu-
man agency in the interaction with a technological artifact, the agency of the tech-
nology designer in shaping its mediating role, and the artifact’s agency through 
the mediation.

These different views put the focus on developing different technologies. Con-
trast humanlike behavior for robots that relate to a human user in a humanlike 
social way to a view of social interaction as unpacking a designer’s narratives in 
software (as in semiotic engineering), to a view of a robot impacting relationships 
within a family after its introduction to a household (e.g. Roomba [Sung et al. 
2010]).

2.4. Design Spaces as Context-Specific

Harrison et al. [2007] state that the concept of design spaces fits the second par-
adigm or wave in HCI, as it suggests that there are aspects of design that can be 
varied without considering the context or how these aspects interrelate. A broader 
view of design spaces can be found with Botero et al. [2010], who write that the 
design space is not a pre-existing space, but instead, it is a co-constructed space 
formed by stakeholders, technologies, social processes. This moves the focus of 
the design activity away from the object, towards this broader context. This move 
towards including the context can and should also be made when discussing 
robotic systems, as “(...) a system isn’t complete without the people who use 
it” [Smith 2006, p. xii] and the environment and situation it is embedded in. The 
concept of a design space should not be restricted to aspects that can be varied 
in isolation. Instead, it should be considered as situational and context-specific. 
Definitions of robots and robotic systems by the ISO focus on robots as pro-
grammable devices and associated sensors and other equipment [International 
Organization for Standardization (ISO) 2012]. However, in a design context, it 
makes sense to approach robots from a socio-technical systems perspective, as 
a system is designed for people. A broader approach can be found with the ISO 
definition of an interactive system, in which reference is made to hardware, soft-
ware, associated services of the system, documentation, training, branding, and 
packaging [International Organization for Standardization (ISO) 2010]. One can 
go even further and include humans and their social worlds - and by extension, 
the natural environment.
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Moving beyond a focus on individuals and their experiences, Frauenberger 
[2019] argues that the focus of design work should not be on designing better 
user experiences. Instead, designers should design for enabling “meaningful re-
lations” within socio-material and socio-technical systems. Besides (or beyond) 
considering the impacts of technology on people, HCI should consider how hu-
manity and its relationship to the world are reconfigured by technology design 
[Frauenberger 2019]. Johannessen and Perjons define a socio-technical system 
as “a hybrid system that includes technical artefacts as well as humans and the 
laws, rules, and norms that govern their actions” [2014, p. 12]. In order to design 
technical artifacts for socio-technical systems, a designer needs to recognize the 
knowledge present in such a socio-technical system and its individuals, practices 
and technologies. Though design as a discipline already moves beyond consid-
eration of the technical artifact by itself, there is a need to consider effects on the 
situation and stakeholders involved, as well as larger societal implications. For 
social robotics, Šabanović similarly argues that it is important to ground robot 
design and the evaluation of robotic systems in “real socio-technical ecologies in-
habited by potential users” [Šabanović 2010, p. 447], proposing the mutual shap-
ing framework that acknowledges the mutual influence that robotics and society 
exert on each other.

To conclude, while the concept of the design space can be discussed in terms 
of aspects that can be varied, it is important to keep in mind that these aspects 
also have effects together, both on the interaction and at larger scales (e.g. or-
ganization, society). The design space of interactions between humans and ro-
bots can be approached in different ways, depending on the paradigmatic view 
of interaction that is subscribed to and where the interaction process is located 
(sociality in, through, and with the artifact or across a network). Interaction can be 
approached in different ways (as control, or as social interaction) and at different 
scales or levels of impact, from clicking a button on a GUI to environmental ef-
fects from robotic e-waste. All these levels are more or less relevant depending 
on the focus and scope of the design problem. However, the existence of those 
levels should be kept in mind and the levels that are meant to be responded to 
should be specified. Interaction can be considered as actions using a UI, but this 
leaves many aspects of interaction unaccounted for. Although the concept of UX 
is broader, it still focuses on the experience of an individual user. Parallels can 
be drawn between a move from considering a design space as containing what 
can be observed locally in a specific interaction (e.g. in terms of actions on a UI) 
to a broader consideration of interaction as part of a socio-technical system, and 
the waves of HCI.
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3 Activities, Methods, and Processes of Designers 

3.1. Design Methods and Approaches in HRI

Several authors have studied and reflected on design practice in HRI (see also 
Section 1). Deng et al. [2018] note that three design disciplines are part of social 
robot design: interaction design, industrial design, and design of the animation of 
the robot. Baraka et al. [2019] distinguish three main design approaches in the 
context of social robot design, namely human-centered design, robot-centered 
design, and symbiotic approaches that take strengths and weaknesses of hu-
mans and robots into account to design for symbiosis. Alves-Oliveira et al. [2022] 
identify three types of design processes for social robot design. A linear process 
includes sequential steps, for example, hardware exploration followed by interac-
tion design experiments, implementing expressive movement, interaction design, 
and then resolving conflicts in the design. An iterative robot development process 
involves continuous improvement of the system’s design based on user and team 
feedback. Data-point-driven processes take insights, background knowledge, 
and experiences into account.

Design methods used in HRI listed by Lupetti et al. [2021] include animation 
studies, 3D modeling, sketching, brainstorming, and human-centered design 
methods such as interviews, questionnaires, participatory design methods, focus 
groups, observations, personas, and critical design. User involvement is import-
ant; Alves-Oliveira et al. [2022] write that if user needs are not met and designs 
are not sufficiently validated through user involvement, this runs the risk of apply-
ing stereotypes in the robot’s design and experiencing pushback from end users 
and other stakeholders as a result. A process that involves users at different stag-
es in the workflow can lead to a more holistic understanding. Such a process can 
involve multiple different methods, such as surveying, interviewing or observing 
target users.

3.2. Characterizing Design Research

Design research practice can be conceptualized in different ways. It can involve 
activities ranging from the design of specific instances and engaging in a design 
process, to the development of methods and generalization of knowledge derived 
from the design practice into theory in some form, while being informed by a de-
sign stance.

Design practice can be characterized as comprising several overlapping activ-
ities. Different conceptual levels on which designers operate can be discussed. 
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Fallman [2008] proposes a model for interaction design that depicts interaction 
design research as a triangle with design practice, design studies and design 
exploration at its corners. Interaction design activity is made up of combinations 
of activities from all three areas. Fallman describes design practice as practicing 
design, that is, developing products and prototypes in a design team informed 
by a specific design research question. Design exploration on the other hand, 
is directed toward searching for alternatives, criticizing the state of things, and 
taking aesthetics into account in interaction design research, which links the ac-
tivity to practices in contemporary art. The aim of design studies is to develop a 
discourse or body of knowledge around design research and its results, aiming 
to generalize and understand [Fallman 2008]. The remainder of this section dis-
cusses literature on characterizing design practice in a way that corresponds to 
the set of overlapping activities discussed by Fallman, noting that many activities 
fit multiple domains.

3.2.1. Design Exploration

In contrast to design work that aims to meet certain functional, idealistic or market 
demands, design work can also be applied to ask questions rather than answer 
them. Designers can propose counternarratives, which may be one of the pow-
erful things about design. Speculative design is not bound to market demands or 
aiming to serve a specific function besides the encouragement of societal debate. 
Critical design uses speculative design to critically question the status quo (e.g. 
preconceptions) regarding, for instance, the role of technologies such as robots 
in our life [Auger 2014]. This is one of the advantages that critical and speculative 
design offers; it enables stepping outside existing narratives and critically ques-
tioning them, and can be used to propose new narratives.

3.2.2. Design Studies

Zimmerman et al. [2010] characterize design theory as either theory on design 
(knowledge of design as an activity) or theory for design (knowledge developed 
to improve the design practice), whereas Research through Design (RtD) is “a 
research approach that employs methods and processes from design practice as 
a legitimate method of inquiry” [Zimmerman et al. 2010, p. 310]. Interest in RtD 
has increased as the focus has shifted in HCI from improving usability to design-
ing for wicked problem situations.
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3.2.3. Design Practice

In the HCI, design research and design science communities, multiple charac-
terizations of practices of designers can be found. Different types of activities 
can be part of a designer’s practice, and different ways of conceptualizing de-
sign work and its aims exist. Johansson-Sköldberg et al. [2013] describe different 
discourses on design, contrasting designerly thinking as found in the academic 
literature to the design thinking discourse within managerial discourse. They write 
that design thinking, in contrast to designerly thinking, equates creativity to the 
design practice (although there is more to the design practice), and that design 
thinking is viewed as a toolbox in a way that lacks context. Johansson-Sköld-
berg et al. [2013] distinguish five “sub-discourses” in the academic literature for 
designerly thinking and design, namely as “creation of artefacts” (Simon), as a 
“reflexive practice” (Schön), as a “problem-solving activity” for wicked problems 
(Buchanan, Rittel and Weber), as a “way of reasoning/making sense of things” 
(Lawson, Cross) and as “creation of meaning” (Krippendorff). These discourses 
have different epistemological origins [Johansson-Sköldberg et al. 2013, p. 124].

A dominant perspective is that of the problem-solving perspective on design, 
Johannesson and Perjons [2014] write that design research (and specifically de-
sign science) solves practical problems through the development of artifacts, that 
is, a system, method, model or otherwise that is intentionally developed towards 
an end. They write that many such problems are so-called “wicked problems”. 
Rittel and Webber [1973] introduce the term wicked problems in relation to plan-
ning theory. For planning tasks it should be considered what would be the right 
thing rather than the most efficient thing to do. Planners encounter situations in-
volving societal problems that are ill-defined, without a clear goal for the solution 
and unclarity if a solution that is found will actually solve the problem. Similarly, 
wicked problems in design thinking are characterized by Buchanan [1992] as 
problems that are ill-formulated, in an environment with multiple stakeholders, 
contradicting information and values, in which intervention can have unpredict-
able results. Dynamically changing requirements and conflicting, fragmentary 
knowledge can make such problems difficult to solve [Johannesson and Per-
jons 2014]. Buchanan writes that design as a discipline defies definition and that 
design does not have a specific subject matter, and rather, designers need to 
respond and relate to problems in the given circumstances, taking into account 
the views of stakeholders. The easily-forgotten process of making the product 
concrete in the wicked problem context is part of the domain of design, and the 
design process cannot be reduced to its final product alone [Buchanan 1992]. In 
Šabanović [2010]’s mutual shaping framework, social robot design is put forth as 
a wicked problem. Social robots are intended for applications in society, a prob-
lem context with increased uncertainty and complexity, which requires the design 
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to be more adaptable and requires more ethical consideration. Šabanović [2010] 
argues that new methods are required for social robot design that incorporate 
social and technical facets.

Several authors discuss complexity as part of the design practice [Stolterman 
2008; Goodman et al. 2011], in line with the “wicked problem” narrative. Good-
man et al. [2011] describe interaction design as a complex discipline involving 
different activities and types of knowledge and skills such as empathy with end 
users, technology knowledge, and capability of judging aesthetics. They describe 
a specific type of knowledge in the design discipline that rests on interpreta-
tion and reflective practice, with inherent ambiguity. The design practice is con-
text-specific; from this context complexity arises and is experienced by the de-
signer [Goodman et al. 2011]. Stolterman [2008] contrasts complexity in design 
to complexity in science and argues that these forms of complexity should be un-
derstood as different. Design complexity (or richness) arises from the designer’s 
subjective experience in response to information, requirements, and possibilities 
in the situation that is to be designed for. While in scientific practice it is possible 
to reduce problem complexity by reducing the scope of the problem, for instance 
by only looking at very specific aspects of it, design practice needs to approach a 
situation holistically, which means that design complexity cannot be reduced in a 
similar way [Stolterman 2008].

Parallels can be drawn between ways of working in a design research team 
that aims to gather knowledge and develop solutions to the practical problems 
of a particular community and transdisciplinary research projects. In meeting the 
demands of a complex problem situation, both involve drawing on the knowledge 
of several academic fields and of stakeholders outside academia. With transdis-
ciplinarity, the aim is to “provide contextualized answers to complex questions” 
[Szostak et al. 2016, p. 7], often by working in teams with several academic dis-
ciplines as well as non-academic stakeholders. In contrast, multidisciplinarity (or 
pluridisciplinarity, polydisciplinarity) involves the juxtaposition of several separate 
disciplines in terms of their methods and knowledge, without integration of those 
perspectives or developing a shared understanding [Szostak et al. 2016]. Inter-
disciplinarity has been defined as “communication and collaboration across ac-
ademic disciplines” [Jacobs and Frickel 2009, p. 44]. With interdisciplinarity, the 
aim is to answer questions shared by several disciplines, integrating knowledge, 
theories and methods from these disciplines to develop a better understanding. 
This requires integration in an interdisciplinary research team; the team mem-
bers should develop understanding of the others’ perspectives [Szostak et al. 
2016]. Reflecting back on the HRI context, HRI design research can be con-
ducted in a multi-, inter-, or transdisciplinary fashion. Baraka et al. [2019] note 
that social robot design employs methods and approaches from the research 
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fields HCI, computer science, engineering and human factors. In an interview 
study with roboticists who worked at companies that manufactured social robots, 
Alves-Oliveira et al. [2022] describe that their interviewees all reported being part 
of interdisciplinary teams, including such disciplines as mechanical and electrical 
engineering, computer science, psychology, and the arts. Šabanović et al. [2007] 
write that social robots can function as “boundary objects” in the collaboration 
across disciplines, providing a common focus while also functioning as relevant 
research objects in individual disciplines. Blackwell [2015] argues that instead of 
thinking about HCI as a discipline, one might also frame the field as an inter-dis-
cipline or trading zone in which researchers work from an interdisciplinary stand-
point, negotiating between and collaborating with different disciplines, instead of 
trying to consolidate it as a discipline by itself, spurring innovation rather than es-
tablishment of a body of knowledge. Blackwell describes HCI as practice-based, 
requiring collaboration and reflection. This can also be argued for design work in 
the field of HRI.

To summarize, design research can include activities such as theory devel-
opment, design exploration and developing prototypes and systems in a design 
practice. Different perspectives on design practice exist, among which a prob-
lem-solving perspective is dominant. When design research is conducted with 
the aim to solve practical problems in a real-world context in a design team that 
draws on several sets of expertise from different disciplines, design practice can 
be characterized as operating in a transdisciplinary context to solve wicked prob-
lems. However, other characterizations of design work are possible, depending 
on the activities that are conducted and by whom the work is conducted.

4 Design Knowledge: From Ultimate Particulars to 
Global Knowledge Production

4.1. Ultimate Particulars vs. Global Knowledge Production

There is a tension between local, context-specific results from design work and 
the aim to derive knowledge from these results that generalizes across other 
situations or problem contexts. While produced artifacts can be studied as part 
of sciences, reasons Buchanan [1992], this is different from what happens in the 
design context; the easily forgotten process of making the product concrete in 
the “wicked problem” context is part of the domain of design, and the design pro-
cess cannot be reduced to its final product alone. Design contributes localized, 
context-specific results, in the words of Buchanan: “...design is fundamentally 
concerned with the particular, and there is no science of the particular” [Buchan-
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an 1992, p. 17]. Stolterman [2008] writes that design activity is aimed at creating 
(to enable) ultimate particulars, that is, each specific situation (system, organiza-
tion, people, context) will result in a different outcome when a designed artifact 
is introduced, and the designer should consider the specifics of a particular use 
context, even if the designed artifact is the same. This is the direct consequence 
of designing for a specific socio-technical system as sketched before. Stolterman 
contrasts this with the aim of science, which is to “formulate universal knowledge 
that explains the complexities of reality on a level removed from specifics and 
particulars” [Stolterman 2008, p. 58] - which Stolterman notes is a crude descrip-
tion of scientific aims, nevertheless, this still serves to illustrate the contrast.

Design science, in contrast to localized design practices, is a field of research 
in which knowledge production through design is recognized as contributing to a 
global practice. Johannesson and Perjons [2014] write that results from design 
activities are at times relevant for a local practice only, whereas design science 
aims to produce results for a global practice (which effectively comprises multiple 
local practices and the research domain). They argue that for design results to 
become relevant to design science, research methods used must be rigorous, 
the resulting knowledge should relate to existing knowledge, and should be fed 
back into the community of researchers and practitioners whom this knowledge 
is relevant for. Stolterman [2008] warns against a design science approach to 
interactive system design as this may risk using methods that are not appropriate 
for design practice.

4.2. Intermediate-Level Knowledge

The concept of intermediate-level has been proposed to bridge/unify a field that 
has both local and global knowledge contributions, and everything in between. 
Lupetti et al. [2021] argue that current design work in HRI is usually restricted to 
design instances, but in order to build on findings in design research, researchers 
need to move beyond production of individual instances. They discuss design 
knowledge as resulting from a reflective practice (Research through Design); 
knowledge is produced by reflecting on the activity of designing or reflecting on 
resultant artifacts. They discuss the concept of intermediate-level knowledge, 
which occupies a territory between general theories and specific instances. They 
argue that this concept could be informative toward the development of a HRI 
design epistemology. The concept of intermediate-level knowledge is also part 
of interaction design and HCI discourse Höök and Löwgren [2012]. To count as 
academic knowledge contributions, contributions proposed as intermediate-level 
knowledge should fulfill the academic quality criteria of being contestable (contri-
bution is not already generally accepted and can be questioned, which implies a 
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certain novelty to the contribution), defensible (rigorously argued) and substan-
tive (relevant and worth the time investment) [Höök and Löwgren 2012]. Exam-
ples of intermediate-level knowledge include design guidelines, design methods, 
design patterns, and strong concepts. A criticism of Research through Design, as 
identified in an interview study, is that knowledge development was only implicitly 
part of the process or took place after project completion, and poor documenta-
tion of RtD processes [Zimmerman et al. 2010]. Additionally, RtD was critiqued 
on grounds of the existence of a romanticized view of the design process and the 
“genius designer” by practitioners and researchers engaged in RtD. Such a view 
may hinder knowledge development that is “systematic, rigorous and relevant” 
[Zimmerman et al. 2010, p. 316]. Lupetti et al. [2021] argue that design knowl-
edge could be represented and built upon better in HRI if researchers would 
clearly document and articulate motivations regarding engagements with design 
activities.

Frauenberger [2019] criticizes the concept of intermediate-level knowledge, 
as it postulates the existence of a spectrum ranging from universal theories to 
individual design instances, that is, from positivism to social constructivism, with-
out a shared epistemological basis. Frauenberger further criticizes the concept 
of intermediary knowledge for implying a loss of contextualized knowledge while 
not being sufficiently well-formulated to serve as theory: by looking for patterns of 
successful designs that can inform future designs, the context-specificity of what 
made it successful in the original configuration is lost. Besides, Frauenberger 
argues that there may be value not in how the pattern was similar in different 
contexts and thereby abstracting, generalizing, and reducing this design situa-
tion, but rather in how “enactments” were different. Intermediate-level knowledge 
may risk criticisms of lack of rigor or disregarding context [Frauenberger 2019]. 
Zamfirescu-Pereira et al. [2021] argue regarding generalization of design findings 
from exploratory prototyping for human-robot interaction design that the under-
standing of similarities and differences in application contexts is more relevant 
than the replicability of results.

A different spectrum of theory in design research can be found with Zimmer-
man et al. [2010], who view research results through design as contributing to 
theory through exploration. Zimmerman et al. [2010] argue that RtD has con-
tributed knowledge in the form of “nascent theory”, which can be placed at the 
start of a spectrum of knowledge development, where the spectrum ranges from 
nascent theory (resulting from exploratory work) to mature theory. Forlizzi [2008] 
describes the product ecology framework as a form of nascent theory, for in-
stance. This framing suggests a “spectrum” from exploratory to more substantive 
theory contributions. This differs from the concept of intermediate-level knowl-
edge as described before.
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The concept of intermediate-level knowledge can be connected to a design 
stance and normative aspects of design. For example, design principles indicate 
values when they argue for such things as transparent communication to end us-
ers. Such principles inform an attitude to design and express a certain worldview: 
a particular reading (that may change in the future) of what design should do and 
what design artifacts represent and mean. There is a risk that intermediate-level 
knowledge in the form of design guidelines, for instance, can be interpreted as 
prescriptive, but the designer is also responsible in considering if and how such 
guidelines apply to a particular context. Besides its use to inform specific designs, 
it can serve as way to document a particular design stance/normative orienta-
tion, which can be useful for learning (developing a design stance oneself) as 
well as studying design research. Regarding the concept of the design stance, 
Buchanan [1992] considers two levels on which designers work: on a general 
level and on the level of a quasi-subject matter. The quasi-subject matter is part 
of the problem and situation at hand, and consists of a set of issues that is not 
exactly defined in the (wicked) problem context. The designer responds to the 
quasi-subject matter with a specific product, thereby making the quasi-subject 
matter concrete. The general level is explicitly described as not being constitutive 
of any kind of science, rather, it informs a kind of design stance or a general view 
of designed artifacts, the methods and scope of the design practice.

5 Design Research as a Normative Activity
 - “In contrast to empirical research,design research is not content to just de-
scribe, explain, and predict. It also wants to change the world, to improve it, 
and to create new worlds. Design research does this by developing artefacts 
that can help people fulfil their needs, overcome their problems, and grasp new 
opportunities.” [Johannesson and Perjons 2014, p. 1]

 - “Everyone designs who devises courses of action aimed at changing existing 
situations into preferred ones” [Simon 2008, p. 111]

 - “In essence, design is about understanding the current state and then design-
ing an improved future state” Holmquist and Forlizzi [2014, p. 1]

To summarize, a strong narrative regarding design research practice is that 
design concerns itself with building future situations - identifying needs/problems 
in a current situation and developing systems and artifacts that alter the situa-
tion, with the aim to improve it. In a problem-solving view of a design practice, 
the aim to improve an existing situation is a value judgement on what a pre-
ferred condition would be. This improved future state that design research is said 
to strive for could entail an improved user experience, better living conditions, 
or empowerment of users, though we may also go beyond the idea of “serving 
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user needs”; Frauenberger [2019] describes technology creation as a process in 
which humanity redefines itself. The aim of design is not “universal knowledge 
production” as a project in and for itself, as in science, abstracting reality while 
guaranteeing reproducibility and objectivity (see Stolterman [2008]’s description), 
from an observational standpoint. As established previously, design work is in-
stead context-specific and calls on the subjective experience of the design team 
involved, as well as on others’ subjective experience (e.g., that of stakeholders). 
Bartneck et al. write that designers (and engineers) aim to transform reality rath-
er than understand it. Bartneck et al. consider the latter to be the aim of science 
[Bartneck 2020].

Transforming reality implies an intentional stance; designers have aims when 
designing artifacts and systems, such as supporting people in their work [Jo-
hannesson and Perjons 2014]2. Buchanan writes: “The history of design is not 
merely a history of objects. It is a history of the changing views of subject matter 
held by designers and the concrete objects conceived, planned, and produced 
as expressions of those views.” [Buchanan 1992, p. 19]. Technology developers 
have purposes for the work they do, whether such aims are explicitly stated, 
for instance, building efficient systems, or more implicit. Cheon and Su [2016] 
investigate narratives that indicated values in interviews with 27 roboticists. One 
of the motivations of roboticists they identified was to research (features of) hu-
mans such as human intelligence and language by developing humanoid robots. 
Šabanović argues that a designer’s cultural assumptions impact robot design and 
identifies a technocentric mindset in which robots are viewed as “technological 
fixes” [2010, p. 439] (see also process dogma and the other oblique constraints 
for technology design identified by Auger et al. [2017]). Note that designers can 
also find themselves within an environment that produces a certain normative 
orientation. Rather than seeing robots as a technological fix, we should acknowl-
edge that design comes with additional consequences. Technology opens up 
specific possibilities for action, potentially closing others.

Technologies mediate the way they are used; human action is directed, 
shaped, impacted by technology use. Verbeek [2008] posits that technological 
artifacts have a form of material morality. Technologies are not neutral; instead, 
they are “active mediators that help shape the relation between people and re-
ality. This mediation has two directions: one pragmatic, concerning action, and 
the other hermeneutic, concerning interpretation” [Verbeek 2008, p. 94]. First, 

2 In discussions of the three waves of HCI, questions have frequently been asked regarding what 
“good” means in relation to the third paradigm and what should be strived for in technology 
design. Fallman asks “what constitutes a good user experience” [Fallman 2011, p. 1053] and 
proposes taking philosophy of technology (especially Borgmann and Ihde) as a starting point to 
consider questions regarding what the vision of “good” may mean for third wave HCI. Similarly, 
Harrison et al. [2007] asks “what it means for a system to be ‘good’ in a particular context” [Har-
rison et al. 2007, p. 6].
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this means that technologies influence and shape human action. Second, they 
bring awareness in the sense of offering the possibility for humans to interpret a 
given situation in a different way, and enable different choices than would be the 
case without said technologies (e.g. Verbeek gives the example of conducting an 
ultrasound and the possibilities for choice and action this opens up). Although the 
action of the artifact is not deliberate, it gives direction to human action. “Tech-
nological mediation, therefore, can be seen as a specific, material form of in-
tentionality.” [Verbeek 2008, p. 95] What is noted is that the intentionality of the 
technological artifact cannot exist in isolation; rather, it arises from the combina-
tion of technological mediation with human decision-making (hybrid intentional-
ity). Technological artifacts thus represent a kind of constitutive force for human 
action, implying that technological artifacts implicitly direct human action (thereby 
having a form of material intentionality) as well as configure (some of the) condi-
tions for human freedom. Because technology configures material conditions and 
impacts people’s decision-making and freedom, “technology design is inherently 
a moral activity” [Verbeek 2008, p. 99] and designers should concern themselves 
with the future roles of the technologies they are developing - even though it is dif-
ficult to predict how technologies will mediate human actions in different contexts.

The intentional stance of designers (and that of engineers, too) brings respon-
sibility. Stolterman writes that “research aimed at changing and improving “real-
ity” always takes on responsibility in relation to whom or what it serves” [Stolter-
man 2008, p. 63]. This responsibility is acknowledged in e.g. Value-Sensitive 
Design, which positions alignment with specific values to the forefront in a de-
sign process. For instance, the aim of Care Centered Value Sensitive Design 
(CCVSD) [Van Wynsberghe 2016] is to incorporate care ethics into care robot de-
sign. Fronemann et al. [2021] argue that for social robots, risks of loss of control 
and privacy should be investigated and argue that design solutions that address 
these risks can be found by combining UX design and ethics. The point remains 
that apart from integrating ethics/values into the design process, the aim of de-
sign work should be critically reflected upon.

As sketched in Section 2, it is important to consider designing for the so-
cio-technical system. However, this discussion can be taken even further. Going 
beyond socio-technical systems, toward the socio-material conditions mentioned 
by Frauenberger, it is also necessary to give consideration to other biological 
species and the natural environment (as argued, for instance, in relation to AI eth-
ics [Owe and Baum 2021]). Such a proposal towards seeing technology, society, 
and nature as entangled can also be found in critical making, which acknowledg-
es the fundamental interconnection between nature and culture. As a society, we 
face social and environmental problems that need to be addressed in a way that 
acknowledges the hybridity of nature and culture, community values and Global 
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North-Global South relations. “The stakes are (...) high - nothing less than the fate 
of our planet (...)” [Ratto 2016, p. 28].

6 Conclusion

To revisit the line of argument followed in this chapter, it was argued that the 
socio-technical system that a robotic system is embedded in needs to be consid-
ered as part of the design space of interactions between humans and robots. The 
concept of interaction that is subscribed to merits consideration, as this informs 
the research questions that are asked, methods used, and solutions that will be 
proposed. Taking a view of design work as solving wicked problems, HRI design-
ers operate in complex problem contexts, often requiring collaboration across 
academic and practical disciplines, in order to design/configure conditions for the 
socio-technical system that is the HRI design space. However, other approaches 
to the design practice are possible, for instance, design practice as reflection on 
or criticism of current situations.

We cannot conclude what “the design practice” “is”, as it comprises many dif-
ferent activities, aims, and contexts, at different levels of detail. It is open-ended, 
transforming with the possibilities and demands of a specific situation and in-
sights and design stance of designers who respond to this situation. From Fall-
man [2008]’s conceptualization of interaction design work and the complexity of 
inter- and transdisciplinary design work, we conclude that designers employ a va-
riety of methods and (can and should) use multiple lenses within their “discipline”. 
The different perspectives offered through a critical design approach, producing 
specific design instances in context, the implicit design stance that design profes-
sionals develop over the years, and design theory development can inform each 
other and function in complementary ways.

A tension exists between the “localized” knowledge contributions that design 
practices produce compared to global knowledge production in design science or 
design research. The concept of intermediary knowledge has been proposed by 
other authors to bridge those local and global results, but such a concept can be 
criticized if it depicts knowledge contributions as lying on a spectrum from specific 
to general knowledge contributions. However, what can be acknowledged is that 
there can be value in such knowledge contributions as documenting a particular 
design stance or interpretation of design instances.

Finally, it was argued that a designer’s intentional stance is inherent to design 
work. Typically, the aim is to transform reality to a more desirable state (with what 
qualifies as desirable depending on those involved in the design process, for 
instance end users in participatory design), but other aims can include criticiz-
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ing the current state (e.g., in critical design) or imagining a different state (e.g., 
speculative design). When HRI research is applied in practice, this makes the 
social responsibility on the part of HRI designers apparent. Designers also find 
themselves within an environment (e.g. institutions such as universities, corpo-
rate environments, academic discourse) that produces a certain normative orien-
tation and introduces constraints. It remains important to reflect on one’s social 
responsibility and how our institutions and discourses impact and reinforce nor-
mative orientations in relation to this responsibility.

Bibliography
Patrícia Alves-Oliveira, Maria Luce Lupetti, Michal Luria, Diana Löffler, Mafalda Gamboa, 

Lea Albaugh, Waki Kamino, Anastasia K. Ostrowski, David Puljiz, Pedro Reynolds-Cuél-
lar, Marcus Scheunemann, Michael Suguitan, and Dan Lockton. 2021. Collection of 
Metaphors for Human-Robot Interaction. In Designing Interactive Systems Conference 
2021 (Virtual Event USA). ACM, 1366–1379. https://doi.org/10.1145/3461778.3462060

Patrícia Alves-Oliveira, Alaina Orr, Elin A. Björling, and Maya Cakmak. 2022. Connecting 
the Dots of Social Robot Design From Interviews With Robot Creators. Frontiers in Ro-
botics and AI 9 (2022), 1–15. https://doi.org/10.3389/frobt.2022.720799

James Auger. 2014. Living With Robots: A Speculative Design Approach. Journal of Hu-
man-Robot Interaction 3, 1 (2014), 20. https://doi.org/10.5898/JHRI.3.1.Auger

James Auger, Julian Hanna, and Enrique Encinas. 2017. Reconstrained Design. In Nor-
des 2017, Design + Power (Oslo, Norway). 8. 

Kim Baraka, Patrícia Alves-Oliveira, and Tiago Ribeiro. 2019. An extended framework 
for characterizing social robots. arXiv:1907.09873 [cs] (2019), 1–4. http://arxiv.org/
abs/1907.09873 

Christoph Bartneck. 2020. Design. In Human-robot interaction: an introduction. Cambridge 
University Press,41–68. 

Christoph Bartneck and Jodi Forlizzi. 2004. A designcentred framework for social hu-
man-robot interaction. In RO-MAN 2004. 13th IEEE International Workshop on Ro-
bot and Human Interactive Communication (IEEE Catalog No.04TH8759) (Kurashiki, 
Okayama, Japan). IEEE, 591–594. https://doi.org/10.1109/ROMAN.2004.1374827

Olav W Bertelsen and Susanne Bødker. 2003. Activity Theory. In HCI models, theories, 
and frameworks: Toward a multidisciplinary science. 291–324. 

Alan F Blackwell. 2015. HCI as an Inter-Discipline. In Proceedings of the 33rd Annual ACM 
Conference Extended Abstracts on Human Factors in Computing Systems (Seoul Re-
public of Korea). ACM, 503–516. https://doi.org/10.1145/2702613.2732505 

Mike Blow, Kerstin Dautenhahn, Andrew Appleby, Chrystopher Nehaniv, and David Lee. 
2006. Perception of Robot Smiles and Dimensions for Human-Robot Interaction De-
sign. In ROMAN 2006 - The 15th IEEE International Symposium on Robot and Hu-
man Interactive Communication (Univ. of Hertfordshire, Hatfield, UK). IEEE, 469–474. 
https://doi.org/10.1109/ROMAN.2006.314372 



25

Design as a Practice in Human-Robot Interaction Research

Andrea Botero, Kari-Hans Kommonen, and Sanna Marttila. 2010. Expanding Design 
Space: Design-In-Use Activities and Strategies. In Design and Complexity - DRS Inter-
national Conference 2010 (Montreal, Canada). 13. 

Cynthia Breazeal. 2003. Toward sociable robots. Robotics and Autonomous Systems 42 
(2003), 167–175. http://web.cecs.pdx.edu/~mperkows/CLASS_ROBOTICS/FEBR26-
2004/Humanoids/sociable-robots-Breazeal-RAS03.pdf 

Richard Buchanan. 1992. Wicked Problems in Design Thinking. Design Issues 8, 2 (1992), 
5–21. 

Susanne Bødker. 2015. Third-wave HCI, 10 years later—participation and sharing. Inter-
actions 22, 5 (2015), 24–31. https://doi.org/10.1145/2804405 

Liwei Chan, Yi-Chi Liao, George B Mo, John J Dudley, Chun-Lien Cheng, Per Ola Kris-
tensson, and Antti Oulasvirta. 2022. Investigating Positive and Negative Qualities of 
Human-in-the-Loop Optimization for Designing Interaction Techniques. In CHI Confer-
ence on Human Factors in Computing Systems (New Orleans LA USA). ACM, 1–14. 
https://doi.org/10.1145/3491102.3501850 

EunJeong Cheon and Norman Makoto Su. 2016. Integrating roboticist values into a Value 
Sensitive Design framework for humanoid robots. In 2016 11th ACM/IEEE Internation-
al Conference on Human-Robot Interaction (HRI). 375–382. https://doi.org/10.1109/
HRI.2016.7451775 

Clarisse Sieckenius De Souza. 2005. Semiotic engineering: bringing designers and users 
together at interaction time. Interacting with Computers 17, 3 (2005), 317–341. https://
doi.org/10.1016/ j.intcom.2005.01.007 

Eric C Deng, Bilge Mutlu, and Maja J Matarić. 2018. Formalizing the Design Space and 
Product Development Cycle for Socially Interactive Robots. In Workshop on Social 
Robots in the Wild at the 2018 ACM Conference on Human-Robot Interaction (HRI). 6. 

Virginia Dignum, Frank Dignum, Javier Vázquez-Salceda, Aurélie Clodic, Manuel Gentile, 
Samuel Mascarenhas, and Agnese Augello. 2018. Design for Values for Social Ro-
bot Architectures. Envisioning Robots in Society - Power, Politics, and Public Space 
(2018), 12.

Jill L Drury, Dan Hestand, Holly A Yanco, and Jean Scholtz. 2004. Design guidelines for 
improved human-robot interaction. In Extended abstracts of the 2004 conference on 
Human factors and computing systems - CHI ’04 (Vienna, Austria). ACM Press, 1540. 
https://doi.org/10.1145/ 985921.986116 

Daniel Fallman. 2008. The Interaction Design Research Triangle of Design Practice, De-
sign Studies, and Design Exploration. Design Issues 24, 3 (2008), 4–18. https://doi.
org/10.1162/desi. 2008.24.3.4

Daniel Fallman. 2011. The new good: exploring the potential of philosophy of technology 
to contribute to human-computer interaction. In Proceedings of the SIGCHI Conference 
on Human Factors in Computing Systems (Vancouver BC Canada). ACM, 1051–1060. 
https://doi.org/10.1145/ 1978942.1979099 

Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. 2003. A survey of socially 
interactive robots. Robotics and Autonomous Systems 42, 3 (2003), 143–166. https://
doi.org/10.1016/ S0921-8890(02)00372-X 

Jodi Forlizzi. 2008. The Product Ecology: Understanding Social Product Use and Support-
ing Design Culture. International Journal of Design 2, 1 (2008), 11–20. 



26

Helena Anna Frijns, Oliver Schürer  

Jodi Forlizzi and Shannon Ford. 2000. The Building Blocks of Experience: An Early Frame-
work for Interaction Designers. In DIS’00 (Brooklyn, NY). 419–423. 

Christopher Frauenberger. 2019. Entanglement HCI The Next Wave? ACM Transactions 
on Computer-Human Interaction 27, 1 (2019), 1–27. https://doi.org/10.1145/3364998 

Helena Anna Frijns, Oliver Schürer, and Sabine Theresia Koeszegi. 2021. Communica-
tion Models in Human–Robot Interaction: An Asymmetric MODel of ALterity in Human–
Robot Interaction (AMODAL-HRI). International Journal of Social Robotics (2021), 28. 
https://doi.org/10.1007/ s12369-021-00785-7 

Nora Fronemann, Kathrin Pollmann, and Wulf Loh. 2021. Should my robot know what’s 
best for me? Human–robot interaction between user experience and ethical design. AI 
& SOCIETY (2021), 17. https://doi.org/10.1007/s00146-021-01210-3 

Elizabeth Goodman, Erik Stolterman, and Ron Wakkary. 2011. Understanding inter-
action design practices. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems (Vancouver BC Canada). ACM, 1061–1070. https://doi.
org/10.1145/1978942.1979100 

Michael A. Goodrich and Alan C. Schultz. 2007. Human-Robot Interaction: A Survey. Foun-
dations and Trends® in Human-Computer Interaction 1, 3 (2007), 203–275. https://doi.
org/10.1561/1100000005 

Kim Halskov and Caroline Lundqvist. 2021. Filtering and Informing the Design Space: 
Towards Design-Space Thinking. ACM Transactions on Computer-Human Interaction 
28, 1 (2021), 1–28. https://doi.org/10.1145/3434462 

Steve Harrison, Deborah Tatar, and Phoebe Sengers. 2007. The Three Paradigms of HCI. 
In Alt. Chi. Session at the SIGCHI Conference on Human Factors in Computing Sys-
tems (San Jose California USA). 1–18. 

Frank Hegel. 2013. A Modular Interface Design to Indicate a Robot’s Social Capabilities. 
In ACHI 2013: The Sixth International Conference on Advances in Computer-Human 
Interactions. 426–432. 

Lars Erik Holmquist and Jodi Forlizzi. 2014. Introduction to Journal of Human-Robot In-
teraction Special Issue on Design. Journal of Human-Robot Interaction 3, 1 (2014), 3. 
https://doi.org/10.5898/ JHRI.3.1.Holmquist 

Kasper Hornbæk and Antti Oulasvirta. 2017. What Is Interaction?. In Proceedings of the 
2017 CHI Conference on Human Factors in Computing Systems (Denver Colorado 
USA). ACM, 5040–5052. https://doi.org/10.1145/3025453.3025765 

Kristina Höök and Jonas Löwgren. 2012. Strong concepts: Intermediate-level knowledge 
in interaction design research. ACM Transactions on Computer-Human Interaction 19, 
3 (2012), 1–18. https://doi.org/10.1145/2362364.2362371 

International Organization for Standardization (ISO). 2010. ISO 9241-210:2010(en), Ergo-
nomics of human-system interaction — Part 210: Human-centred design for interactive 
systems. https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:en 

International Organization for Standardization (ISO). 2012. ISO 8373:2012(en), Robots and 
robotic devices — Vocabulary. https://www.iso.org/obp/ui/#iso:std:iso:8373:ed-2:v1:en 

Jerry A Jacobs and Scott Frickel. 2009. Interdisciplinarity: A Critical Assessment. 
Annual Review of Sociology 35, 1 (2009), 43–65. https://doi.org/10.1146/an-
nurev-soc-070308-115954 



27

Design as a Practice in Human-Robot Interaction Research

Paul Johannesson and Erik Perjons. 2014. An Introduction to Design Science. Springer 
International Publishing. https://doi.org/10.1007/978-3-319-10632-8 

Ulla Johansson-Sköldberg, Jill Woodilla, and Mehves Çetinkaya. 2013. Design Think-
ing: Past, Present and Possible Futures. Creativity and Innovation Management 22, 2 
(2013), 121–146. https://doi.org/10.1111/caim.12023 

John Law. 1992. Notes on the theory of the actor-network: Ordering, strategy, and hetero-
geneity. Systems Practice 5, 4 (1992), 379–393. https://doi.org/10.1007/BF01059830 

Paul M Leonardi. 2012. Materiality, Sociomateriality, and Socio-Technical Systems: What 
Do These Terms Mean? How Are They Different? Do We Need Them? In Materiality 
and Organizing, Paul M. Leonardi, Bonnie A. Nardi, and Jannis Kallinikos (Eds.). Oxford 
University Press, 24–48. https://doi.org/10.1093/acprof:oso/9780199664054.003.0002

Maria Luce Lupetti, Cristina Zaga, and Nazli Cila. 2020. Designerly HRI knowledge: Bridg-
ing HRI and Design Research. In Proceedings of the 29th IEEE International Confer-
ence on Robot & Human Interactive Communication (RO-MAN 2020).

Maria Luce Lupetti, Cristina Zaga, and Nazli Cila. 2021. Designerly Ways of Knowing 
in HRI: Broadening the Scope of Design-oriented HRI Through the Concept of Inter-
mediate-level Knowledge. In Proceedings of the 2021 ACM/IEEE International Con-
ference on Human-Robot Interaction (Boulder CO USA). ACM, 389–398. https://doi.
org/10.1145/3434073.3444668 

Michal Luria, Marius Hoggenmüller, Wen-Ying Lee, Luke Hespanhol, Malte Jung, and Jodi 
Forlizzi. 2021. Research through Design Approaches in Human-Robot Interaction. In 
Companion of the 2021 ACM/IEEE International Conference on Human-Robot Interac-
tion (Boulder CO USA). ACM, 685–687. https://doi.org/10.1145/3434074.3444868

Jonas Löwgren. 2007. Pliability as an Experiential Quality: Exploring the Aesthetics of Inter-
action Design. Artifact 1, 2 (2007), 85–95. https://doi.org/10.1080/17493460600976165 

Jeremy A Marvel, Shelly Bagchi, Megan Zimmerman, and Brian Antonishek. 2020. To-
wards Effective Interface Designs for Collaborative HRI in Manufacturing: Metrics and 
Measures. ACM Transactions on Human-Robot Interaction 9, 4 (2020), 1–55. https://
doi.org/10.1145/3385009

Anja Naumann, Jörn Hurtienne, Johann Habakuk Israel, Carsten Mohs, Martin Christof 
Kindsmüller, Herbert A. Meyer, and Steffi Hußlein. 2007. Intuitive Use of User Inter-
faces: Defining a Vague Concept. In Engineering Psychology and Cognitive Ergo-
nomics, Don Harris (Ed.). Vol. 4562. Springer Berlin Heidelberg, 128–136. https://doi.
org/10.1007/978-3-540-73331-7_14 Series Title: Lecture Notes in Computer Science. 

Antti Oulasvirta, Jussi P P Jokinen, and Andrew Howes. 2022. Computational Rationality 
as a Theory of Interaction. In CHI Conference on Human Factors in Computing Sys-
tems (New Orleans LA USA). ACM, 1–14. https://doi.org/10.1145/3491102.3517739

Andrea Owe and Seth D Baum. 2021. Moral consideration of nonhumans in the ethics 
of artificial intelligence. AI and Ethics (2021), 12. https://doi.org/10.1007/s43681-021-
00065-0 

Elisa Prati, Margherita Peruzzini, Marcello Pellicciari, and Roberto Raffaeli. 2021. 
How to include User eXperience in the design of Human-Robot Interaction. Robot-
ics and Computer-Integrated Manufacturing 68 (2021), 13. https://doi.org/10.1016/j.
rcim.2020.102072 



28

Helena Anna Frijns, Oliver Schürer  

Dimitrios Raptis, Jesper Kjeldskov, Mikael B Skov, and Jeni Paay. 2014. What is a Digital 
Ecology? Theoretical Foundations and a Unified Definition. Australian Journal of Intel-
ligent Information Processing Systems (2014), 6. 

Matt Ratto. 2016. Making at the end of nature. Interactions 23, 5 (2016), 26–35. https://
doi.org/10.1145/2985851 

Horst W J Rittel and Melvin M. Webber. 1973. Dilemmas in a General Theory of Planning. 
Policy Sciences 4, 2 (1973), 155–169. http://www.jstor.org/stable/4531523 

Eike Schneiders, EunJeong Cheon, Jesper Kjeldskov, Matthias Rehm, and Mikael B. 
Skov. 2022. Non-Dyadic Interaction: A Literature Review of 15 Years of Human-Robot 
Interaction Conference Publications. ACM Transactions on Human-Robot Interaction 
11, 2 (2022), 1–32. https://doi.org/10.1145/3488242 

Herbert Alexander Simon. 2008. The sciences of the artificial (3rd ed.). MIT Press. 

Gillian Crampton Smith. 2006. What Is Interaction Design? In Designing Interactions. The 
MIT Press,vii–xix.

Erik Stolterman. 2008. The Nature of Design Practice and Implications for Interaction De-
sign Research. International Journal of Design 2, 1 (2008), 55–65. 

JaYoung Sung, Rebecca E. Grinter, and Henrik I. Christensen. 2010. Domestic Robot Ecol-
ogy: An Initial Framework to Unpack Long-Term Acceptance of Robots at Home. Inter-
national Journal of Social Robotics 2, 4 (Dec. 2010), 417–429. https://doi.org/10.1007/
s12369-010-0065-8 

Rick Szostak, Claudio Gnoli, and María López-Huertas. 2016. Interdisciplinary Knowledge 
Organization. Springer International Publishing. https://doi.org/10.1007/978-3-319-
30148-8 

Núria Vallès-Peris and Miquel Domènech. 2021. Caring in the inbetween: a proposal to in-
troduce responsible AI and robotics to healthcare. AI & SOCIETY (2021), 1–11. https://
doi.org/10.1007/s00146-021-01330-w 

Aimee Van Wynsberghe. 2016. Service robots, care ethics, and design. Ethics and Infor-
mation Technology 18, 4 (2016), 311–321. https://doi.org/10.1007/s10676-016-9409-x 

Aimee Van Wynsberghe and Shuhong Li. 2019. A paradigm shift for robot ethics: from 
HRI to human–robot–system interaction (HRSI). Medicolegal and Bioethics Volume 9 
(2019), 11–21. https://doi.org/10.2147/MB.S160348 

Peter-Paul Verbeek. 2008. Morality in Design, Design Ethics and the Morality of Tech-
nological Artifacts. In Philosophy and Design, P. E. Vermaas (Ed.). Springer, 91–103. 
https://classes.matthewjbrown.net/teaching-files/philtech/verbeek-design.pdf

Astrid Weiss, Regina Bernhaupt, Michael Lankes, and Manfred Tscheligi. 2009. The USUS 
Evaluation Framework for Human-Robot Interaction. In AISB2009: proceedings of the 
symposium on new frontiers in human-robot interaction, Vol. 4. 8. 

Yueh-Hsuan Weng, Eunjoung Cheon, Phoebe Li, and Osamu Sakura. 2021. 1st Work-
shop on Design-Centered HRI and Governance. https://krinuts7.wixsite.com/hri-design 

Robert F Woodbury and Andrew L Burrow. 2006. Whither design space? Artificial Intelli-
gence for Engineering Design, Analysis and Manufacturing 20, 2 (2006), 63–82. https://
doi.org/10.1017/S0890060406060057 

Albena Yaneva. 2009. Making the Social Hold: Towards an Actor-Network Theory of De-
sign. Design and Culture 1, 3 (2009), 273–288. https://doi.org/10.1080/17547075.200
9.11643291 



29

Design as a Practice in Human-Robot Interaction Research

J D Zamfirescu-Pereira, David Sirkin, David Goedicke, Ray Lc, Natalie Friedman, Ilan Man-
del, Nikolas Martelaro, and Wendy Ju. 2021. Fake It to Make It: Exploratory Prototyping 
in HRI. In Companion of the 2021 ACM/IEEE International Conference on Human-Robot 
Interaction (Boulder CO USA). ACM, 19–28. https://doi.org/10.1145/3434074.3446909 

John Zimmerman, Erik Stolterman, and Jodi Forlizzi. 2010. An Analysis and Critique of 
Research through Design: towards a formalization of a research approach. In DIS 2010 
(Aarhus, Denmark). 310–319. https://doi.org/10.1145/1858171.1858228

Selma Šabanović. 2010. Robots in Society, Society in Robots: Mutual Shaping of Society 
and Technology as a Framework for Social Robot Design. International Journal of So-
cial Robotics 2, 4 (2010), 439–450. https://doi.org/10.1007/s12369-010-0066-7 

Selma Šabanović, Marek P. Michalowski, and Linda R. Caporeal. 2007. Making Friends: 
Building Social Robots through Interdisciplinary Collaboration. AAAI Spring Sympo-
sium: Multidisciplinary Collaboration for Socially Assistive Robotics (2007), 7. 





Trust and Plausibility





https://doi.org/10.34727/2022/isbn.978-3-85448-052-5_2
This chapter is licensed under a Creative Commons Attribution-ShareAlike 4.0 International licence.

Exploring the Situated Vulnerabilities of 
Robots for Interpersonal Trust in Human-Robot 
Interaction

Glenda Hannibal   , Astrid Weiss    

Abstract

The practical value of studying trust in human-robot interaction (HRI) rests on the assumption that people will, in 
the long-term, accept, interact, and collaborate more with robots that they trust or consider trustworthy. We propose 
in this book chapter to take our event approach to interpersonal trust in HRI and we argue why focusing on robot 
vulnerabilities will benefit current discussions on trust in robots and their perceived trustworthiness. On a theoretical 
level, we first argue that it is important to challenge the often negative view of the conceptual relationship between 
interpersonal trust and vulnerability in HRI as it has mainly comes to represent overexposure. Moreover, identifying 
robot-specific vulnerabilities is essential when exploring interpersonal trust in interactions between humans and ro-
bots (or HRI) because it overlaps but is not identical to those important to a human-centered perspective. To empiri-
cally explore robot vulnerabilities, we present the results of eight semi-structured expert interviews with experienced 
leaders in robotics. Based on these interviews, we identify the various robot vulnerabilities mentioned by the experts 
to present a systematic overview. Furthermore, we discuss how the experts interpreted the notion of vulnerability in 
relation to robots specifically and dive more into how malicious human behavior can be problematic when aiming to 
ensure mutual interpersonal trust in HRI. Moreover, we aim in this book chapter to lay down our motivation and ar-
guments for why taking into account robot vulnerabilities provide a crucial and broader perspective on mutual trust in 
HRI, which is fundamental to strengthening interaction, collaboration and engagement between humans and robots.
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human-robot interaction, interpersonal trust, event approach, vulnerability, expert interviews, ethics, engagement

1 Introduction

The most common trust relation people have with artifacts and technologies is 
best described in terms of reliance and understood as a certain form of depen-
dency. This dependency assumes that reliance on an inanimate object is nec-
essary for the successful realization of some kind of plan given specific goals. 
Viewed as plan execution, trust as reliance mainly gets its value because of its 
ability to guide thoughts and actions from the perspective that seems reasonable 
given the means adopted to meet the concrete ends [Smith 2010; Alonso 2014]. 
Consequently, trust as reliance cannot be understood solely as something inter-
nal to the person trusting since it also depends on external conditions, which are 
laws of nature and the constraints of the specific design. Therefore, the main fo-
cus of trust as reliance is placed on making the interactions as smooth, efficient, 
and comfortable as possible in which artifacts or technologies are only to be 
considered instruments or tools to help people achieve their goals.

This instrumental view is the most traditional and widespread understanding 
of inanimate objects and also guides current understandings of robots [Coeckel-
bergh 2010a]. In robotics, trust as reliance is taken to mean that a person holds 
a predictive belief or assumption related to the performance of the robot given 
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the intended purpose and the predefined task. The performance of the robot then 
determines its trustworthiness and is considered important as it helps in estab-
lishing whether or not people are justified in trusting the robot. From this perspec-
tive, the robot’s performance ensures that people can strike the right level of trust 
during interactions, collaboration, or engagement. Thus, an appropriate level of 
trust is treated as an indirect measure, which is later used to suggest specific 
design guidelines to prevent either under- or over-reliance [De Visser et al. 2020; 
Kok and Soh 2020].

The instrumental view has been significantly challenged with the recent aim 
in social robotics to make robots more socially capable and human-like (in re-
gards to both physical appearance and style of behavior). Drawing on compu-
tational models of human cognition and social competence, “socially intelligent 
robots” [Breazeal 2001; Dautenhahn 1995] have built-in capacities to recognize 
and display cues for social interaction and communication. As such, they can 
behave and respond to people in a way they might interpret as intentional, influ-
encing how people approach and treat robots. Similarly, endowing robots with 
anthropomorphic features only amplifies the tendency to perceive them as more 
human-like and is used as a deliberate design strategy to facilitate human-ro-
bot interaction (HRI) [Złotowski et al. 2016]. However, taking seriously human 
perception of robots as more socially capable and human-like also means that 
the current conceptualization of trust as reliance for HRI is no longer sufficient 
because it does not capture the additional social dimension of such interactions, 
which also extend to more ethical issues [Malle and Ullman 2021; Nyholm 2020]. 
Recent work on trust in HRI has attempted to adopt the notion of interpersonal 
trust to better study trust between humans and robots and uses this conceptual-
ization as an explicit framework for the development of trustworthy robots [Lee 
et al. 2013; Ogawa et al. 2019].

In HRI research, speaking about interpersonal trust is taken to be unproblem-
atic, and its meaning is connected to the observation that people seem to trust 
in robots and consider them trustworthy because of the assumed motives or in-
tentions underlying their performance or actions due to their apparent agency. In 
such instances, speaking about interpersonal trust in HRI describes how people 
perceive robots as being concerned with their welfare, taking their views and 
personal interests into account, and working toward fair and unbiased outcomes. 
With these added social concerns, recent studies on trust in HRI have investigat-
ed how people attribute responsibility and blame to robots given an unfavorable 
outcome [Kaniarasu and Steinfeld 2014; Lei and Rau 2020]. These discussions 
bring forward the very ethical dimensions of human trust in robots and their per-
ceived trustworthiness. The proposal to take into account the social and ethical 
dimensions of trust in HRI, through the application of the interpersonal trust no-
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tion, is valuable as a first step to deepening our understanding of what happens in 
the interactions between humans and social robots. This work aids in recognizing 
that there is an added layer of complexity because it is no longer only a mat-
ter of performance but also about what follows from leveraging social rules and 
schemes to enhance the interaction. However, given the philosophical account 
of interpersonal trust compared to the technological advancement level in social 
robotics, Atkinson et al. asked the important question about the “appropriateness 
of using interpersonal trust as an analog for human-robot trust” [2012, p. 306]. 
They explained that making such an analogy has been argued as reasonable on 
the ground that some aspects of interpersonal trust also seem to be present in 
studies on HRI. However, not all fellow researchers are willing to draw such an 
analogy because of the lack of reciprocity in the interaction.

1.1. From Properties to the Event of Trust

What is interesting about this objection is that such concerns about reciprocity 
are a symptom of a more fundamental issue about the ontological status of the 
two kinds of agents. From a philosophical analysis, the issue of reciprocity touch-
es upon the more basic ontological question of whether robots (as belonging 
to the class of inanimate objects) are of the right kind to be in the category of 
objects that are appropriate targets of interpersonal trust because their status 
as ontological equal to humans cannot be justified. Focusing on the ontological 
status of robots with a view to their properties is an intuitive and common way to 
reject robots as suitable objects of interpersonal trust. The needed argumentative 
step is to compare the relevant properties of robots with the criteria governing the 
category of objects that are appropriate targets of interpersonal trust established 
by “the ’official’ philosophical inventory of things that are” [Loux and Crisp 2017, 
p. 13], which is also known as an ontology. The argumentative steps taken are of 
the general form:

 - Premise 1: Having a certain property (P) is a necessary and sufficient criterion 
for belonging to the category of objects (C).

 - Premise 2: All entities belonging to the category of objects (C) are appropriate 
targets of interpersonal trust.

 - Premise 3: All entities that are part of the class inanimate objects (O) do not 
have the property (P).

 - Premise 4: A robot (R) is a member of the class inanimate objects (O) .

 - Therefore: A robot (R) does not belong to the category of objects (C) that are 
appropriate targets of interpersonal trust.
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Although different suggestions can be made for the exact necessary and suf-
ficient properties for members of the class of animate objects that belong to the 
category of objects, the notion of interpersonal trust cannot be directly applied 
without violating the basic requirements of both parties to be ontological equiv-
alent as they share the same properties. However, using only the conceptual-
ization of trust as mere reliance for the analysis of trust in HRI is undesirable 
because this conceptualization tends to significantly downplay the social and 
ethical dimensions that have already empirically proven to be relevant for human 
trust in robots and their perceived trustworthiness. Left unaddressed, speaking 
about interpersonal trust in the context of HRI forces complex metaphysical dis-
cussions about whether the relevant facts of ordinary language use in light of the 
truth of the relevant prephilosophical claims requires us to reevaluate whether the 
application of the interpersonal trust concept must be granted to robots or not. 
Therefore, speaking about interpersonal trust for HRI poses a challenge to the 
metaphysical theory of trust proposed by philosophers. A discussion that is not 
going to be settled easily or anytime soon. For those eager to empirically explore 
trust in HRI, a more pragmatic solution is required for this conceptual challenge. 
HRI researchers need to know the implications of such intricate philosophical dis-
cussion upon their work on trust in HRI that is motivated and held to the standard 
of empirical investigations. From this perspective, studies on trust in HRI must 
account for what happens despite better knowledge, especially in those instanc-
es where the apparent agency of robots is reflected in their use of language and 
their actions and behaviors toward robots that they trust or consider trustworthy.

We propose to shift the focus on trust in HRI away from only speaking about 
the properties of the parties involved in the interaction, but instead consider the 
event of interpersonal trust itself. This new outlook simply extends the unit of 
analysis beyond the identification of properties ascribed to either humans or ro-
bots to the circumstances where interpersonal trust happens. Such an approach 
considers not only who or what can be included in the category of objects that 
are appropriate targets of interpersonal trust, but also takes into account the con-
ditions under which interpersonal trust occurs. Taking the study of trust in HRI to 
be an event, poses a new central question that is open also to empirical investi-
gation: Are the kind of interactions that occur between humans and robots some 
that could be labeled as interpersonal trust? So even though humans and robots 
are still ontological of different kinds, this broader perspective permits the study 
of trust in HRI to consider the properties of the parties involved in the trust event 
without making these properties the dividing line of how we speak or consider 
the analysis of trust in interactions between humans and robots. From a method-
ological perspective, the important difference between the property and event ap-
proaches is that they operate with different criteria for the inclusion or exclusion 
of robots from the category of objects that are appropriate targets of interpersonal 
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trust. The property approach focuses on class membership of the right kind as 
the criterion. In contrast, the event approach considers the criterion of identity, 
which is to be understood as a principle stating the necessary and sufficient con-
ditions for an event E and an event E* to be identical [Bennett 1988]. We argue 
that our event approach for studying trust in HRI would serve the practical aim 
of bypassing the issues of ontological asymmetry between humans and robots 
while still being able to speak appropriately about interpersonal trust as the focus 
is now placed on the occurrence. We argue that the occurrence of interpersonal 
trust is bounded by the preconditions of trust.

Figure 1 Abramović and Ulay performing Rest Energy (1980). Courtesy of 
Marina Abramović and Sean Kelly Gallery, New York [Abramović 2016]. DACS 
2016.

To get a quick idea about these preconditions, consider the famous and stun-
ning art performance Rest Energy (1980) by Marina Abramović and Ulay that was 
first shown at ROSC’80 (see Figure 1). In this art performance, the two artists 
draw a bow and arrow to hold each other in suspension while small microphones 
placed under their shirts capture their accelerating heartbeats during the perfor-
mance. A strong atmosphere of tension is created for around four minutes, as any 
wrong movement or a lapse of attention could be fatal for Abramović because the 
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arrow is pointing directly at her heart. While no longer in control of the situation, 
she is left exposed and Abramović later explained that the piece was “the ultimate 
portrait of trust.”[Abramović 2016, p. 255].

What this art performance can teach us is that trust is required under very 
specific circumstances:

1. When there is a possibility of harm (i.e., risk).

2. When there is a future-oriented likelihood of harm (i.e., uncertainty).

3. When this exposure leaves people vulnerable (i.e., vulnerability).

This art performance also illustrates that the relationship between trust and 
vulnerability is fundamental for understanding trusting relationships and that the 
occurrence of trust is a careful balance between the two parties involved as they 
try to prevent harm from happening. As we can see, Ulay tries not to harm (or 
even murder) Abramović while she does not want to be harmed even though the 
risk and uncertainty are evident to both of them.

1.2. Avoiding Overexposure

As Cipolla [2018] points out, there is often some reluctance to highlight this pre-
condition when studying trust in relation to technology because “vulnerability is 
not usually interpreted positively, particularly when related to design or engineer-
ing” [Cipolla 2018, p. 113]. Mainly associated with overexposure to danger (i.e. 
risk) and unfamiliarity (i.e. uncertainty), discussions about vulnerability in regards 
to technology usage tends to be something that needs to be avoided, solved or 
explained away. Dagan et al. [2019] elaborate on this tendency in their motiva-
tion for the designing of the social wearable technology “True Colors”. They state 
that an explicit focus on vulnerability as a design value is rarely considered in 
the human-computer interaction (HCI) community, because technology is mainly 
seen as a tool empowering people to live a better, more pleasant, and safer life. 
If there are any vulnerabilities in sight, Dagan et al. [2019] continues, the devel-
opers often call for technological fixes or new innovations to solve these issues 
or reestablish a sense of security or protection. By characterizing this instrumen-
tal view on technology as a project of modernity, Coeckelbergh [2017] explain 
how the underlying assumption for the development and use of information and 
communication technology (ICT) reflects the agenda of vulnerability reduction. 
Coeckelbergh writes:

“By means of using electronic devices, the Internet, and all kinds of ICT infra-
structures we hope to become less vulnerable, to control risk. We hope to be 
less dependent on ’nature’, on ’the earth’, on our vulnerable bodies. We might 



39

Exploring the Situated Vulnerabilities of Robots for Interpersonal Trust in Human-Robot Interaction

even hope to liberate ourselves from a kind of Platonic dark cave where vul-
nerability and mortality reigns, and instead walk into the bright light of a new, 
invulnerable future” [2017, p. 344].

Therefore, it can be deduced from his account that the perception of technol-
ogy as a form of remedy to all the possible harm of the world is a coping mech-
anism that does not recognize or leave any space for vulnerability. As such, it 
might not be too surprising that vulnerability, as an important theme for technolo-
gy development and design, is rarely considered as something positive or worth-
while, unless it is merely to optimize our technological instruments and systems.

In HRI, focusing on vulnerability may also be considered problematic, but for 
a different reason. Through many years of ethnographic research into the way 
children and older adults respond and relate to robots developed to offer them 
companionship, Turkle [2011] warns us against how such new forms of technol-
ogy can leave people very vulnerable. With her critical view on the promise of 
eliminating vulnerability through the reduction and simplicity of relationships by 
using robots to meet people‘s basic needs, the bad association of vulnerability 
with technology is now related to the danger of deception and its consequences 
on how people form emotional attachments. Turkle writes:

“Technology is seductive when what it offers meets our human vulnerabilities. 
And as it turns out, we are very vulnerable indeed. We are lonely but fearful 
of intimacy. Digital connections and the sociable robot may offer the illusion of 
companionship without the demands of friendship” [2011, p. 1].

The strong message provided in this quote is that serious psychological harm 
can result from a false sense of intimacy when engaging with robots who seek 
to establish an emotional connection and that there is a level of enhancement 
involved in such kinds of interaction. The work by Turkle [2011] revolves to a large 
extent on presenting that the fascination with robots capable of imitating signs 
of care and love will eventually lead to unhealthy and unauthentic emotional at-
tachments. This is because the possibility that such technologies offer is to spare 
people from the hardship and disappointment integral to developing deeper re-
lationships with other people. By focusing on the vulnerability of people during 
HRI as a form of exploitation of both children and older adults who are in need 
of special care and love, several attempts have been made to better understand 
and discuss what can be done to avoid that people are potentially being deceived 
by robots [Sharkey and Sharkey 2020; Grodzinsky et al. 2015; Danaher 2020].

This rather gloomy outlook on the role vulnerability plays in our relation to ro-
bots is unfortunate when discussing trust in HRI. Because vulnerability is one of 
the preconditions of interpersonal trust, aiming to avoid vulnerability or trying to 
explain it away will paradoxically also undermine the demand for trust “in the ab-
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sence of vulnerability trust is not required” [Misztal 2011, p. 117]. As she explain, 
if vulnerability is not of any concern in the first place there would be no need for 
anyone to trust in others because they would be able to meet their goals, needs, 
or gain prosperity free from the support or help of people. To live an invulnerable 
life would mean to be completely and utterly self-sufficient, a state that some 
might strive for and work hard to achieve; however, it is also still to be seen. This 
point was also well explained by Möllering when he wrote:

“[...] in order to describe the typical experience of trust we often refer to the 
fact that actors trust despite their vulnerability and uncertainty, although they 
cannot be absolutely sure what will happen. They act as if the situation they 
face was unproblematic and, although they recognize their own limitations, 
they trust nevertheless” [2006, p. 6].

Central to our understanding of trust, as he shows, is that we are aware of our 
vulnerability but can interact and engage with the world anyway. We will argue 
that this is similar when we aim to understand and study interpersonal trust in 
HRI. Therefore, it is essential to challenge the rather negative view of the relation-
ship between trust and vulnerability. Considering more recent studies on trust in 
HRI, it seems that there is already some empirical support for the consideration 
of vulnerability as something that is not only problematic, but could also support 
the interaction and engagement with robots.

1.3. Vulnerability and Trust in HRI1

The notion of vulnerability is similar to that of trust; it is very abstract, and its exact 
meaning can be hard to grasp. One way to understand what people have come 
to understand with vulnerability in the HRI community is to show that it have been 
operationalized. Several studies on trust in HRI currently take vulnerability to be 
some form of self-disclosure by a robot through verbal expressions and commu-
nication. Using such an understanding of vulnerability is very helpful when de-
signing empirical studies because it is made less abstract (i.e. specific linguistic 
statements), which eventually render it more easily manipulated and measured. 
Consequently, all existing studies so far are designed to explore how expressions 
or utterances of vulnerability by a robot can influence human behavior or commu-
nication during HRI.

For example, Siino et al. [2008] found that a robot using a style of affective 
disclosure during a collaborative task in a repair scenario would result in people 
feeling less in control of their data but increased its like-ability. Even though, this 
study is not directly about trust in HRI, it is still interesting as the findings could

1 Subsection 1.3 has already been published as Hannibal [2021].
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be understood as an expression of either human experience of vulnerability or 
perception of the robot being more vulnerable when reporting its affective state. 
In another example, Kaniarasu and Steinfeld [2014] were able to show that an 
utterance of self-blame by a robot during a collaborative task in a navigation 
scenario leads people to find it less trustworthy. As discussed by the authors, the 
tendency by people to view others negatively, who constantly make an apology 
for themselves despite their intention of being honest, is an effect seen in HRI 
that shed light on issues of distrust. However, some studies have suggested that 
robot self-disclosure can improve trust in HRI. Martelaro et al. [2016] found in 
their more recent study that, a simple robot expressing statements of vulnerability 
during a learning task in a tutorial scenario would result in a higher level of trust 
and sense of companionship. More interested in group dynamics, Sebo et al. 
[2018] found that when a robot during a collaborative task in a game scenario 
made vulnerable statements, the members would display a much higher level of 
engagement with it. Traeger et al. [2020] extended their work and found that the 
communication between the team members would improve, and their experience 
as part of the group would be seen positively when the robot provided statements 
of vulnerability. Reducing vulnerability in HRI to a form of self-disclosure is prob-
lematic in two ways.

First, operationalizing vulnerability only as the robot’s behavior fails to recog-
nize that vulnerability as a precondition of trust must always be interpreted and 
linked to the situatedness and temporality of the interaction. Thus, vulnerability 
is something that arises from the given circumstance in relation to a real and 
perceived vulnerability, depending on how the interaction plays out. Second, de-
signing the vulnerability behavior of robots in the form of linguistic statements is 
a very narrow understanding of how robots could be vulnerable because it is a 
form of mimicking human vulnerability. Considering the literature so far on robot 
failures (e.g., [Salem et al. 2015; Ragni et al. 2016; Honig and Oron-Gilad 2018]) 
and cybersecurity in robotics (e.g., [Clark et al. 2017; Miller et al. 2018]), the way 
in which robots can be vulnerable only partially overlaps with human vulnerabil-
ities. In other words, given that robots are ontologically of a different kind, they 
have their own specific types of vulnerabilities. Hence, systematically identifying 
these robot-specific vulnerabilities is in fact equally important to the identification 
of human vulnerabilities when exploring trust in HRI. As such, a gap in the current 
research landscape has been identified, which serves as the motivation for the 
expert interviews presented in the next section. Moreover, reducing vulnerability 
only to a property of the robot’s behavior fails to recognize that vulnerability, as a 
precondition of trust, must always be interpreted and linked to the specific situa-
tion or moment in time. As we wish to highlight also in the later discussion about 
the expert interview results, it is important to include the insight that vulnerability 
is relational in the research on trust in HRI, because it is highly sensitive to the 
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ongoing and ever-changing relationship between humans and robots during in-
teraction.

2 Expert Interviews2

Given these theoretical perspective, we set out to explore the aspect of vulner-
ability as a precondition of trust in HRI by gathering knowledge about the possi-
ble robot vulnerabilities. Guiding this research with the question of in which way 
robots could be considered vulnerable?, we decided to conduct semi-structured 
expert interviews with experienced and leading roboticists.

2.1. Methodology

The method for conducting expert interviews is suitable for getting a more sys-
tematic overview of knowledge within certain domains, which experts have spent 
many years achieving through their professional training or experience [Meuser 
and Nagel 2009]. For this research, expert interviews are helpful in the initial 
stage of identifying the possible vulnerabilities of robots. Not only do robotics 
experts have an extensive knowledge about the technical challenges of devel-
oping robots, they can also provide insights into what types of vulnerabilities are 
common across various domains of application.

On a methodological level, using expert interviews is important because of the 
ontological status of robots. First, given that robots do not have an inner life that 
connects feelings of vulnerability to higher mental states or experiences, their 
particular vulnerabilities can only be studied from a third-person perspective. To 
paraphrase Bruno Latour, whose words about scientific facts are equally relevant 
to this discussions, expert interviews are required because robots cannot “speak 
for themselves” [Latour 1993, p. 29]. Thus, we take the specialized knowledge 
of roboticists as a vehicle for giving expression to the specific vulnerabilities of 
robots.

2.2. Procedure

Over the period of nine months, we conducted in total eight semi-structured ex-
pert interviews. The purposeful sampling method [Patton 2015] was used to re-
cruit the experts with the following selection criteria (see e.g., Table 1 for a quick 
overview of how the different expertise was divided among the different experts):

2 Section 2 of this book chapter has already been published as Hannibal [2021].
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1. Having a disciplinary background in robotics.

2. Work experience in HRI or social robotics.

3. Research interest on the topic of trust.

To address the research question, it was enough if an expert would only fulfill one 
of the three criteria while ideally they would cover all of them.

Experts ID Country Expertise

Justus Piater Exp_JP AT computer vision, ML, robotics

Allan Wagner Exp_AW USA
AI, robotics, HRI, robot ethics,

trust
Marc Hanheide Exp_MH UK AI, robotics, HRI, social robotics
– Exp_XX – social robotics, HRI, AI, trust
Birgit Graf Exp_BG DE HRI, service robotics, applications
Kristin Schae-
fer-Lay

Exp_KS USA robotics, HRI, teams, trust

Michael Zillich Exp_MZ AT computer vision, robotics, HRI

Paul Robinette Exp_PR USA robotics, HRI, trust

Table 1 Overview of the experts and the used selection criteria for their inclu-
sion.

All experts were contacted via email with an invitation to participate, which also 
contained more background information and the purpose of the interview. After 
indicating their willingness to participate in the interview, all experts were asked to 
sign a consent form that was sent to them in advance. The consent form clearly 
stated what their participation involved, their rights, and the data protection re-
quirements set by the university. Each expert interview was conducted in English, 
audio recorded, and took about 30-40 minutes. 

In the first part of the interview, all experts were given an opportunity to intro-
duce themselves (i.e., “Could you tell me about your recent projects and main re-
search interest?”). This information was needed to contextualize their disciplinary 
background and role as experts (see e.g., Section 2.3). Then five additional ques-
tions were asked to guide the semi-structured interviews:

 - What do you consider as future application scenarios for agent-like robotic sys-
tems?

 - Given your research background, how and when can an agent-like robotic sys-
tems be said to be vulnerable?
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 - Given your considerations of system-centered vulnerabilities, could you please 
rank or order them according to their importance?

 - From your point of view, who would be disadvantaged if these vulnerabilities 
are left unaddressed?

 - Considering cutting-edge technical knowledge used to develop agent-like ro-
botic systems today, what has to be done to make agent-like robotic systems 
less vulnerable in your opinion?

After finishing the interview, all experts had the opportunity to give feedback and 
were again informed about their rights as participants.

2.3. Ethics

To ensure the protection and integrity of the experts participating, we generally 
followed the four-fold strategy suggested by Flick [2009]: (1) ensure voluntary 
consent by the participants in advance, based on sufficient and adequate infor-
mation about the research project and its aim, (2) avoid causing any unnecessary 
harm to the participants in the process of collecting data, (3) do justice to the 
participants when analyzing and interpreting the collected data, and (4) guaran-
tee the confidentiality and anonymity of all the participants when writing down 
and presenting the results and findings. However, given the nature of expert in-
terviews, we excluded principle 4 for the informed consent of the experts, as it 
stated in the consent that we could use the name, professional title and affiliation 
for the purpose of direct quotations. Only one of the experts wished to remain 
anonymous, who we have given the expert code, Exp_XX.

On a practical level, it is important to mention that there was no official ethics 
board at TU Wien that was in charge of providing a standardized procedure for 
ethical approval of the expert interviews at the time when they were conducted. 
Only since 2020 has TU Wien been testing a concept of a Research Ethics Com-
mittee (Pilot REC) based on peer review to ensure a future procedure for basic 
standards of research ethics. However, we did our best to compensate for the lack 
of ethical approval because we were in contact with Dr. Marjo Rauhala about the 
development of the expert interviews. Since Dr. Rauhala supports all researchers 
at TU Wien daily with the identification of questions regarding research ethics in 
the role as the leader of the service unit of Responsible Research Practices3, we 
received some feedback on the project description and consent form provided to 
the experts, so they would live up to basic standards for good research practice. 
For guidance about how to follow the EU regulations of GDPR, the third author 

3 For more information about the service unit of Responsible Research Practices at TU Wien, we 
suggest visiting their website: https://www.tuwien.at/en/research/rti-support/ responsible-re-
search-practices



45

Exploring the Situated Vulnerabilities of Robots for Interpersonal Trust in Human-Robot Interaction

ensured a check since he is in the role of Data Protection Coordinator at the Fac-
ulty of Informatics, TU Wien. This information was also provided on the consent 
forms that the experts were asked to sign to prepare for their interviews.

2.4. Analysis

After collecting all the expert interviews, the audio recordings were transcribed 
verbatim with the spoken word as the only focus [McLellan et al. 2003]. The first 
author coded the interviews solely using in vivo coding to summarize the exact 
wording, terminology, and formulations used by the expert. After a few coding 
cycles, related codes were then lumped into overall 13 different categories based 
on content and meaning similarity [Miles et al. 2020]. The decision on which 
category labels to use was also guided by prior classification of potential sys-
tem-centered vulnerabilities as reported in previous literature on robot failures 
[Ragni et al. 2016; Honig and Oron-Gilad 2018] and cybersecurity in robotics 
[Clark et al. 2017; Miller et al. 2018]. We used a thematic analysis [Braun et al. 
2019] to identify the common themes across the expert interviews. All coding, 
categorization, and thematic analysis of the expert interviews were done elec-
tronically using MAXQDA4.

Theme Category

(T1) Embodiment (C1) Mechanical

(C2) Sensory 

(C3) Functional 

(C4) Security
(T2) Processing (C5) Understanding

(C6) Learning

(C7) Decision-making
(T3) People (C8) Obstacle

(C9) Perspective-taking 

(C10) Malicious
(T4) Setting (C11) Infrastructure

(C12) Environment 

(C13) Time

Table 2 List of the different categories and themes identified during the coding 
and analysis of the expert interviews.

4 Due to the COVID-19 outbreak in March 2020, all but the first expert interview were conducted 
online using the Skype platform.
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From the analysis of the expert interviews, we were able to identify in total 13 
categories of vulnerability that were then grouped into four different themes (see 
e.g. Table 2). Next, we provide a short description of each theme and offer few 
examples of how they were supported by different experts by drawing on their 
own wording, terminology, and formulations to summarize their main points.

2.4.1. Embodiment (T1)

Since robots are navigating and interacting with people in the real world, they 
have on the most basic level what experts Exp_JP and Exp_KS referred to as 
“physical vulnerability”. Under this theme, we collected all the various vulnerabil-
ities related to robots in the sense that they could be “fragile” (Exp_JP), “dam-
aged” (Exp_KS), “worn down” (Exp_BG), “hacked” (Exp_XX), or “break down” 
(Exp_AW). As such, the aim of this theme was to highlight that regarding their 
various mechanical (C1), sensory (C2), functional (C3), and security (C4) as-
pects, robots can be exposed because their required embodiment creates tangi-
ble vulnerabilities.

2.4.2. Processing (T2)

On a more abstract level, but still related to the functioning of robots, the next 
theme is related to their ability to handle and use the information they get from 
the surroundings for understanding (C5), learning (C6), and decision-making 
(C7) as Exp_JP mentioned that “softwares are also vulnerable”. Central to this 
theme are the different robot vulnerabilities that arise because they “lack a con-
ceptual framework that allows them to understand what is going on in the world” 
(Exp_JP), could be “learning the wrong thing” (Exp_MH), or could “make deci-
sions when they do not have all of the information” (Exp_XX). Thus, these kinds 
of robot vulnerabilities are mainly to be understood as a form of exposure in the 
sense of inadequate, misinformed, and hasty reasoning that eventually guides 
their behavior.

2.4.3. People (T3)

Moving on to those aspects that are more external to the robot, the next theme 
relates specifically to the action or behavior of the people interacting with them 
and that would have a direct effect on their level of exposure. For some of the 
experts, the robot vulnerabilities were not simply a matter of people sometimes 
hindering task completion by the robot because “the human does not move so the 
robot has to turn” (Exp_PR) or that the limited “understanding in humans how the 
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robots see the world” (Exp_MH) would result in robots getting into various acci-
dents. In some cases people would in fact be downright “malicious” (Exp_PR) as 
they would intentionally engage in “abusive, aggressive behavior towards robots 
in the public” (Exp_MH). Thus, this theme intends to show that vulnerabilities 
are closely linked to both the unintentional and intentional conduct of the human 
counterpart because people expect that robots can easily deal with constantly 
moving obstacles (C8), fail to understand or take into account the perspectives 
of robots (C9) that leads to hazardous situations, and assume that mistreating 
robots by participating in malicious (C10) activities is unproblematic.

2.4.4. Setting (T4)

In the last theme, we collected the robot vulnerabilities mentioned by the experts, 
which relate to the framing or backdrop against which the interaction between 
humans and robots unfolds. In this theme, the often hidden technological and 
bureaucratic infrastructure (C11) was stressed because getting robots to properly 
function in real world scenarios often requires “ten engineers standing around” 
(Exp_BG) or “getting safety certificates” (Exp_MZ) to ensure robots could leave 
the laboratory and enter the market. Even when being tested for application, ro-
bots regularly get challenged when having to navigate in an environment (C12) 
designed for humans, which Exp_BG identified when she explained that “some-
times the corridor was simply too narrow” (Exp_BG) or that people would con-
stantly be “moving stuff around”. Time (C13) was also considered important given 
that according to Exp_KS there is a difference between those robot vulnerabilities 
that only show in the long-term compared to those “that happen right away”. In 
the view of Exp_MH, the aspect of time might also be crucial in understanding 
why people “like to mess around” - because new and short encounters instigate 
a “novelty effect”.

2.5. Discussion

There are several points to consider for discussing the results, which we will 
present in this section while relating them to existing literature in HRI and other 
relevant discussions.

2.5.1. Interpretation of Vulnerability

As expected, some of the experts would comment on how to interpret the notion 
of vulnerability in relation to robots. For example, Exp_PR considered how to un-
derstand robot vulnerability in light of how they are often portrayed in the media 
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and pop-culture. He noted that while people always see in movies that “robots are 
super strong and super fast and everything” this is far from the case because in 
“the real world they cannot get over a single step or they think that a bush is an 
obstacle that cannot be driven or something”. Thus, Exp_PR concludes, that ro-
bots are “already pretty vulnerable in the real world” compared to the impression 
that the general public might have. This point is closely related to debates in HRI 
about managing public expectations regarding the robot’s capabilities. Known by 
now as the “expectation gap” [de Graaf et al. 2016; Kwon et al. 2016], it is also 
highly relevant and recently linked to discussions regarding trust in HRI, as this 
gap could result in unwanted disappointment and even instigate fear [Malle et al. 
2020].

More concerned with some conceptual challenges, Exp_AW expressed diffi-
culties with speaking about robot vulnerabilities when saying that “vulnerability is 
just not a topic that’s really very well suited for robots” because in his view using 
this notion would suggest that robots have some kind of volition or intentionality. 
Exp_AW further explained how this issue made him hesitate in using the common 
definition of trust by Mayer et al. [1995] and instead turned toward a “definition 
that involved risk”, which is more practical and widespread in robotics since it is 
easier to operationalize. Another similar reflection was made by Exp_BG who 
said that “it’s really hard to think about vulnerable in the sense of the robot be-
cause for me it’s an attribute that’s so human”. Based on her more technical per-
spective, she then suggested reformulating the relevant aspect of considering ro-
bot vulnerability in terms of “situations where the robot could run into problems”. 
This conceptual tension when studying trust in HRI has previously been identified 
by Malle and Ullman [2021] and it is still an open question whether human-robot 
trust necessarily comes with a feeling of vulnerability, which is a characteristic of 
human trust.

According to Exp_KS, such discussion must consider that speaking about ro-
bot vulnerabilities also contains a normative dimension because people in differ-
ent contexts might need to ask themselves critically, “how vulnerable do we need 
to be to the system, how vulnerable does the system need to be to me?”. She 
elaborates on this point by saying that robot vulnerabilities in a military context 
must always be avoided, whereas it might be useful in healthcare for building 
trust between people and robots. Questions about when and for what reasons 
robot vulnerabilities might be desirable or not are important to discussions about 
trust in HRI because the mere presence of a robot perceived as vulnerable can in 
fact influence human group dynamics for the better [Traeger et al. 2020].
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2.5.2. Ethical Dimensions

From the expert interviews, it turned out that the theme of people (T3) ranked 
as the second most mentioned robot vulnerability despite different domains of 
application (coded 57 times). Especially the challenge of malicious humans was 
mentioned by several experts, who noted that people would intentionally be “kick-
ing”,“pushing”, “hitting”, and “attacking” robots, which adds to previous HRI liter-
ature reporting how both adults and children would not shy away from such be-
havior [Scheeff et al. 2002; Brscić et al. 2015; Nomura et al. 2016]. This abusive 
behavior toward robots will only grow with their increasing application in public 
spaces, which according to Exp_KS is problematic for trust in HRI because “it will 
become an issue for their operation”. Given that the success or failure of a given 
task in fact depends on some level of mutual trust in HRI, it is relevant to study 
not only whether people can trust robots, but also whether robots can trust people 
[Vinanzi et al. 2019].

The necessity of mutual trust in HRI for task completion and collaboration re-
quires a broader discussion about how to deal with human abusive behavior 
toward robots, and this challenge has already been recognized as an ethical 
dimension of HRI [Whitby 2008].

From a critical analysis of previous attempts in philosophy to account for trust 
that mainly originated from a liberal tradition, Baier [1986] argued that the signifi-
cance of trust for thriving must be examined from a moral point of view. From her 
perspective, it is a bad starting point for any understanding of trust pertinent to 
human social life to consider it as some form of contract established between two 
equal parties in terms of power and capabilities. From her careful observation of 
interpersonal relationships of all kinds where cooperation and care are cardinal, 
she recognizes that some of them are fundamentally unequal and sometimes not 
even voluntary, which severely challenges the liberal ideal of the conditions of 
trust. Based on this insight, Baier [1986] propose instead to take trust as a form 
of reliance on others to act out of goodwill toward oneself. This so-called goodwill 
account of trust is essential in stressing the close connection between interper-
sonal trust with moral obligations and is one of the first views on trust that goes 
beyond reliance.

However, debates about mutual trust rooted in a liberal tradition have become 
challenging for HRI because they presume that the two parties stand to each 
other in an equal moral and power relation [Faulkner and Simpson 2017]. The 
acknowledgment of robot vulnerability in relation to their human counterpart is 
ethically problematic as they can at most be considered “moral patients” [Coeck-
elbergh 2018], and they do not have a choice whether or not to engage in the 
interaction [Baier 1986].
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Considering both the limited moral standing of robots and the inequality of 
power in HRI, we agree with Tolmeijer et al. [2020] that future work needs to focus 
more on developing concrete trust-repair strategies for what they refer to as “user 
failure” to mitigate robot vulnerabilities resulting from abusive behavior. From 
their main focus on interaction design strategies for mutual trust in HRI, they 
have suggested that robots could use methods of apology, showing emotions, 
and involving authority figures. More concerned with ethical and legal strategies, 
debates in philosophical circles have been revolving around granting some form 
of “robot rights” [Coeckelbergh 2010b; Gunkel 2018], which is a rather controver-
sial suggestion [Tavani 2018].

3 Relational Dimension of Vulnerability

Throughout his work on developing a normative anthropology of vulnerability, 
Coeckelbergh [2013] draws on the traditions of phenomenology and pragmatism 
for analyzing vulnerability in relation to technology, as an alternative to the more 
classical scientific approach. As he writes, the understanding that the classical 
sciences brings to the foreground of the discussion is one where “vulnerability ap-
pears as an objective, essential feature of human nature, and the vulnerability of 
people is studied in an objectivist way” [Coeckelbergh 2013, p. 38-39]. From this 
perspective, he continues, vulnerability is something external to people, which 
can be evaluated from a third-person point of view. Vulnerably is thereby char-
acterized in objective terms; is vulnerability real compared to the possible risk 
and uncertainty posed by a threat to the livelihood or well-being of people. In this 
sense, the individual experience of being vulnerable is not considered or at least 
something that can be managed when understood properly. As Coeckelbergh 
[2013] explains, those who do in fact speak about vulnerability as tied to the 
subjective feelings or emotions of people still presuppose that the perception of 
being vulnerable is seen in the light of an objective standard. Taking the complete 
opposite view, is to consider vulnerability only as subjective where the first-per-
son perspective is in focus, how the “I” (or individual) comes to experience the 
vulnerability. However, he argues that this view is also problematic because it 
does not acknowledge that the subjective experience of vulnerability is influenced 
by the surroundings and conditions people find themselves in. Vulnerability is 
connected to the way people interact and engage with the world, which contains 
both risk and uncertainty as part of daily life. Thus, Coeckelbergh [2013] aims to 
challenge this overall idea of the object-subject dichotomy to our understanding 
of vulnerability ingrained in the Western thought. As a way out of this dualistic 
view on vulnerability, he proposes to shift the focus on how vulnerability emerges 
out of this tension so that it “[...] is neither a feature of the world (an objective, 
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external state of affairs) nor something that we create or perceive (a subjective 
construction by the mind, an internal matter), but is constituted in the subject-ob-
ject relation” [Coeckelbergh 2013, p. 43].

From this critical discussion, Coeckelbergh [2013] elaborates on what he 
means when he takes vulnerability to be relational, that closely connected with 
the notion of engagement. He states that vulnerability arises from or comes into 
view only within the relation that manifests when people engage with the world. 
It is nothing that already belongs to people or the world in advance, but some-
thing that unfolds in that meeting. Following this understanding of vulnerability as 
something emergent during the interaction is also relevant to the way it is possi-
ble to think about vulnerability for studies on trust in HRI. Given that vulnerability 
fundamentally emerges from the interaction or engagement between humans 
and robots, it would be a mistake to reduce it to being a property of the robots 
nor of the perceptions people have, as reported in from previous work. Rather, 
it is something that must be located in the event of a meeting. As relational vul-
nerability in HRI, we can take the co-constitution of vulnerability as a result of 
both the human and robot who are coming into interaction or engagement. While 
Coeckelbergh puts a lot of effort into stressing the value of this analysis because 
it makes room for the existential dimensions of a “vulnerable being” [2013, p. 44], 
we argue that the more important point he makes, and the most relevant for the 
HRI community, is that it also enables us to see vulnerability as a process; vulner-
ability is continuously ongoing. Since vulnerability is relational in terms of interac-
tion and engagement, it also means that it is always in the making. Coeckelbergh 
makes this point clear when he writes:

“Vulnerability is not merely passive. To understand vulnerability as something 
entirely passive would be to turn the human being into an object once again 
or a property of that object. But openness does not mean passivity, and vul-
nerability is not merely a characteristic of our body or our mind. We are not 
vulnerable in the way a building or a bridge is vulnerable. Rather, we make 
ourselves vulnerable; we put ourselves at risk, by our mental and physical ac-
tions. We eat, we travel, we work, we love, we hope, and these actions make 
us vulnerable. Vulnerability, therefore, is not a property of the human person 
but a feature of the relation between us and the world. It is a feature of our way 
of being (in the world) and a way of existing” [2013, p. 44].

Translating this insight into the context of trust in HRI, we can say that it is 
possible to consider vulnerability as a result of the exchange between the human 
and robot that always occur. Although robots are of a completely different kind 
than humans, we believe that this does not hinder the recognition that they play 
their own important role in the creation of vulnerability. Just as anything else in 
the world, which confronts people as part of their everyday life, our meeting with 
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robots can potential shape the way we come to experience and understand our 
vulnerability through encounters. This is similar to how robots can be considered 
vulnerable in the meeting with people. They are also affected by the actions and 
behaviors of humans, even though the issues that robots face from such meet-
ings might not have the same existential consequences. However, there are po-
tential risks and uncertainties that robots face when navigating in human spaces, 
which render them vulnerable and thus bring the theme of trust as bidirectional 
into the discussion.

4 Conclusion

In this book chapter, we have considered some theoretical and empirical work 
in deepening an understanding of interpersonal trust in HRI. First, we consid-
ered how trust had been understood in the context of HRI on a conceptual level, 
leading to deeper philosophical questions about the metaphysics of taking trust 
to be an event rather than a property as a way to highlight vulnerability as one 
of the preconditions less explored. Then, we then presented the results of eight 
expert interviews that aimed to explore how robots could be said to be vulnerable 
in interactions requiring trust. Based on the systematic overview, we discussed 
how robot vulnerability is challenging our conceptual associations and how such 
a stance leads to broader social and ethical discussions on trust in HRI, where 
mutual trust is essential in strengthening the interaction or collaboration. Finally, 
we reflected on how the current shift toward vulnerability as an emergent aspect 
of mutual trust in HRI aligns with a general view on how interpersonal trust is al-
ways a result of the ongoing exchange between humans and robots, even though 
they are of ontological different kinds.

In summary, our book chapter presents an interdisciplinary perspective on the 
analysis of trust for current HRI research. Although there are still many open 
questions to be addressed and further empirical work to be carried out, we be-
lieve that the initial steps have been taken toward new directions of understand-
ing and studying trust in HRI. Furthermore, our work is also helpful in fostering a 
stronger dialog about how to combine both theoretical and empirical perspectives 
on the complex way of recognizing robot vulnerabilities that can support trust in 
HRI.
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Challenges and solutions for trustworthy 
explainable robots
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Abstract

For robots to be accepted within society, non-expert users must deem them not only useful (and usable) but also 
trustworthy. Designing robots that can explain their decisions and actions in terms that everyone can understand is 
crucial to their trustworthiness and successful integration into our society. This paper, written as a part of a doctoral 
dissertation, draws from interdisciplinary research on social sciences and explainable robots (and AI) to address the 
set of challenges associated with making robots explainable and trustworthy. Particular attention is paid to non-ex-
pert users’ perspectives within the context of everyday interactions. We claim that, as perfect explanations do not 
exist, their success in triggering understanding and fostering trust is determined by their plausibility. Furthermore, 
we maintain that plausible explanations are the result of contextual negotiations between the parties involved. As a 
result, this paper presents strategies formalized into a model for explanatory interactions to maximize users’ under-
standing and support trust development.

Keywords

Explainable Robots, Trust, Non-Expert Users, Everyday Explanations

1 Introduction

Recently, the concept that AI and robots should be able to explain their inner 
workings, decisions, and actions has emerged in academic and societal discus-
sions. Furthermore, as AI and robots permeate society at different levels, affecting 
people’s everyday life, their decision-making processes should be understand-
able not only for machine learning and robotics experts but also for a broader 
audience of domain experts (i.e., practitioners from fields where AI technologies 
are applied) and non-expert end-users. Importantly, each of these categories of 
users has different demands in terms of explainability desiderata and goals, as 
their interests and knowledge of the technology may differ substantially. To this 
extent, it is crucial to understand and acknowledge the differences between dif-
ferent categories of users and, hence, what explainability entails in each context.

The category of domain experts is concerned with applications, such as mil-
itary operations (e.g., robots used for mine detection and removal or rescue 
tasks), exploration (e.g., in space or the oceans), and medical purposes. This 
implies that most of the users will need to undergo some sort of special training 
to interact with the robots. While this does not guarantee that these users will 
become robotics experts, such a training allows for creating an adequate mental 
model of the robot that, in turn, supports users’ understanding and trust calibra-
tion. In contrast, the category of non-expert users refers to users who have little to 
no previous experience with specific robotic technologies. It includes application 
contexts such as caregiving and education, recreational activities, and, perhaps 
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most crucially, interactions with robots ‘in the wild’ [Sabanovic et al. 2006]. Be-
cause there has been no previous interaction or any introduction, the level of 
uncertainty concerning robots is higher in these contexts. According to several 
definitions, uncertainties and perception of risk represent two elements that may 
jeopardize trust [Lee and See 2004; Andras et al. 2018; Luhmann 2018].

This paper addresses a set of challenges of making robots explainable and 
trustworthy, particularly for non-expert users and within the context of everyday 
interactions. The main reason for doing this project is those non-expert users 
represent the vast majority of the public, and many robots and other AI-based 
technologies are designed to interact with them daily. Furthermore, because of 
their lack of technical knowledge and agency to manipulate robotic technologies, 
non-expert users are the most vulnerable. In this context, explainability plays a 
crucial and multifaceted role. According to some studies, explanations that are 
properly tailored to the needs of non-expert users reduce perceived uncertainty 
and increase the understandability of robots. This, in turn, supports users with 
trust calibration toward robots and, consequently, robot acceptability in society 
[Lomas et al. 2012; Langley 2016; Langley et al. 2017; Sheh 2017b; Andras et 
al. 2018; Papagni and Koeszegi 2020, 2021b]. Therefore, designing robots that 
can explain their decisions and actions in terms that everyone can understand 
will aid in their successful integration into our society. Furthermore, while the in-
terests and needs of specific groups of users might differ, an explanation that is 
understandable by users with no prior knowledge of robotic technologies should 
be understandable to more technologically accustomed ones.

One of the major problems in tailoring robot explanations to the needs of 
non-expert users is that explainability is frequently considered a data-driven rath-
er than goal-driven characteristic [Sado et al. 2020]. Instead, we claim that the 
design of social robots should integrate inputs from various disciplines and focus 
on developing the capacity to communicate decisions in terms easily graspable 
by a broad audience. Another problem that requires more extensive investigation 
is that explanations are, by their very nature, incomplete approximations of the 
actual decision-making processes [Keil 2006; Rudin 2018; Wang 2019]. The lack 
of perfect explanations is even more problematic for robotics, given the standard-
ized, algorithmic, and ‘coordinate-based’ modalities of information processing 
that are typical of robots [Lomas et al. 2012].

We approach these challenges with an interdisciplinary drive. Seeking and 
providing explanations is a form of everyday social communication, which has 
been extensively studied within disciplines, such as philosophy, sociology, and 
psychology [Hilton 1990; Miller 2019]. Combining findings from such disciplines 
with the need to integrate them into the design of robots and other artificial agents 
can be labeled as an ‘interdisciplinary challenge’ of explainability [Adadi and Ber-
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rada 2018]. Specifically, this paper discusses the core elements of a recent mod-
el for explanatory interactions with artificial agents proposed by the authors of this 
paper (see figure 1). The remainder of this paper is organized as follows. Section 
2 introduces the model and briefly analyzes its development and core elements. 
Concerning the standardization of explanations, Section 2 presents the concept 
of contextual, co-constructed plausibility as the most significant feature upon 
which explanations should be built. Section 3 addresses the timing of explana-
tions, which represents a central element of the model, to answer the question of 
when explanations are mostly needed to support the trust calibration between 
users and robots. Furthermore, Section 3 briefly presents the results of a study 
conducted in the context of repeated interaction with a virtual agent, whose accu-
racy and explainability are manipulated. Section 4 discusses whether a robot’s 
decision or action ought to be explained because of intentions and reasoning or 
other causes (e.g., natural or mechanical), as this aspect is critical for the struc-
ture of an explanation. Section 5 focuses on communication strategies to in-
crease the explanations’ understandability, particularly on the possibility of multi-
modal and interactive explanations, which is at the heart of the non-expert users’ 
question. Section 6 concludes the paper by addressing limitations and outlining 
the direction for future work.

Figure 1 Explanatory Dialogue Model  Adapted from [Papagni and Koeszegi 
2021b]
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2 Explanatory dialogue models

According to Berland, “literature in both the philosophy of science and psychol-
ogy suggests that no single definition of explanation can account for the range 
of information that can satisfy a request for an explanation” [Berland and Reiser 
2009, p. 27]. Accordingly, there is no single model to describe a perfect explan-
atory interaction. Furthermore, as previously stated, such models must be suit-
able for implementation in the algorithmic information-processing units of robots. 
The model presented in this paper aims to cope with this issue [Papagni and 
Koeszegi 2021b]. To do so, we analyzed existing models for explainable artificial 
intelligence (XAI), identified shortcomings, and developed solutions accordingly 
[Walton 2011; Madumal et al. 2018, 2019].

We identify two major limitations in Walton’s, as well as Madumal’s, Miller’s, 
Sonenberg’s, and Vetere’s models. Sections 3 and 5 discuss more thoroughly 
each of these shortcomings. However, it is important to introduce them, as they 
both play central roles in the design and structure of our model. The first one 
concerns the timing of explanatory interactions and, more specifically, the notion 
that explanation requests are always promoted by an ‘anomaly detection’ [Walton 
2011] or ‘knowledge discrepancy’ [Madumal et al. 2018, 2019]. This approach 
expresses the idea of explanations as isolated events, rather than as contextual 
instances. For instance, the models mentioned do not account for the fact that 
explanations concerning the robot’s function in the specific interaction context are 
required at the beginning of an interaction with a robot, especially if this occurs ‘in 
the wild’. This moment plays a role in how people build their mental model of the 
robot and should thus be considered part of the explanatory interaction.

The second shortcoming we identify is ensuring users’ understanding of ex-
planations. As previously noted, the inner workings of AI-based technologies are 
difficult to understand, even for expert users, let alone non-expert. If the robots’ 
explanations are also not properly understood, the initial problem remains, since 
customers will still be unable to make sense of the robots’ behavior. This argu-
ment also holds when applied to wrong explanations. How could an explanation 
be labeled as wrong if the content is not understood? Section 5 addresses these 
considerations more in detail.

2.1. Explanations’ plausibility

Our model leverages on the principle of explanations’ plausibility as the key cri-
teria and ultimate goal [Papagni and Koeszegi 2020]. According to Karl Weick’s 
‘sensemaking theory’, sensemaking intended as a process, “is driven by plausibil-
ity rather than accuracy” [Weick et al. 2005, p. 415]. Building upon Peirce’s work 
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on abductive reasoning, Wilkenfeld and Lombrozo rework Harman’s concept of 
‘inference for the best explanation’ [Harman 1965; Peirce 1997; Wilkenfeld and 
Lombrozo 2015]. Specifically, they postulate that the purpose of explainability 
should be to provide the best understanding of the causes of an event, rather 
than the most accurate explanation possible. This approach is consistent with 
Weick’s idea that, to grasp the causes of an event, people seek plausible stories 
(i.e., that something ‘might be’) more than they seek true stories (i.e., that some-
thing ‘actually is’) [Peirce 1997; Miller 2019].

Malle argues that people seek explanations to find meanings and manage 
social interactions [Malle 2006]. According to Weick, the process of building 
meanings is the result of a collaborative effort involving the two parties (i.e., the 
explainer and explainee), as well as the context within which the interaction oc-
curs [Weick et al. 2005]. In terms of explanatory interactions, there must be a 
knowledge transfer from the robotic explainer, who initially and ‘asymmetrically’ 
possesses the information that makes a specific explanation plausible, to the ex-
plainee, who must understand and agree that the explanation is plausible in that 
given context and for a specific event [Malle et al. 2007]. This does not neces-
sarily imply that the explanation provided is the best in absolute terms, let alone 
the only one. The emphasis on all parties involved agreeing on the plausibility of 
an explanation implies the explainee’s understanding of the explanation (i.e., it is 
unlikely for someone to find something plausible without understanding it in the 
first place). Furthermore, viewing plausibility as a collaborative and contextual 
achievement implies that the parties involved judge a given explanation as suc-
cessful if it provides a satisfying account of an event’s most likely causes.

Another advantage of adopting plausibility and abductive reasoning as core 
criteria of explainability is that there is no universally accepted principle for select-
ing a subset of causes upon which explanations are built. While certain qualities, 
such as internal coherence of an explanation and coherence of an explanation 
with prior beliefs, are generally considered desirable [Thagard 1989; Lombrozo 
2007], the choice of other features is less obvious. For instance, some studies 
emphasize that explanations should be simple, whereas others consider com-
plexity as the trademark of quality [Lombrozo 2007; Kulesza et al. 2013; Zemla et 
al. 2017]. If an explanation is only considered plausible when all the concerned 
parties agree, it follows that the most significant qualitative requirements for that 
situation are met. For an explanation to be (co-)considered plausible, the amount 
of information it conveys cannot be overwhelming or too scarce. Likewise, the ex-
planation must be coherent with itself and with the prior beliefs of the concerned 
parties; it must not be too generic and vague, or complex, and so on. However, it 
could still be that an explanation will not be immediately considered plausible by 
all concerned parties. As plausibility is a quality that results from a negotiation, 
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multiple utterances may be required before all parties are satisfied. Section 5 
discusses how this limitation can, at least in part, be dealt with.

2.2. Explainable robots, plausible robots

From these last considerations, plausibility is not a property that can be pre-
defined once and for all. In other words, it is an aspect that is mostly determined 
by the context in which an interaction unfolds, the actors involved, and their spe-
cific interests. For instance, a possible application for social robots is assisting 
library customers. Among other tasks, such robots may suggest new readings 
to the customers, who may want to know the reasons for a specific recommen-
dation before deciding. In a similar case, if the timing is not an issue, the robot 
may explain in detail how it arrived at that recommendation, by demonstrating 
how features, such as the customer’s record of books requested in the past or 
feedback and reviews left by other users with similar preferences, weighed in the 
decision-making process [Ramos-Garijo et al. 2003; Mikawa et al. 2009; Sreejith 
et al. 2015]. Once these criteria have been presented by the robot, the custom-
er may eventually agree (or disagree) with the explanation’s plausibility and act 
accordingly.

However, in different situations, other features would likely be more relevant to 
show an explanation’s plausibility. For instance, when the timing is an issue (e.g., 
during a rescue operation [Murphy 2004]), people may want robots to provide 
simple and concise explanations while not sparing vital information, particularly if 
the consequences of a wrong decision are potentially disastrous. In conclusion, 
what plausibility entails cannot (and probably should not) fall under an unambig-
uous, umbrella definition. The reason for this is that whether an explanation is 
plausible or not should be negotiated between the concerned parties, in a specific 
context.

3 Explanations’ timing

This section focuses on the timing of explanations, a critical aspect that previous 
models have ignored, at least partially. Both models identify the start of an ex-
planatory interaction in a ‘knowledge discrepancy’ or ‘anomaly detection’ [Walton 
2011; Madumal et al. 2019]. Even though these models envision back-and-forth 
explanatory interactions with artificial agents, the type of approach they symbol-
ize is one that ideally regards explanations as isolated instances. In contrast, we 
support Weick’s view that meanings are co-constructed in the interplay between 
the concerned actors and the context, as we explain in the following paragraphs.
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3.1. Initial explanations and trust formation

People provide explanations according to their mental model of the person with 
whom they are interacting in terms of the level of expertise and ‘technicality’ 
[Cawsey 1993]. In principle, this process is reliable because the parties involved 
in an explanatory interaction often share some knowledge about the topic being 
discussed. However, when it comes to robots, this can be problematic. When ro-
bots are employed in semi-controlled environments (e.g., in elderly care facilities 
or educational contexts), the researchers involved introduce them to users. To 
help users become acquainted with the robots, the researchers explain what the 
robots can and cannot do and support users in establishing an adequate initial 
mental model of the robots.

However, social robots are ultimately supposed to operate also ‘in the wild’ in 
everyday situations (e.g., at shopping malls and libraries) where people will most-
ly have little to no experience with robots and interactions will be limited in time. 
To this extent, initial trust depends on both personal attitude toward technology 
and ‘institutional cues’ [Siau and Wang 2018; Andras et al. 2018]. The former is a 
consequence of the combination of several factors, such as cultural background, 
demographics, and personality traits [Morris and Venkatesh 2000; Chien et al. 
2016], and it can result in an equally wide range of dispositions toward new tech-
nologies, which are not necessarily mediated by accumulated experience with 
such technologies. These range from high expectations and over-trust [Dzindolet 
et al. 2003; De Visser et al. 2020], to skepticism and even forms of ‘technophobia’ 
[Kerschner and Ehlers 2016].

The notion that trust partially depends on ‘institutional cues’ refers to the role 
played by ‘third parties’, such as private companies, developers working for them, 
national and international institutions, and experts and regulatory bodies. Lever-
aging on their reliability and reputation, such entities play a ‘proxy’ role in deter-
mining how people perceive and trust new technologies. Specifically, this process 
is based on the assumption that the entities introducing new technologies act in 
accordance with values, such as integrity and benevolence, that define moral 
trust [Elia 2009; Lankton et al. 2015; Sood 2018]. Researchers have expressed 
concerns about the transparency, responsibility, and accountability of such ‘third 
parties’. As for end-users initial trust in robots and AI, it is crucial to emphasize 
the importance of the adequate distribution of responsibilities (to, e.g., ensure 
technology transparency) among the stakeholders [Elia 2009; O’Leary 2019].

Based primarily on ‘institutional cues’ and individual attitude, initial trust can 
be very high or low irrespective of robots’ actual performance concerning their 
purposes (i.e., not calibrated). For this reason, we emphasize the importance 
of the initial explanations. When robots have not yet proved to be reliable and 
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benevolent (e.g., on behalf of their makers), initial explanations may substitute 
the missing previous interactions, support the establishment of adequate mental 
models, and guide users toward placing calibrated trust in robots [Andras et al. 
2018; Fossa 2019].

We agree with Cawsey that, in the event of a first-time interaction, robots 
should treat users ‘as novices’ which implies that robots should not assume any-
thing about what users know. Accordingly, the robots’ mental models of the users 
should only evolve and update as an interaction develops [Cawsey 1993]. Ac-
cording to Weick’s argument, by adopting this approach, meanings and knowl-
edge are lifted from the private and implicit sphere and made public and explicit 
[Weick et al. 2005]. Interestingly, Walton notes that “to grasp the anomaly, you 
have to be aware of the common knowledge” [Walton 2011, p. 365] and that “the 
system has to know what the user knows, to fill in the gaps” [Walton 2011, p. 365]. 
This appears to contradict the idea that explanation requests are triggered by 
the detection of an anomaly in one’s account. However, how could a robot know 
what the user knows? Likewise, how can a user detect an anomaly in a robot’s 
behavior if the user has no prior knowledge of what the robot should or should 
not do? For this reason, our model proposes that robots should provide initial 
explanations that contain basic information, such as what role and purpose the 
robot have and what it can and cannot do (see top left part of Figure 1). By so do-
ing, robots could proactively establish the interaction context and support users 
in developing an adequate mental model. Additionally, once users are informed, 
the basic notions about the robot become shared knowledge and the robot can 
update its mental model of the user accordingly.

3.2. Unexpected events and trust restoration

According to the literature, the other moment in an interaction when people seek 
out explanations is when something unexpected or unpredictable happens [An-
dras et al. 2018; Miller 2019]. In other words, once users establish a mental mod-
el of a robot based on prior interactions, they will expect the robot to perform ac-
tions within a certain range of possibilities. Within this range, the robot’s reliability 
will be progressively determined based on its performance and accuracy. As a 
robot regularly demonstrates reliability and trustworthiness, users may consoli-
date their positive mental model of it, so that explanations become superfluous 
if not even damaging [Doshi-Velez and Kim 2017]. However, a robot may still act 
unexpectedly or unpredictably. Such events, which do not fit into the established 
mental model, are also recorded in the interactions. This is also what the models 
by [Walton 2011; Madumal et al. 2018, 2019] label as ‘knowledge discrepancy’ 
or ‘anomaly’. In similar situations, users’ understanding of the robot’s behavior 
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is challenged. Furthermore, several researchers have found that if users do not 
understand why a robot is behaving in a certain way, their acceptance and trust in 
the robot are probably weakened [Lomas et al. 2012; De Graaf and Malle 2017; 
de Graaf et al. 2018; Miller 2019]. While this is particularly the case when unex-
pected robot actions turn out to be mistakes [Elangovan et al. 2007; Robinette 
et al. 2017] even if a robot behaves according to its internal planning, if this is 
not obvious to users, it is important that they still make sense of why the robot is 
acting that way [Andras et al. 2018].

In an aging society, social robots are meant to be deployed in elderly-care facil-
ities with assisting duties. IBM’s MERA is one such robot being developed, on top 
of SoftBank Robotics’ Pepper platform, for similar purposes. It can monitor peo-
ple’s pulse and breathing functions, among other things [Martinez-Martin and del 
Pobil 2018; Venkatesh 2019]. For instance, if the robot detects any anomalies in 
these parameters before the person is consciously aware of it, it may suggest the 
assisted person rest. Such an event may be perceived as an anomaly, prompting 
the assisted person to request an explanation, which would likely elucidate the 
reasons behind the suggestion and show that, while these reasons were not ob-
vious at a first glance, they still make the robot’s suggestion plausible.

Hence, whether it is to prevent the loss of trust, or restore it after a mistake, 
robots must provide reasons for their actions through explanations. Other trust 
restoration strategies, such as denial, apologies, compensation, and relationship 
restructuring, exist and can be implemented among robots’ functions [Quinn et 
al. 2017; Lewicki and Brinsfield 2017]. However, unlike these strategies, explain-
ability offers two main advantages. On the one hand, as we discussed in the 
previous paragraph, explanations support trust not only in the case of a violation 
but also in building it at the start of an interaction. On the other hand, explanations 
provide useful insights into the causes of an unexpected event or mistake. We 
previously noted that explanations may not be strictly necessary in case of re-
peated successful interactions with a robot. For instance, when “there are no sig-
nificant consequences for unacceptable results” [Doshi-Velez and Kim 2017, p.3] 
or when a problem has been thoroughly researched and validated in real-world 
scenarios, explanations could become superfluous. However, even after multiple 
interactions, specific users may be unaware that a certain problem has been 
previously studied and that a robot’s decision is based on real-world-validated 
data. Therefore, in principle, robots should always be able to explain themselves 
whenever users ask.

To examine some claims discussed in the previous sections, an empirical 
study was conducted. Participants were required to interact with a personalized 
virtual learning assistant seven times. The goal of the assistant was to provide 
participants with recommendations on what chunks of text to focus on (out of 
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larger portions), for them to prepare for quizzes. The system’s explainability and 
accuracy were modified throughout the study.

Among the main findings, we observed that, contrary to expectations, initial 
explanations about the system’s functionality did not increase initial trust. Simul-
taneously, the assistant’s wrong recommendation affected participants’ trust neg-
atively, as it was perceived as a trust breach. However, qualitative data reveal 
that participants tended to be quite tolerant toward imperfect AI-based systems, 
as these systems are not expected to always function perfectly. Additionally, the 
qualitative data suggest that the researchers’ ‘hidden authority’ has a favorable 
impact on the system’s trustworthiness. Perhaps more importantly, trust resto-
ration was significantly faster when the system provided an explanation following 
the wrong recommendation, rather than not. Specifically, explanations were the 
most effective as a trust-restoration strategy with risk-averse participants. Fur-
thermore, explanations aided trust recovery, even if the participants did not al-
ways access them. Our qualitative analysis revealed how this may be explained, 
at least in part, by the fact that the very availability of explanations suggests a 
more transparent and trustworthy system.

4 Explainable robots and the intentional framework

Another element is crucial in terms of the mental model of robots and explanation 
generation. It is about whether or not robots’ explanations ought to reflect some 
form of intentionality (and other mental states) behind robots’ behavior. This as-
pect of explanatory interactions is part of a broader ongoing discussion between 
the human-robot and human-computer interaction (respectively, HRI and HCI) 
communities. While discussions on robots’ ‘mental states’ have paced up recent-
ly, they have older roots that date back at least to Heider’s and Simmel’s work, as 
they demonstrated that people adopt a mentalistic framework to interpret even 
the movements of simple and schematic geometrical shapes [Heider and Simmel 
1944]. Then, with Daniel Dennett’s concept of the ‘intentional stance’, interest 
in the topic has spread. [Dennett 1988, 1989]. Dennett explained that people 
interact with certain technological artifacts (such as a chess-playing computer) 
as though they acted on human-like internal states, such as desires, beliefs, and 
intentions. According to Dennett, it would be too difficult to understand how such 
devices work solely by relying on one’s knowledge of their intended purpose (i.e., 
the design stance), let alone the knowledge of natural laws (i.e., the physical 
stance) that ultimately govern everything [Dennett 1988, 1989, 1997]. Therefore, 
Dennett says, people adopt with computers and robots a mentalistic framework 
that is similar to that adopted with other people.
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According to recent interpretations, the phenomenon is due to a ‘primacy of 
the social mindset’, which means that a mentalistic interpretative framework is 
always readily available because of people’s social training and familiarity with 
it since childhood [Buckner et al. 2008; Looser and Wheatley 2010; Spunt et al. 
2015; Papagni and Koeszegi 2021a]. Furthermore, as most people appear to 
lack a strategy for interacting specifically with sophisticated technologies, such as 
robots, a mentalistic approach eventually prevails. Attributing intentions to robots 
and other seemingly intelligent machines has some problematic aspects. For in-
stance, researchers have proposed that in certain cases, the unconscious (and 
erroneous) adoption of a mentalistic framework may be the origin of the so-called 
‘uncanny valley’ phenomenon [Bartneck et al. 2009; Mori et al. 2012]. Additional-
ly, in certain situations, attempting to understand robots’ behavior from a mental-
istic perspective is not the best strategy, and users may have to forcefully adapt 
their mental model at the expense of cognitive resources [Wiese et al. 2017].

According to Weick’s sensemaking framework, finding meanings in the social 
context of everyday life entails bringing order to the chaotic stream of both inten-
tional behaviors and unintentional events. In terms of explanations, this trans-
lates to attributing either reasons, intentions, desires, and beliefs, or natural and 
mechanical causes. According to De Graaf and Malle, intentionality is a core 
concept that allows people to explain and understand others’ behaviors [De Graaf 
and Malle 2017]. While the phenomenon has been thoroughly investigated in 
the human sciences, the concept of predicting and explaining robots’ behavior 
using the intentionality framework is an open debate. According to Bossi, “people 
may treat robots as mechanistic artifacts or may consider them to be intentional 
agents. This might result in explaining robots’ behavior as stemming from opera-
tions of the mind (intentional interpretation) or as a result of mechanistic design 
(mechanistic interpretation)” [Bossi et al. 2020, p. 1].

As we previously discussed, explanations are often sought after when users’ 
mental models of robots are challenged by unpredictable events. This includes 
situations in which users cannot understand or explain robots’ actions according 
to the mental model of robots they already possess. An implication of this inter-
pretative gap is that whatever framework (i.e., intentional or mechanistic) users 
are adopting at the time of the unexpected occurrence, their trust in the frame-
work’s prediction-making power might decrease. In other words, when something 
unexpected happens, users may be unable to provide themselves with reasons 
or causes and, hence, ask the robot with whom they are interacting for an expla-
nation. Some cases will force a complete perspective (i.e., framework) switch, 
while others will not. Importantly, according to De Graaf and Malle, robots “must 
be able to distinguish intentional from unintentional behaviors” and they “must 
be able to explain each of these classes of behavior in the expected way – unin-
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tentional behaviors with (mere) causes, intentional behaviors with reasons” [De 
Graaf and Malle 2017, p. 19].

For instance, We previously mentioned, referring to elderly people’s assis-
tance, the possibility of the robot advising the assisted person takes a rest. The 
latter may not immediately grasp the reason for the recommendation, as they are 
unaware of what the robot knows. This includes not knowing whether the recom-
mendation is genuine (i.e., based on the intention to assist the person) or based 
on a wrong premise (e.g., a malfunction). Assuming that the robot has been use-
ful and has acted in the best interest of the user up to that point, the user may be 
struggling to make sense of the recommendation within the same (i.e., intention-
al) framework and may request an explanation. Within an intentional framework, 
the robot’s explanation that its sensors have observed increased heart rate and 
heavy breathing would still make sense, as it would show the robot’s intention 
to assist the user. A similar explanation emphasizes that the user was merely 
unaware of the robot’s actual decision-making process. Accordingly, this implies 
that not every unpredictable behavior is the result of robots’ malfunctions or inter-
nal errors, which are more likely to be detected (e.g., if the robot suddenly stops 
performing its tasks), and require users’ to switch framework.

Ultimately, it could still be that a robot provides an explanation that makes 
sense (i.e., sounds plausible) within the boundaries of the framework adopted 
by the users but is built upon wrong premises [Dunne et al. 2005; Walton 2011]. 
As will be discussed in Section 5, when dealing with the structure of explanato-
ry interactions, the risk of wrong explanations going unnoticed motivates taking 
further measures. Based on the discussion in this section, we claim that robots 
must be designed to support users, by means of explanations, in adopting the 
most appropriate interaction framework. This is especially the case for the ear-
ly stages of extensive adoption of robotics in everyday contexts. Indeed, these 
times are most characterized by uncertainty in terms of both the adoption of and 
narratives built around these technologies. Furthermore, whenever necessary, 
robots should support the transition from one interpretative framework to anoth-
er. We have previously discussed how the plausibility of explanations must be 
considered a contextual joint achievement. What framework is most adequate 
for understanding an event is a contextual feature that must be treated as such. 
Hence, robots should communicate explicitly and clearly, to the greatest extent 
feasible, whether the event being explained involves unintentional causes (e.g., 
an internal failure or mistake or uncontrollable external forces) or intentional rea-
sons. In the next section, we will discuss explanation communication strategies 
that maximize the chances of users’ correct understanding and hence trust to-
ward the robots.
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5 Communicating explanations

Explanations are primarily forms of social communication [Hilton 1990]. There-
fore, addressing how robots should deliver explanations is likely the most es-
sential aspect of explanatory interactions. This section analyzes two features of 
explanation communication that constitute the core of our model. Specifically, 
we discuss our claims that to support users’ understanding and trust calibration, 
robots should:

 - Be able to use diversified means of communication.

 - Provide users with the possibility to question explanations and ask for further 
insights.

Importantly, when it comes to explainable robots, the research on the effects of 
combining the two mentioned strategies while promising is still in its early stages 
[Abdul et al. 2018; Anjomshoae et al. 2019].

5.1. Multi-modal explanation

In human-human interactions, explanations are primarily communicated through 
natural language. Generally, they should follow communication norms, such as 
‘Grice’s (four) maxims of conversation’ [Grice 1975]. They refer to communicating 
only what is confidently believed to be accurate, avoiding overwhelming amounts 
of information without being scarce, relevant to the context (i.e., a ‘good social 
explanation’ [Hellström and Bensch 2018; Miller 2019]), avoiding obscurity and 
ambiguity and being brief and orderly in presenting the information. Grice’s max-
ims are often mentioned in explainable robots and AI research because they pro-
vide an implementable solution that may improve explanation quality [Miller 2019; 
Papagni and Koeszegi 2021b]. Sheh provides further possibilities for modifying 
how explanations are communicated through natural language [Sheh 2017a]. Ac-
cording to the author, robots can modify the depth and type of explanation based 
on the needs of specific interaction instances and the availability of the robots’ 
underlying AI models. The author observes, in reference to a scenario in which 
a robotic shopping mall assistant is questioned about its product recommenda-
tions, that in similar circumstances, social robots’ explanations are expected to 
primarily satisfy users’ curiosity and support further engagement. For this reason, 
the author continues, ‘Post-Hoc’ explanations at ‘Attribute Only’ or ‘Attribute Use’ 
depths may be appropriate for the purpose [Sheh 2017a]. While the former indi-
cates explanations that are tailored solely to what the robot deems the most rel-
evant features, the latter considers the implications (i.e., ‘use’) of each attribute’s 
value. Therefore, if properly tailored, text-based explanations alone already pro-
vide various customization options.
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However, when the explanations’ goal is to maximize users’ understanding and 
trust calibration toward a robot, it is important to note that natural language only 
covers a subset of feasible communication strategies. Explanations in the form 
of ‘combined signals’ [Engle 1998], also known as ‘multi-modal’ explanations 
represent a promising but under-explored research avenue. Anjomshoae, Najjar, 
Calvaresi, and Främling discussed six possible communication modalities [An-
jomshoae et al. 2019]. Besides text-based natural language explanations, they 
identified the “visualization” (i.e., graphical) type as the second most common 
one. Logs, expressive motions, expressive lights, and speech complete the list. 
The notion behind multimodality is that, as technological devices, robots can con-
vey information through complementary modalities, sometimes even better than 
humans can. For instance, with visual explanations being the second most com-
mon after text-based ones, many robots can display on frontal screens graphic 
information gathered by their sensors, and once processed, these environmental 
data may support text to convey more complete messages. In our previous ex-
ample, the IBM’s MERA robot explained to the assisted person that its recom-
mendation to take a rest was based on factors, such as the unusually high pulse 
rate and heavy breathing. While a text-based explanation would likely suffice to 
convey the essential message, the explanation’s quality could still improve if the 
robot would provide visualizations of the actual scans of normal and abnormal 
heart activity. While HRI research on multimodality and ‘combined signals’ is still 
in its early stages, an increasing number of studies have demonstrated that users 
can benefit from multimodal explanations. The HCI community has done most 
of the research in multimodal explanations so far. Most studies effectively com-
bined verbal and visual information, showing how people preferred this format to 
‘uni-modal’ ones [Huk Park et al. 2018; Kanehira et al. 2019].

Two considerations must be made. First, the availability of alternative commu-
nication strategies should not mean that robots must display all available informa-
tion at once. Explanations should not exclude vital information, but simultaneous-
ly, they should also not overwhelm users with too much information. To this extent, 
researchers propose that, in certain cases, employing alternative single-handed 
modalities may be more beneficial to the users. For instance, referring to robots’ 
reactive planning, Theodoru, Wortham, and Bryson suggest that since robots can 
take many decisions per second, graphical explanations are more efficient and 
direct than verbal ones [Theodorou et al. 2016]. Giving self-driving systems the 
ability to employ light signaling to communicate simple messages to pedestrians, 
such as that they can cross the street safely [Faas and Baumann 2019], is an-
other example of how alternative modalities can suffice even when taken alone. 
In conclusion, while in certain cases alternative modalities may provide adequate 
information, text-based explanations are likely to remain prominent (possibly sup-
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ported by other means) because the semantic richness that can be conveyed 
through natural language is difficult to match through other means alone.

Finally, multimodality should not be unidirectional or limited to the combination 
of text-based and graphic communication. Natural language processing and im-
age recognition have improved significantly recently, allowing robots and virtual 
agents to provide progressively better answers to users’ text- or image-based 
inputs. One further possibility is that robots can ‘read’ and ‘express’ signals other 
than graphic and natural language communications. For instance, research in 
other relevant areas of robotics, such as (reading and expressing) body motion 
[Han et al. 2012; McColl and Nejat 2014] or facial expressions and gaze [Fiore 
et al. 2013; Admoni and Scassellati 2017] shows that robots can process various 
signal typologies that can make communication with humans (included explana-
tory interactions) more flexible and inclusive.

5.2. Interactive explanations

Making explanations ‘interactive’ is another promising strategy to increase robots’ 
explanations quality that requires further investigation, particularly in the field of 
social robots [Abdul et al. 2018; Papagni and Koeszegi 2021b]. This research is 
partly driven by the desire to achieve a higher degree of human likeness [Mad-
umal et al. 2018, 2019]. Indeed, explanations in robotics are often treated as 
‘single-shot’ communication acts, whereas in human-human interaction, they fre-
quently occur in the form of dialogues with back-and-forth iterations. However, 
interactivity also represents a strategy to deal with what Keil identifies as people’s 
attitude to overestimate their own understanding of explanations (i.e., the ‘illusion 
of explanatory depth’) [Keil 2003]. According to Keil, this phenomenon, which is 
related to studies from social psychology on the ‘introspection illusion’ [Pronin 
2009], consists of wrongly assessing the quality of the information one retains 
after being provided an explanation. The next paragraphs discuss our claim that, 
among other advantages, im- plementing design features that support interactiv-
ity of robots’ explanations helps mitigate this phenomenon.

A fundamental contribution to the user-friendliness of explanations’ interactivity 
is that it allows the parties involved to seek further insights to better understand 
what is being explained, and it allows questioning of both parties’ accounts. The 
implementation of ‘nested argumentation dialogues’ [Madumal et al. 2018, 2019] 
and an ‘examination phase’ into our model aims to primarily tackle this multifac-
eted aspect [Dunne et al. 2005; Walton 2006, 2011].

Introducing nested argumentation dialogues allows users to engage in mul-
tilayered explanations in which they can drift from one question to another in a 
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back-and-forth manner. This back-and-forth movement may concern the topic of 
the original question or may be about ‘spin-off’ discussions [Madumal et al. 2018, 
2019]. Often in human-human interaction, such spin-off argumentation dialogues 
are nested on top of the original explanation to support explainees by improving 
their understanding. The model proposed by Walton does not account for nested 
argumentation because the author labels overlapping dialog as an illicit dialecti-
cal shift, implying that the previous question must be considered closed [Walton 
2011]. However, to achieve interaction naturalness and support users’ sensem-
aking, robots should be able to process nested dialogs as such, leaving users 
the choice to return to the original one. Hence, to increase the human-likeness 
of explanatory interactions, our model allows users to engage in nested argu-
mentation dialogues that are both related and unrelated to the original question, 
as shown in the top right corner of Figure 1. However, introducing such internal 
loops is merely one interpretation of the concept of interactivity.

Explanations may appear logical at a first glance and yet be grounded upon in-
correct premises [Walton 2011; Dunne et al. 2005; Lakkaraju and Bastani 2020]. 
Introducing a dialectical shift in the form of an ‘examination phase’ allows users to 
analyze the explainer’s account for any inconsistencies and evaluate the quality 
of the explanation for potential errors [Dunne et al. 2005; Lamche et al. 2014]. 
To this extent, Kaur et al. highlight the propensity, even among HCI expert practi-
tioners, to over-rely on interpretability tools’ visual outputs in a study in which they 
analyze participants’ reactions to different approaches to model interpretability 
(i.e., ‘glass-box’ and ‘black-box’) To address this issue, one of their suggestions 
is to adopt ‘back-and-forth explanations’ (i.e., interactive interpretability) [Kaur et 
al. 2020].

Another possible use for an examination phase is to test the explainee’s un-
derstanding of an explanation, as suggested by Walton [Walton 2011]. Indeed, 
as previously stated, people are susceptible to the ‘illusion of explanatory depth’ 
and tend to overestimate their understanding of explanations [Keil 2003]. Sec-
tion 1 also highlighted the connections between understanding robots (and ro-
bots’ explanations) and calibrating trust in them. For these reasons, assessments 
of understanding quality are an important aspect of models for explanatory in-
teractions. This is supposed to be done by questioning the explainee about the 
explanation, the causal connections to the event being explained, and so on. 
Nevertheless, testing users’ understanding should not translate into an interroga-
tion, as this may be perceived as aggressive and have overall counterproductive 
effects on the interaction [Walton 2011]. To this extent, the authors of the model 
described in [Madumal et al. 2018, 2019] assert that such an operation is uncom-
mon in everyday human-human interactions. Instead, to keep the interaction as 
natural as possible, they consider the explainee’s affirmation of effective under-
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standing as a sufficient criterion to measure the quality of the explanation. While 
we agree that explanatory interactions should feel natural and smooth to users, 
rather than making them feel uncomfortable and jeopardizing future interactions, 
we also acknowledge a gap in the model from Madumal, Miller, Sonenberg, and 
Vetere in terms of evaluation strategies for the success of an explanation. There-
fore, we deem an ‘incremental approach’ to be the most appropriate [Papagni 
and Koeszegi 2021b]. Alternatively, after a robot provides an explanation, it may 
ask users to pick among multiple options what they understood to be the right 
explanation. To this end, we claim that testing users’ understanding must be con-
textually calibrated based on how much time and interest users are willing to 
invest. In other words, instead of being predetermined by the robot, questions 
concerning the explanation must be negotiated with users based on contextual 
affordances.

Finally, just as it occurs in human-human interaction, it is impossible to guaran-
tee the success of explanations in terms of knowledge transfer and users’ under-
standing. Despite robots’ best attempts, there will be circumstances in which us-
ers do not grasp what is being explained to them. Future research on explainable 
robots should focus on how to minimize the likelihood of such events occurring 
by refining and testing solutions, such as the ones presented in this paper, and 
implementing alternative strategies to better prevent trust losses and restore trust 
after a violation.

6 Future work and conclusions

The presence of social robots in everyday life is becoming a reality. Their suc-
cessful integration and acceptability into society depend not only on how useful 
they prove to be in terms of performance but also on how they explain their 
decisions to a broad audience of non-expert users. At the same time, this paper 
acknowledges that perfect explanations do not exist and that making robots ex-
plainable poses a multifaceted interdisciplinary challenge. To solve this problem, 
we proposed a model for explanatory interactions. This model considers import-
ant findings from social sciences as well as from research on explainable AI and 
robots and their affordances and availability in terms of explainability. Further-
more, as the key criterion to assess the quality of explanations, we proposed a 
notion of explanations’ plausibility as a joint achievement, which presupposes the 
users’ understanding of robots’ explanations.

One of the main limitations is that the type of explanation a robot can provide 
depends on the availability of the underlying algorithms and the physical capa-
bilities of individual robots. In other words, not all the features of our model may 
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be implemented in the behavioral programming of certain robots. Therefore, re-
search should focus on how to broaden the scope of both AI models’ explainabili-
ty and robots’ customization. Another limitation concerns the primarily conceptual 
nature of the work presented in this paper. This calls for follow-up experimental 
studies to test our claims and the feasibility of implementing the various features 
of our model. Such studies shall, for instance, focus on the long-term effects 
of explanations on trust formation and restoration. Likewise, the combination of 
multimodal and interactive strategies is a promising but understudied research 
avenue that may shed further light on users’ reception of explainable robots in 
terms of both trust and understandability.
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Visual and Physical Plausibility of Object Poses 
for Robotic Scene Understanding

Dominik Bauer   , Timothy Patten   , Markus Vincze

Abstract

Humans use the relations between objects in a scene to determine how they may interact with, grasp and manip-
ulate them. For robots, such an object-based scene understanding not only allows interaction with objects but also 
allows humans to interpret the robot’s perception and actions. To gain a higher-level understanding of an observed 
scene, knowledge of the objects’ poses is crucial. The poses, when combined with 3D models of the objects, allow 
for easy derivation of the interactions between objects, enabling reasoning about occlusion, collisions, support and, 
finally, manipulation by the robot. However, most related work does not consider scene-level object interactions 
but rather focuses on finding the pose of a single object in a given frame. Object interactions are considered only 
to augment training data or in post hoc verification steps. In contrast, we show that such scene-level information 
should be exploited during the estimation of the object poses themselves. Our main assumption is that all object 
hypotheses need to be plausible in terms of their visual observation and the physical scene in which they exist. In 
this chapter, we present our work on investigating the exploitation of this visual and physical plausibility for robust, 
accurate estimation and understandable explanation of object poses.

Keywords

robot vision, object pose estimation, object pose refinement, hypothesis verification, explainability

1 Introduction

The ability of a robot to explain its actions – or reasons why it might have failed 
– is an important building block for establishing and maintaining human trust 
[Lomas et al. 2012; de Graaf and Malle 2017; de Graaf et al. 2018]. For example, 
interactive explanations are an effective way to gain a deeper understanding of 
the reasoning provided [Dunne et al. 2005; Walton 2007; Arioua et al. 2017; Mad-
umal et al. 2019]. But to provide such interactive explanations, the robot must 
attain a thorough understanding of the scene it inhabits. This may include the 
scene’s objects, their location and their relationship to one another, for example 
expressed as their class, pose and spatial relations, respectively [Naseer et al. 
2018]. Moreover, such an understanding enables the robot to perform tasks, such 
as grasping and manipulating objects, in the first place [Srinivasa et al. 2010; 
Chitta et al. 2012; Tremblay et al. 2018].

We hypothesize that, for the robot to provide an effective explanation of its 
understanding of a scene and its interactions with it, it must resolve to human-un-
derstandable reasoning approaches, such as how well the robot’s understanding 
visually aligns with its camera images or how physically plausible an object’s 
pose would be in a simulation of its estimated scene. We conjecture that both the 
visual and physical plausibility of the robot’s scene understanding must be jointly 
considered and we examine their application to the object pose estimation task. 
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Figure 1 Applications of an object-based scene understanding. Left: Rendering
the objects’ models under their estimated poses allows to overlay and compare
the robot’s perception to the observed scene. Mid: Similarly, a novel view of the
observed scene may be rendered. Right: Using the estimated poses, also the
relations between the objects in the scene may be derived.

The poses, when combined with 3D models, allow the robot to manipulate the
scene and explain it in terms of objects and their relations as illustrated in Figure
1.

This chapter provides an overview of our work exploring these hypotheses. In
Section 2, we define visual plausibility through rendering and physical plausibility
through simulation or evaluation of the static equilibrium. We present two different
approaches for exploiting plausibility in object pose estimation. The methods we
propose in Section 3 only require the 3D models of the objects and augment exist-
ing pose refiners. In Section 4, we propose novel object pose refinement methods
based on reinforcement learning. These methods may jointly consider both as-
pects of plausibility that are discussed in this chapter. In Section 5, we present
reasoning strategies that exploit this information for explanations in human-robot
interaction. Finally, in Section 6, we discuss our findings and draw conclusions
for future work.

2 Defining Visual andPhysical Plausibility of Object Poses

A scene understanding represented by (semantically annotated) 3D models and
their object poses allows to derive information about the scene that can be used for
explanation and improvement of the poses themselves. For example, spatial rela-
tions between objects may be derived or a rendering of the estimated scene may
be compared to the robot’s camera image, as shown in Figure 1. Furthermore,
the latter allows a robot to determine the plausibility of its scene understanding
and subsequently explain why its actions might have succeeded or failed.
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Figure 2 An object pose estimation pipeline. Left: A known object of interest
is detected in the observed image. Mid: Using the instance segmentation mask,
a cloud of all points predicted to belong to the object is generated from the cor-
responding depth image. Right: The task is to determine the 6D pose of the 3D
model of the object such that it aligns to the observed image or point cloud.

The task of object pose estimation is to find the transformation T that aligns a
3D model of the object with its observation, as illustrated in Figure 2. We need to
estimate this transformation by T̂ = [R̂ ∈ SO(3), t̂ ∈ R3], i.e., a rotation R̂ and a
translation t̂.

Figure 3 Challenges in object pose estimation. Left: Limited visibility, noise and
inaccurate segmentation result in inaccurate pose estimates. Mid: The physical
object relations in the estimated scenes violate the assumptions of plausible, static
scenes. Right: Considering all scene-level interactions of multiple object under
multiple (inaccurate) pose hypotheses quickly grows intractable.

The observation may be in the form of RGB or depth images. It is therefore
only a partial and noise afflicted view of the object due to limited visibility from a
single view and sensor limitations, as shown in Figure 3 (left). This problem is
exacerbated in cluttered scenes and affects all parts of the perception pipeline –
from detection, to segmentation and pose estimation. As a result, we might end up
with multiple inaccurate pose hypotheses, as illustrated in Figure 3 (right). On the
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one hand, to prevent failure, we want to verify and select the best available object
pose before executing any robotic actions. On the other hand, we want to be able
to explain why the robot selects a certain pose or why it decides that the pose is
sufficiently accurate to base its interactions on it. In this section, we propose two
approaches to this, based on visual alignment and physical plausibility.

2.1 Rendering-based Visual Plausibility

Object pose estimation and evaluation thereof are commonly based on the align-
ment of a 3D object model [Hodaň et al. 2020]. The Average Distance of Model
Points (ADD) [Hinterstoisser et al. 2012] is the most used metric in related work. It
measures the mean distance between corresponding model points x ∈ X under
estimated pose T̂ and ground-truth pose T , or formally

ADD = avgx∈X ||T̂ x− Tx||2. (1)

In contrast, the Visual Surface Discrepancy (VSD) [Hodaň et al. 2016, 2018], con-
siders the discrepancy between the rendered depth images of the object under
estimated pose Îd(T̂ ) and ground-truth pose Îd(T ) by

V SD = avgp∈V (T̂ )∪V (T )

0, if p ∈ V (T̂ ) ∩ V (T ) and ∆(p) < τ,

1, otherwise.
(2)

The visibility under a given pose V is computed with respect to the observed depth
image Id and ∆(p) is the absolute difference between the rendered images at a
pixel p.

Figure 4 Example of the visual-alignment score. The observed depth and sur-
face normals (left) are compared to the rendered objects under estimated pose
(right). The resulting score for different sets of pose hypotheses (columns) is
visualized below, where a more yellow color indicates better alignment with the
observation. Adapted from [Bauer et al. 2022].
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When estimating the pose of an object, the ground-truth pose is unknown and
thus these metrics cannot be used to measure the quality of the pose estimate.
Building on the idea of VSD, however, we suggest that the rendered view of a
scene should be compared to the observation (i.e., the robot’s camera view), as it
can be considered a noisy version of the rendered object under the ground-truth
pose T . If both align, we consider the estimate to be visually plausible. We define
the visual-alignment score ā in [Bauer et al. 2020c] that quantifies the average
alignment between the object in the observed and rendered depth and normal
images under the estimated pose T̂ . As illustrated in Figure 4, ā is computed over
all pixels with valid depth values, defined as V = Id > 0 ∪ Îd(T̂ ) > 0, by

ā =
1

2

(
avgp∈V ad(p) + avgp∈V an(p)

)
, (3)

with depth-based alignment ad and normal-based alignment an per pixel p defined
as

ad(p) =

1− |d−d̂|
τ , if |d− d̂| < τ

0, otherwise
(4)

an(p) =

1− 1−n·n̂
α , if 1− n · n̂ < α

0, otherwise,
(5)

where d ∈ Id is the depth value and n ∈ In is the corresponding normal at pixel p
in the observation. The corresponding values in the rendered image are denoted
by d̂ ∈ Îd(T̂ ) and n̂ ∈ În(T̂ ). The parameters τ and α limit the maximal admissible
discrepancy.

2.2 Contact- and Simulation-based Physical Plausibility

Visual alignment alone may result in ambiguity under partial observability. We
suggest that physical plausibility is able to resolve visually ambiguous cases. We
define the physical plausibility of a scene as the combination of feasibility (non-
intersecting, non-floating) and static stability of the objects therein, as illustrated
in Figure 5.

Contact-based Formulation: We define these conditions based on two sets
of critical points in [Bauer et al. 2020a], the intersecting points I and the contact
points C. These point sets depend on the signed distance δ between the object of
interest and the scene. δ is computed for uniformly random sampled points X̂ on
the surface of the model X under an estimated pose T̂ . We compute these point
sets with respect to a slack variable ε, accounting for inaccuracy due to the mesh
representation and random sampling.
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Figure 5 Definition of physical plausibility based on critical points for a single
object (left) and a scene (right). If feasible, the center of mass projected in gravity
direction must intersect the support polygon (convex hull of supported points) to
be considered stable. Reprinted from [Bauer et al. 2022].

Intersecting points lie inside the scene objects’ surface and contact points are
within a small distance from them. Formally, we define

I = {x̂ ∈ X̂ : δ(x̂) < −ε}, (6)

C = {x̂ ∈ X̂ : |δ(x̂)| < ε}. (7)

Based on these point sets we define an object to be

not floating, if |C| > 0, (8)

not intersecting, if |I| = 0 (9)

and feasible, if both conditions are satisfied.

Additionally, we consider the stability of the object, i.e., we determine whether
it would be in static equilibrium (SE) under the estimated pose T̂ . To be in SE
[Del Prete et al. 2016; Hauser et al. 2018], the object must satisfy the conditions
of

force balance
∑
i

fi + fext =
∑
i

fi +mg = 0, (10)

torque balance
∑
i

(cm − x̂i)× fi = 0 and (11)

admissible contact force fi ∈ K, (12)

where m is the mass of the object, cm its center of mass, fi is the contact force at
contact point x̂i ∈ C and K is a friction cone.

The stability constraints may be approximated using the “support polygon prin-
ciple” [Or and Rimon 2010]. The support polygon is defined as the convex hull of
the projection of the contact points C onto the supporting plane. If the projection
of the center of mass falls within the support polygon, the object is considered to
be in SE [Or and Rimon 2010; McGhee and Frank 1968].
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In static cluttered scenes (where gravity is the only external force acting upon
objects), certain contact points of an object may not provide support in the gravity
direction. Thus, they may result in an overestimation of its static stability, as the
support polygon is enlarged by those contacts. Hence, as a compromise between
the simplicity of the support polygon principle and the accuracy of solving for con-
ditions (10)–(12), we consider the support polygon with respect to the supported
points defined [Bauer et al. 2022] as

S = {x̂ ∈ C :
ny(x̂) · g

||ny(x̂)|| ||g|| < 0}, (13)

where y(x̂) is the closest point to x̂ in the scene and ny(x̂) is its surface normal.
Therefore, only the subset of contacts is considered onto which a force may be
exerted in gravity direction g. See Section 4.2 for an application of this contact-
based definition.

Simulation-based Formulation: Instead of evaluating physical plausibility
based on contact points, we may also initialize the estimated scene in a physics
simulation and evaluate its dynamic progression over time. Intuitively, a plausible
configuration of a static scene should not be subject to any change due to gravity
in the simulation. Since the 3D models used in the simulation and their physi-
cal parameters are inherently approximates of the real objects, we will observe
at least slight displacement. Hence, rather than determining whether an object
moved within the simulation, we want to determine by how much it moved over a
(varying) period of time. To determine a stable pose, for example, we may want
to simulate until the object no longer moves. In the simulation, resolving intersec-
tions typically generates an impulse that displaces the involved objects, causing
the scene to “explode” in the worst case. To deal with estimated poses that result
in intersecting objects, we might only simulate for a few steps at a time before
setting the objects’ velocities back to 0 again. See Section 3 for an application of
this simulation-based definition.

3 Enforcing Plausibility through Rendering and Simula-
tion

To consider new objects, the methods presented in this section only require 3D
models through using rendering and physics simulation . The proposed ap-
proaches enforce plausibility, exploit it to limit the search space given multiple
pose hypotheses and improve initial poses. In Section 3.1, we present a simple
approach for exploiting simulation for pose estimation. In Section 3.2, we present
an integrated approach for improving refinement and augmenting it by verification.
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3.1 Stable Object Pose Estimation

A simple proof-of-concept pose estimator [Bauer et al. 2020b] demonstrates the
predictive power of considering plausibility for this task. It assumes only approxi-
mate object meshes and segmentation masks to be given; no additional training
is required for pose estimation. This allows us to consider novel instances more
easily than with end-to-end trained estimators. We derive a small set of physi-
cally plausible poses per object through physics simulation and clustering. Using
the visual-alignment score, we are able to determine the visually most plausible
candidate.

Figure 6 Stable object poses. Top to bottom: The real object, QSE [Goldberg
et al. 1999] and our approach for isolated objects (ours). Multiple representatives
of the same stable pose are transparently overlayed for QSE and ours. Reprinted
from [Bauer et al. 2020a].

To determine the stable poses of an object, it is initialized under a uniformly
random rotation in a physics simulator and dropped onto a plane. This assump-
tion is motivated by the observation that objects in static scenes typically rest on
horizontal planes, such as tables or shelves. Alternatively, more complex simu-
lation scenes may be used for this purpose. Once the simulated object no longer
moves, it has reached a stable pose. This process is repeated multiple times to
sample a large number of potential stable poses. However, the resulting poses
are highly redundant. First, multiple poses represent the same stable pose, albeit
under in-plane rotation. Second, the object resting on different neighboring faces
of the locally planar 3D model introduces a slight pose variance. To prune these
superfluous poses, we discard in-plane rotation and cluster potential stable poses
based on their angular distance. Each resulting stable pose represents the mean
rotation and z-translation per cluster, with the plane normal defining the z-axis.
Figure 6 shows a a comparison with the related probabilistic quasi-stable estima-
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tion (QSE) approach [Goldberg et al. 1999] and real-world observations. While
both our approach and QSE are able to reliably find all stable poses of an object
resting on a horizontal plane, ours leverages a more general simulation-based ap-
proach. This would allow us to consider geometrically more complex simulation
scenes or further physical properties of the object, beyond its shape and center
of mass as in QSE.

To determine the pose of this object in an observation, we generate a pool of
stable pose hypotheses by uniformly sampling in-plane rotations for each stable
pose. Note that these hypotheses are inherently physically plausible for planar
support. Given a segmented depth observation of the object, we may moreover
estimate its in-plane translation as an offset from the rendered hypothesis. Among
this pool of physically-plausible pose hypotheses, we need to find the visually most
plausible pose. This is achieved by computing the visual-alignment score (3) for
each hypothesis.

simulation
C̃1 C̃2 C̃3 C̃4

vi
su

al

Õ1 51.5 50.8 48.3 49.1
Õ2 51.6 50.7 48.4 49.0
Õ3 51.4 50.4 47.8 48.4
Õ4 48.9 48.6 45.2 44.5

Table 1 Influence of approximate object meshes on the visual-alignment score
and simulation-based hypotheses generation. Results indicate the AR metric on
Occluded LINEMOD.

Figure 7 Approximate duck models Õi with 704, 352, 70 and 34 faces and the
convex hull C̃ of the full-resolution mesh Õ. Reprinted from [Bauer et al. 2020b].

This simple approach achieves competitive pose accuracy on LINEMOD [Hin-
terstoisser et al. 2012] and Occluded LINEMOD [Brachmann et al. 2016], while
also offering a general method to consider novel objects for pose estimation as it
only depends on non-textured object meshes. To highlight the robustness of this
approach, Table 1 shows our results on the Occluded LINEMOD dataset [Brach-
mann et al. 2016] using approximations of the object meshes as shown in Figure 7.
We evaluate the impact of using the decimated meshes Õi on the visual-alignment
score (3) and the influence of using their convex hulls C̃i for the simulation-based
stable pose generation. The decimated meshes are generated in Blender using
the decimate-collapse operation. The reported Average Recall (AR) [Hodaň et al.
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2020] is computed using the full-resolution object mesh and thus is solely depen-
dent on the accuracy of the estimated pose. As shown per column in Table 1, our
hypothesis scoring approach is highly robust to the decimated meshes, producing
similarly accurate poses using the first three approximations. Shown per row, the
stable pose hypotheses generated using our approach become increasingly in-
accurate when the approximated resting shapes deviate farther from the original
shape, i.e., with approximations C̃3 and C̃4.

3.2 Integrated Object Pose Refinement and Verification

An important step in object pose estimation pipelines is pose refinement. In pipe-
lines yielding multiple pose hypotheses, the best hypothesis must be selected
through pose scoring. Moreover, we want to verify the plausibility of the estimated
object pose when using it for robotic manipulation, leveraging the pose scoring.
With VeREFINE [Bauer et al. 2020c], we integrate iterative refinement, physics
simulation and visual-alignment scoring in a joint optimization. We evaluate this
approach on pose estimation datasets and in real-world grasping experiments.

(a) Initial pose estimates in the sim-
ulation environment (top) are im-
proved using VeREFINE (mid, bot-
tom), enabling successful robotic
grasping.

(b) PIR: Integration of physics simu-
lation (SIM) and iterative refinement
(REF). SIR: Supervision using veri-
fication score ā. RIR: Regret mini-
mization.

Figure 8 Grasping YCB objects with a Toyota HSR (a) and the iterative ap-
proaches proposed in VeREFINE (b), given an initial object pose estimate (T̂cur).
Adapted from [Bauer et al. 2020c].

During refinement, we would like both discussed aspects of plausibility to in-
form one another. We achieve this by interleaving physics simulation steps with
iterative refinement steps, as illustrated in Figure 8b (Physics-guided Iterative Re-
finement, PIR). Thereby, simulation guides refinement towards physically more
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plausible poses, while alignment-based refinement improves visual plausibility.
Both steps work complementary, improving each other’s initialization.

However, either step might diverge, for example, due to bad initialization. The
simulated object might topple over and move away from its true pose. Local refine-
ment may determine incorrect correspondences and move toward a false pose.
To contain these issues, we embed the visual-alignment score (3) in the refine-
ment loop, as shown in Figure 8b (Supervised Iterative Refinement, SIR). Note
that this also facilitates pose verification.

Generally, we might have to refine more than one object pose hypothesis. For
example, with the pose estimator proposed in Section 3.1, multiple in-plane hy-
potheses need to be considered per stable pose hypothesis. With a growing
number of hypotheses, simply refining and scoring all of them becomes com-
putationally expensive. Rather, we want to spend a fixed budget of refinement
iterations. We propose to consider the efficient allocation of the refinement bud-
get as a multi-armed bandit problem. To minimize the regret of choosing to refine
a sub-optimal hypothesis with respect to its visual-alignment score, we employ the
Upper Confidence Bound policy (UCB) [Auer et al. 2002], as shown in Figure 8b
(Regret-minimizing Iterative Refinement, RIR). The policy balances exploitation
of high-scoring hypotheses with exploration of alternative, potentially better hy-
potheses.

We extend our approach to multiple objects per scene, considering the scene-
level interactions of objects. We cluster scene objects based on their support
relationships, with each cluster starting from a base object in contact with the
supporting plane. The clusters are then ordered from front to back, i.e., starting
from the least occluded base object. To yield physically plausible configurations,
we iteratively add objects from the ordered clusters to the simulated scene during
refinement. Each object’s pose hypotheses are refined as before, albeit consider-
ing the visual plausibility of the whole scene. The highest scoring hypothesis per
object is added to the simulation scene used for the subsequent objects, allowing
the consideration of occlusions and support relationships between them.

Table 2 shows the results of the different single- and multi-hypotheses ap-
proaches we propose in VeREFINE [Bauer et al. 2020c] on the YCB-Video dataset
[Xiang et al. 2018]. The dataset contains scenes of 3-6 YCB objects [Calli et al.
2015], that are occluded and stacked upon each other in clutter. Initial pose hy-
potheses are generated using DenseFusion (DF) [Wang et al. 2019] and its asso-
ciated refinement network (DF-R) is used as implementation of REF (see Figure
8b). Figure 9 depicts an ablation study to show the influence of the initial rotation
and translation error as wel as the impact of partial depth data. For these
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AR #ref/obj
DF-R 73.9 2
PIR 74.7 2
SIR 76.5 2
VFb 77.6 10
VFd 77.8 10

(a) Comparison on
YCB-VIDEO.

mustard spam foam jello banana success found #ref/obj
DF-R 10 3 1 7 0 42% 46% 2
SIR 9 7 2 7 0 50% 70% 2
DF-R 10 6 5 9 1 62% 70% 10
MCTS 9 10 2 6 0 54% 78% 10
RIR 10 10 9 10 4 86% 90% 10

(b) Results of grasping experiments in percentage of
found collision-free grasp poses and successful grasp at-
tempts.

Table 2 Evaluation of the methods in VeREFINE [Bauer et al. 2020c] (bold).
Initial poses from DenseFusion [Wang et al. 2019], sampled to 1/5 hypotheses
per object and refined with a budget of two refinement iterations per hypothesis
and object for a total of 2/10 iterations.

experiments, the initial poses are generated by adding a uniformly random error
of varying magnitude on top of the ground-truth poses.
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DF-R
PhysAfter
PhysBefore
PIR
SIR

SIR
EVEN
EXPL
RIR

(a) Using single hypotheses (top) and five hy-
potheses (bottom). EVEN and EXPL use our ver-
ification score to determine the best estimate and
PIR for refinement. PhysBefore and PhysAfter
apply simulation before and after refinement.
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PIR
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(b)Robustness to missing
depth values using a sin-
gle hypothesis with a fixed
error magnitude of 5mm
and 5deg.

Figure 9 Ablations on LM. Average Recall (AR) [Hodaň et al. 2020] values are
reported at 5mm/deg steps (a) and every 10% (b), respectively, and are linearly
interpolated in between. Adapted from [Bauer et al. 2020c].

The integration of physics simulation in the iterative refinement loop (PIR) im-
proves the achieved accuracy by providing better initialization in each step. In Fig-
ure 9a (top left) we see how alternative ways of combining simulation with refine-
ment may even reduce the performance. The use of the visual-alignment score
(SIR) significantly improves accuracy, as indicated in Table 2a. It also improves
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the robustness to partial depth data, as shown in Figure 9b. Our motivation for us-
ing a multi-armed bandit formulation for considering multiple hypotheses (RIR) is
to balance exploration of the different hypotheses with exploitation of known high-
scoring hypotheses. In the extreme case, the former would spend the budget
of refinement iterations evenly among hypotheses (EVEN), while the latter would
use it to refine a single hypothesis (EXPL). Figure 9a (bottom row) shows the
benefit of using multiple hypotheses and our regret-minimizing approach. These
findings also transfer to real-world grasping experiments with a Toyota HSR and
using the GRASPA layouts [Bottarel et al. 2020] for reproducibility, illustrated in
Figure 8a. As indicated by the results in Table 2b, both our single hypothesis
(SIR) and multi-hypothesis approaches (RIR) significantly improve grasp success
compared to the baseline refiner (DF-R) and a competing approach that uses a
combination of physics simulation and refinement in a Monte Carlo tree search
(MCTS) scheme [Mitash et al. 2018].

4 Enforcing Plausibility in Learning-based Approaches

The methods presented in Section 3 consider the visual and physical aspects of
plausibility separately. For example, in Section 3.2, enforcing physical plausibil-
ity through simulation competes with enforcing visual plausibility through iterative
refinement, illustrated by the experiments in Figure 9a (top). Instead, the influ-
ence of both plausibility aspects should be dynamically adapted depending on
the scene configuration and refinement state. We want to leverage the contact-
based constraints (8)–(12) directly for refinement. This motivates the design of a
learning-based, plausible pose refinement approach.

4.1 Reinforced Point Cloud Registration

As the first step in this direction, we propose a novel approach to the related task
of point cloud registration [Bauer et al. 2021]. We pose the iterative registration
task as determining a policy that selects basic registration actions in each step, as
illustrated in Figure 10. Inspired by [Shao et al. 2020], we use discrete steps per
axis, separately for rotation and translation. These actions, for example, translate
the source by a small offset in x direction. Our registration agent (ReAgent) is
trained using imitation and reinforcement learning. Its formulation allows the in-
corporation of additional constraints – such as physical plausibility – by including
them in the agent’s reward.
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Figure 10 Iterative registration using ReAgent. The source point cloud (cyan) is
aligned to the target point cloud (gray), starting from an initial source (magenta).
ReAgent follows policy π by taking action ai = arg maxa π(a|Oi) given the current
observation Oi, improving registration step-by-step. Reprinted from [Bauer et al.
2021].

Source
X‘i

Observation
Oi

Embedding
ф(Oi)

Action and Value Heads
π(Si), v

^(Si)

πR(Si)

πt(Si)

Rotation Step
Ri

State Vector
Si

Translation Step
ti

v^(Si)

Source
X‘i+1

Target
Y

Reward
ri

repeat
for n
steps

Step: New Observation and Reward
Oi+1, ri

ф(Y)

ф(X‘i)

shared

once

accumulate

Figure 11 Architecture overview for one iteration of ReAgent. Reprinted from
[Bauer et al. 2021].

The agent is implemented as a neural network, illustrated in Figure 11. The ob-
served point clouds are embedded into a state space to reduce their dimension-
ality. The embedding uses a siamese PointNet-like architecture [Qi et al. 2017],
generating a global feature that represents each point cloud. Two policy heads
then predict the discrete distribution representing the policies for the rotation and
translation action to be selected next. This process is also visualized in Figure 10
(bottom).

Since jointly learning the embedding and the registration policies from scratch
using reinforcement learning (RL) might not converge (quickly), we opt for a hy-
brid training approach that also includes imitation learning (IL). Through IL, the
agent should learn to replicate the behavior of an expert. We define an expert
registration policy with perfect information (ground-truth transformation T ) and,
in each iteration, selects the actions that take the largest step toward alignment.
Additionally, the agent is reinforced by a symmetry-aware point-cloud alignment
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reward. The resulting loss is a combination of a cross-entropy loss for IL and the
Proximal Policy Optimization (PPO) loss [Schulman et al. 2017] for RL.

PoseCNN DeepIM Multi-ICP ReAgent (IL) ReAgent (IL+RL)
AD < 0.10d (↑) 62.8 88.6 92.1 98.7 98.7
AD < 0.05d (↑) 26.9 69.2 68.6 90.6 91.1
AD < 0.02d (↑) 3.3 30.9 19.0 38.8 39.6

Table 3 Comparison of object pose refinement methods on LINEMOD (mean
over per-class results) using PoseCNN [Xiang et al. 2018] for initial object pose
and segmentation.

Figure 12 Qualitative examples on LINEMOD using ReAgent (IL+RL). In the
top row, 1024 points are sampled within the estimated segmentation mask. The
black box indicates the zoomed-in view. Outlines are shown for target (gray),
initial (magenta) and current source pose (cyan). The last column shows a failure
case. Reprinted from [Bauer et al. 2021].

In [Bauer et al. 2021], we show that our lightweight approach achieves faster in-
ference as well as improved accuracy and robustness to noise and initialization as
compared to related learning-based approaches on ModelNet40 [Wu et al. 2015]
and ScanObjectNN [Uy et al. 2019]. Experiments on LINEMOD [Hinterstoisser
et al. 2012], moreover, show high accuracy when applying ReAgent to the pose
refinement task. Table 3 shows the comparison of our method to DeepIM [Li et al.
2018] and a rendering-based multi-hypothesis approach (Multi-ICP) [Xiang et al.
2018], employing initial poses and segmentation mask estimated using PoseCNN
[Xiang et al. 2018]. When applied to the pose refinement task, our point cloud reg-
istration method achieves state-of-the-art performance on the LINEMOD dataset.
The results obtained with tighter AD thresholds indicate the benefit of the com-
bined IL and RL approach. Furthermore, Figure 12 illustrates the sampling of
the source point cloud and qualitative examples of the accuracy of our ReAgent
approach.

95



Dominik Bauer, Timothy Patten, Markus Vincze

4.2 Reinforced Object Pose Refinement and Verification

When we apply the method from Section 4.1 (ReAgent) to cluttered scenes such
as the ones observed in the YCB-Video dataset, we must cope with partial point
clouds that may contain outliers from neighboring objects due to occlusion and
inaccurate segmentation. Additionally, the initial pose estimates are affected by
these challenges and are, in general, less accurate than in the single object case
previously evaluated.

As we suggested in Section 2.2, additional consideration of physical plausibility
allows us to resolve the resulting visual ambiguities. To this end, for SporeAgent
[Bauer et al. 2022], we integrate our contact-based formulation from [Bauer et al.
2020a] with ReAgent. We modify it further to consider object symmetries, outlier
points and visual-alignment scores. As a result, a learning-based approach similar
to VeREFINE [Bauer et al. 2020c] (Section 3.2) is achieved that jointly considers
both aspects of plausibility.

Figure 13 Initial scene representation (left) and refined poses using SporeAgent
(mid and right). The critical points for one target object (gray) are shown – inter-
secting (red), contact (green) and supported (cyan). Adapted from [Bauer et al.
2022].

Physical plausibility is considered at two points in the refinement pipeline. First,
we define an additional reward term that reinforces the agent to reach SE, approx-
imated using the support polygon principle for the supported points S (as defined
in Section 2.2). Second, we discover that the surface distance δ(x̂) is a useful
input signal for the agent. It provides the underlying information required to de-
termine the SE and, in addition, orients the object within the scene by including
the distance to the supporting plane. As illustrated in Figure 13, these extensions
allow the agent to resolve implausible configurations.

Visual plausibility with respect to the point clouds is already considered by the
refinement itself. Additionally, to evaluate the iterative results, we leverage the
visual-alignment score (3). Thereby, we are able to determine the overall most
plausible (and accurate) object poses. This reduces the effect of the agent oscil-
lating between two similarly fitting poses for fine alignment, as we observed in our
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experiments, and allows to resort to the initial pose should the refinement diverge.
Figure 4 shows a qualitative example for scoring.

To further adapt the method to the task of object pose refinement in clutter, we
introduce an outlier-removal subnetwork. Based on a concatenation of local and
global features, this subnetwork is tasked with labeling geometrical outliers and is
trained under an artificial segmentation error. The latter is an input augmentation
that samples a coherent patch from the ground-truth segmentation mask, simulat-
ing occlusion and potentially including background pixels. The outlier predictions
prune these geometrical outliers before the computation of the global feature used
in the state vector (see Figure 11). Moreover, we adapt the expert policy to con-
sider symmetrical objects by following the shortest trajectory to any symmetrical
pose. To this end, we propose a canonical object frame in which the symmetry
axes coincide with the origin, allowing symmetrical poses to be reduced to rota-
tions. As a result, the symmetry-aware expert policy tends toward the symmetrical
pose with minimal rotation from the current pose estimate.

PoseCNN ICC-ICP P2Pl-ICP w/ VeREFINE Multi-ICP SporeAgent
ADD AUC (↑) 51.5 67.5 68.2 70.1 77.4 79.0
AD AUC (↑) 61.3 77.0 79.2 81.0 86.6 88.8
ADI AUC (↑) 75.2 85.6 87.8 88.8 92.6 93.6

Table 4 Comparison of depth-based refinement methods on YCB-VIDEO (mean
over per-class results) using PoseCNN [Xiang et al. 2018] for initial object pose
and segmentation.

Table 4 shows the improved accuracy of SporeAgent compared to related depth-
based refinement methods on YCB-Video [Xiang et al. 2018]. All compared meth-
ods use initial poses and segmentation masks estimated using PoseCNN [Xiang
et al. 2018]. We compare our method to Iterative Collision Check with ICP (ICC-
ICP) [Wada et al. 2020], vanilla Point-to-Plane ICP (P2Pl-ICP) [Chen and Medioni
1992; Zhou et al. 2018], P2Pl-ICP augmented by single-hypothesis VeREFINE
[Bauer et al. 2020c] and a rendering-based multi-hypothesis approach (Multi-ICP)
[Xiang et al. 2018]. While VeREFINE is able to significantly improve the results of
the simple ICP approach by combining physics simulation with visual-alignment
scoring, it is still inherently limited by the performance of the underlying refinement
approach. In contrast, SporeAgent is able to exploit both sources of information
to achieve state-of-the-art accuracy.

Figure 14a shows the training convergence of SporeAgent for five different ran-
dom seeds on LINEMOD. For all evaluated thresholds, there is minimal variation
in the recall beyond 50 epochs. Figure 14b shows an ablation study that highlights
the robustness of SporeAgent to the quality of the initialization. For example, in
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Figure 14 Ablations on LM. AD recalls with thresholds as fraction of the object
diameter d [Hinterstoisser et al. 2012]. Reprinted from [Bauer et al. 2022].

the case of a translation error, the accuracy starts to decline only at a magnitude
of around 2.0 units, which is limited by the number of iterations and the largest
translation-step size.

5 Explaining Plausibility Violations

The consideration of plausibility offers not only a technical advantage but also sup-
ports users’ understanding of the robot’s perception and actions, thereby fostering
trust. In [Papagni et al. 2021], we investigate how human interaction partners per-
ceive plausibility-based explanations of robotic failure. Our proposed online study
evaluates the impact of different explanation strategies on users’ understanding
of the robot and their trust in it after the interaction.

Participants in the study are instructed to assist a robot in locating and removing
objects from a table, as shown in Figure 15 (top left). They are informed that their
human-robot team may earn up to eight points in this task, one per object. This is
to give the participants “something at stake” in the interaction. They are given a
description of the next object to be be removed and are requested to provide the
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Figure 15 Rendered interaction from the view of the participants (top left) and
the robot (bottom left). Example textual explanations are shown together with
visualizations of uncertainty (top right), visual plausibility (mid right) and physical
plausibility (bottom right). Adapted from [Papagni et al. 2021].

robot with an initial location. While hovering the cursor over the correct object, a
circle indicates the corresponding location area. As a result, we aim to increase
the perceived involvement of the participants in this human-robot interaction. After
providing a location, they are shown rendered videos of the robot performing its
task. Initially, robot (and hence the team) succeeds twice.

The third grasp attempt of the robot fails and the participants are shown differ-
ent types of explanations, depending on the experimental condition to which they
are assigned, as shown in Figure 15 (right). In a 2-by-2 study design, we modify
the interactivity (single-shot or multiple levels) and the reasoning strategy (visual
alignment of the rendering or displacement in the physics simulation) of the pro-
vided explanation. Participants then report their understanding of the explanation
and answer short questionnaires regarding trust.

A technical pilot study has already highlighted the importance of the design of
the visual explanations. Based on the findings of a currently ongoing user study,
we will be able to further improve the visualizations and explanations provided by
our object pose estimation approaches for deployment in human-robot interaction
scenarios.
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6 Conclusion and Future Work

This chapter discussed our definition of visual and physical plausibility, its techni-
cal benefit in object pose estimation and robotic grasping as well as its application
in generating understandable explanations for human-robot interaction.

We showed that, by jointly considering these two aspects of plausibility, we are
able to achieve increased pose accuracy in situations when each aspect alone
would be ambiguous. We propose a set of object pose estimation and refinement
approaches that are solely based on the 3D model of the objects and may be
directly used to augment existing pipelines. Further exploiting the combined visual
and physical plausibility information, we present a learning-based pose refinement
method that considers the intersecting and supported points between interacting
objects. Finally, we give an outlook on ongoing work investigating the exploitation
of the plausibility information computed by our approaches to generate human-
understandable explanations of robotic failure.

Nevertheless, many of the objects that robots have to deal with are not yet
covered by the rigidity and static-scene assumptions of the proposed methods.
Dealing with articulated (or even deformable) objects, potentially being manipu-
lated by a human hand or robotic gripper and exposing high intra-class variance
in texture and shape, is beyond the scope of this work. To this end, the visual
plausibility considerations could be extended to include color information to deal
with texture, thereby increasing the robustness of the methods to partial depth
data. Considering, for example, hand-object contacts would allow the physical
plausibility definition to be extended to these dynamic cases. Moreover, a robotic
prototype that employs the presented methods to generate a scene explanation
and the corresponding explanations of its actions (and failures) would allow for fur-
ther evaluation of our approach in the ever-changing environments that the robots’
human interaction partners inhabit.

Bibliography
Abdallah Arioua, Patrice Buche, and Madalina Croitoru. 2017. Explanatory dialogues with

argumentative faculties over inconsistent knowledge bases. Expert Systems with Appli-
cations 80 (2017), 244–262.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning 47, 2-3 (2002), 235–256.

Dominik Bauer, Timothy Patten, and Markus Vincze. 2020a. Physical Plausibility of 6D
Pose Estimates in Scenes of Static Rigid Objects. European Conference on Computer
Vision Workshops, 648–662.

100



101

Visual and Physical Plausibility of Object Poses for Robotic Scene Understanding

Dominik Bauer, Timothy Patten, and Markus Vincze. 2020b. Scene Explanation through 
Verification of Stable Object Poses. ICRA 2020 Workshop on Perception, Action, 
Learning.

Dominik Bauer, Timothy Patten, and Markus Vincze. 2020c. VeREFINE: Integrating object 
pose verifi  cation with physics guided iterative refinement. IEEE Robotics and Automa-
tion Letters 5, 3, 4289–4296.

Dominik Bauer, Timothy Patten, and Markus Vincze. 2021. ReAgent: Point Cloud Regis-
tration using Imitation and Reinforcement Learning. IEEE/CVF Conference on Comput-
er Vision and Pattern Recognition, 14586–14594.

Dominik Bauer, Timothy Patten, and Markus Vincze. 2022. SporeAgent: Reinforced 
Scene level Plausibility for Object Pose Refinement. IEEE Winter Conference on Appli-
cations of Computer Vision, 654–662.

 Fabrizio Bottarel, Giulia Vezzani, Ugo Pattacini, and Lorenzo Natale. 2020. GRASPA 1.0: 
GRASPA is a robot arm grasping performance benchmark. IEEE Robotics and Automa-
tion Letters 5, 2 (2020), 836–843.

Eric Brachmann, Frank Michel, Alexander Krull, Michael Ying Yang, Stefan Gumhold, et al. 
2016. Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb im-
age. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3364–3372.

Berk Calli, Aaron Walsman, Arjun Singh, Siddhartha Srinivasa, Pieter Abbeel, and Aaron 
M Dollar. 2015. Benchmarking in manipulation research: Using the Yale-CMU-Berkeley 
object and model set. IEEE Robotics and Automation Magazine 22, 3 (2015), 36–52.

Yang Chen and Gérard Medioni. 1992. Object modelling by registration of multiple range 
images. Image and Visual Computing 10, 3 (1992), 145–155.

Sachin Chitta, E Gil Jones, Matei Ciocarlie, and Kaijen Hsiao. 2012. Mobile manipulation 
in unstructured environments: Perception, planning, and execution. IEEE Robotics and 
Automation Magazine 19, 2 (2012), 58–71.

Maartje MA de Graaf and Bertram F Malle. 2017. How people explain action (and autono-
mous intelligent systems should too). AAAI Fall Symposium Series.

Maartje MA de Graaf, Bertram F Malle, Anca Dragan, and Tom Ziemke. 2018. Explainable 
robotic systems. Companion of the ACM/IEEE International Conference on Human-
Robot Interaction, 387–388.

Andrea Del Prete, Steve Tonneau, and Nicolas Mansard. 2016. Fast algorithms to test 
robust static equilibrium for legged robots. International Conference on Robotics and 
Automation, 1601–1607.

Paul E Dunne, Sylvie Doutre, and Trevor Bench-Capon. 2005. Discovering inconsistency 
through examination dialogues. International Joint Conference on Artificial Intelligence, 
1680–1681.

Ken Goldberg, Brian V Mirtich, Yan Zhuang, John Craig, Brian R Carlisle, and John Canny. 
1999. Part pose statistics: Estimators and experiments. IEEE Transactions on Robotics 
and Automation 15, 5 (1999), 849–857.

Kris Hauser, Shiquan Wang, and Mark R Cutkosky. 2018. Efficient equilibrium testing un-
der adhesion and anisotropy using empirical contact force models. IEEE Transactions 
on Robotics 34, 5 (2018), 1157–1169.

Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Stefan Holzer, Gary Bradski, Kurt 
Konolige, and Nassir Navab. 2012. Model based training, detection and pose estima-



102

Dominik Bauer, Timothy Patten, Markus Vincze

tion of textureless 3d objects in heavily cluttered scenes. Asian Conference on Com-
puter Vision, 548–562.

Tomáš Hodaň, Jiří Matas, and Štěpán Obdržálek. 2016. On evaluation of 6D object pose 
estimation. European Conference on Computer Vision, 606–619.

Tomáš Hodaň, Frank Michel, Eric Brachmann, Wadim Kehl, Anders GlentBuch, Dirk Kraft, 
Bertram Drost, Joel Vidal, Stephan Ihrke, Xenophon Zabulis, et al. 2018. BOP: Bench-
mark for 6D object pose estimation. European Conference on Computer Vision, 19–34.

Tomáš Hodaň, Martin Sundermeyer, Bertram Drost, Yann Labbé, Eric Brachmann, Frank 
Michel, Carsten Rother, and Jiří Matas. 2020. BOP Challenge 2020 on 6D Object Lo-
calization. European Conference on Computer Vision Workshops (2020).

Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. 2018. Deepim: Deep iterative 
matching for 6d pose estimation. European Conference on Computer Vision, 683–698.

Meghann Lomas, Robert Chevalier, Ernest Vincent Cross, Robert Christopher Garrett, 
John Hoare, and Michael Kopack. 2012. Explaining robot actions. ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, 187–188.

 Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. 2019. A Grounded In-
teraction Protocol for Explainable Artificial Intelligence. International Conference on Au-
tonomous Agents and Multiagent Systems, 1033–1041.

Robert B McGhee and Andrew A Frank. 1968. On the stability properties of quadruped 
creeping gaits. Mathematical Biosciences 3 (1968), 331–351.

Chaitanya Mitash, Abdeslam Boularias, and Kostas E Bekris. 2018. Improving 6D pose 
estimation of objects in clutter via physics-aware Monte Carlo tree search. International 
Conference on Robotics and Automation, 3331–3338.

Muzammal Naseer, Salman Khan, and Fatih Porikli. 2018. Indoor scene understanding in 
2.5/3d for autonomous agents: A survey. IEEE access 7 (2018), 1859–1887.

Yizhar Or and Elon Rimon. 2010. Analytic characterization of a class of three-contact 
frictional equilibrium postures in three-dimensional gravitational environments. Interna-
tional Journal on Robotics Research 29, 1 (2010), 3–22.

Guglielmo Papagni, Dominik Bauer, Sabine Köszegi, and Markus Vincze. 2021. A Study 
Design for Evaluation of Trust and Understandability through Interactive Multi-Modal 
Explanations of Robotic Failure. HRI 2021 WYSD Workshop.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. 2017. Pointnet: Deep learning 
on point sets for 3d classification and segmentation. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 652–660.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. 
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Jianzhun Shao, Yuhang Jiang, Gu Wang, Zhigang Li, and Xiangyang Ji. 2020. PFRL: 
Pose-Free Reinforcement Learning for 6D Pose Estimation. IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 11454–11463.

Siddhartha S Srinivasa, Dave Ferguson, Casey J Helfrich, Dmitry Berenson, Alvaro Col-
let, Rosen Diankov, Garratt Gallagher, Geoffrey Hollinger, James Kuffner, and Michael 
Vande Weghe. 2010. HERB: A home exploring robotic butler. Autonomous Robots 28, 
1 (2010), 5.



103

Visual and Physical Plausibility of Object Poses for Robotic Scene Understanding

Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Dieter Fox, and 
Stanley T Birchfield. 2018. Deep Object Pose Estimation for Semantic Robotic Grasp-
ing of Household Objects. Conference on Robotic Learning, 306–316.

Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh Nguyen, and Sai-Kit 
Yeung. 2019. Revisiting point cloud classification: A new benchmark dataset and clas-
sification model on real-world data. International Conference on Computer Vision, 
1588–1597.

Kentaro Wada, Edgar Sucar, Stephen James, Daniel Lenton, and Andrew J Davison. 
2020. Morefusion: multi-object reasoning for 6d pose estimation from volumetric fusion. 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14540–14549.

Douglas Walton. 2007. Dialogical Models of Explanation. Explanation-aware computing: 
Papers from the 2007 AAAI workshop. Technical Report WS-07-06 (pp. 1–9). Menlo 
Park, CA: AAAI Press. 

Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li Fei-Fei, and Silvio 
Savarese. 2019. DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion. 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 338–3347.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and 
Jianxiong Xiao. 2015. 3d shapenets: A deep representation for volumetric shapes. 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1912–1920.

Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. 2018. Posecnn: A 
convolutional neural network for 6d object pose estimation in cluttered scenes. Robot-
ics: Science and Systems.

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. 2018. Open3D: A modern library for 3D 
data processing. arXiv preprint arXiv:1801.09847 (2018).





Implementing Aspects 
of Trust in Robots





https://doi.org/10.34727/2022/isbn.978-3-85448-052-5_5
This chapter is licensed under a Creative Commons Attribution-ShareAlike 4.0 International licence.

Design, Requirements, and Challenges of a 
Human-Robot Imitation System

Darja Stoeva   , Margrit Gelautz

Abstract

Body motion is an important aspect in human-robot interactions. Giving robots the ability to imitate human mo-
tion can be beneficial for research on robot motion in a variety of applications. Furthermore, such a human-robot 
imitation system has the potential to provide a platform to investigate the facilitation of different types of trust in 
human-robot interactions. The goal of this paper is to describe the framework of a human-robot imitation system 
and investigate the system requirements imposed by different interaction settings. Several applications of imitation 
systems are discussed, along with their important characteristics and required features. Furthermore, open chal-
lenges for designing and developing human-robot imitation systems are discussed.

Keywords 

human-robot interaction, body motion, imitation

1 Introduction

Because humans tend to assign social meaning to movements, human body 
movement is frequently perceived as expressive, making body motion an im-
portant component in social interactions. This tendency has been demonstrat-
ed in human interactions [Argyle 1975] as well as in situations where humans 
observed interactions between inanimate objects (moving geometrical shapes) 
[Heider and Simmel 1944]. Within the field of human-robot interaction, robot body 
movement and nonverbal behavior have been shown to influence how the robot 
is perceived in terms of animacy [Fukuda and Ueda 2010; Rosenthal-von der 
Pütten et al. 2018], anthropomorphism [Salem et al. 2013], feeling of co-presence 
[Krämer et al. 2016], and children’s perceptions of a robot’s warmth and compe-
tence [Peters et al. 2017].

Body movements designed for robots are often inspired by human body move-
ments. It has been demonstrated that people prefer to interact with robots that 
exhibit human-like behavior over robots that exhibit machine-like behavior [Park 
et al. 2011]. Furthermore, when it comes to the dynamics of human-robot in-
teractions, research has shown that people are more likely to coordinate their 
movement when interacting with a humanoid robot rather than a mechanical one 
[Chaminade et al. 2005] and when the motion is human-like rather than ma-
chine-like [Chaminade et al. 2008]. The dynamical feature of movement coordi-
nation is an important aspect of social interactions because it influences whether 
the interaction is perceived negatively or positively, which has a direct impact on 
the efficiency and stability of the interaction [Burgoon et al. 1995; Schmidt et al. 
2012].
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Human body movements are categorized with respect to their expressiveness 
by [Karg et al. 2013] as communicative, when they express or convey a message, 
functional, when they are used to accomplish a particular task, artistic, when they 
express a message in an exaggerated manner or when they are described as 
unfamiliar when compared to daily movements, or abstract, when they neither 
express a message nor serve a functional purpose. In the field of human-robot 
interaction, imitation, which is described as the ability of a robot to replicate hu-
man movement [Schaal 1999], serves as a promising tool to generate human-like 
movements. In principle, imitation systems provide a method to design and de-
velop robotic body movements in any of the aforementioned categories of human 
movement. As a result, human-robot imitation systems can be used as an inter-
actional framework to study body motion in human-robot interactions.

Furthermore, depending on the interaction setting for the system’s intended 
application, human-robot imitation systems have the potential to provide a plat-
form for studying different types of trust. There are two types of trust which would 
be applicable in this context, (1) interpersonal trust, which describes trust in so-
cial interactions based on the relationship that develops among the interactants 
[Ogawa et al. 2019], and (2) reliance trust, which is based on the belief that the 
robot will function as expected [Coeckelbergh 2012]. As a result, interpersonal 
trust can be studied in systems designed for social interactions, and reliance 
trust can be studied in systems designed for cooperative interactions. Using the 
system in various interaction settings may also allow for a comparison between 
these two different types of trust that can be facilitated in human-robot interac-
tions.

The work presented here aims to propose an approach for the design and de-
velopment of a human-robot imitation system with an intended application in mind. 
The main contribution is describing a framework for the design, development and 
evaluation of a human-robot imitation system. A second contribution is extending 
several existing applications of imitation systems, such as teleoperation and im-
itation learning, to also account for aspects such as interpersonal coordination, 
movement data collection, and exploration of body movements. In this context, 
we also include applications in the performing arts, which are not a very common 
point of interest in the field of robotics research. Finally, as a third contribution, 
a link between the envisioned applications and the system requirements of the 
proposed framework is established, which could aid the development process of 
future imitation systems. The paper is structured as follows. First, we describe 
the framework of a human-robot imitation system (Section 2), then we identify 
the application-dependent requirements of such a system for several potential 
applications (Section 3), followed by a discussion of open challenges (Section 4), 
and finally we provide a general conclusion (Section 5).
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2 Framework of a Human-Robot Imitation System

Alissandrakis et al. [Alissandrakis et al. 2002] describe an agent-based perspec-
tive on the design of an imitation system that addresses five central questions: 
who, when, what, how to imitate, and how to evaluate the quality of imitation. The 
question of who to imitate refers to figuring out how to allow the robot to choose 
which interactant to imitate, especially in the case of multiple interactants. When 
to imitate refers to the times the robot needs to imitate and which movements 
within a behavior need to be imitated by the robot. Next, the system should con-
sider what to imitate as part of an observed behavior, such as states, actions, 
and so on. How to imitate addresses the issue of mapping behavior from human 
embodiment to robotic embodiment. Finally, the question of how to evaluate the 
imitation is about finding a suitable metric to evaluate the similarity between the 
demonstrated and the resulting imitated behavior. Each of these questions has 
challenges and specific requirements depending on how the imitation system is 
intended to be used.

Such an agent-based approach is typically considered in the case of autono-
mous robots and aims to provide an approach independent of the robotic platform 
and the imitation task. In contrast, we argue in our work that the robotic platform, 
imitation task and system application all play an important role in the design and 
development process of a human-robot imitation system. Moreover, the majority 
of imitation systems considered in the literature are primarily aimed at applica-
tions of imitation learning or teleoperation. As opposed to that, in our research we 
extend the possible applications of an imitation system for humanoid robots and 
their usage scenarios while we lay out the framework of an imitation system from 
a developmental perspective.

The proposed framework for a human-robot imitation system is divided into 
three main components: (1) an intended application of the system, (2) a technical 
implementation with considerations based on the intended application, and (3) a 
suitable evaluation method based on the distinctive features of the imitation type. 
A flowchart of the suggested components for a human-robot imitation system is 
shown in Figure 1. 

Because different interaction settings and tasks will have different system re-
quirements, the intended application is one of the system’s key components, 
making the technical implementation and method of evaluation application-de-
pendent. Within the technical implementation, there are two important sub-com-
ponents: (2.1) a means to sense human motion, and (2.2) a method that trans-
lates the observed human motion into robot motion (also shown in Figure 1).
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Figure 1 Flowchart showing the components of a human-robot imitation 
system

These two components are necessary in order to allow the robot to imitate hu-
man motion, and the choice of each of the components will affect the overall 
system performance. After the system has been implemented, a suitable evalu-
ation should be carried out, which would be dependent on the specified system 
requirements and the distinctive features of the imitation type. Once the evalua-
tion has been performed, depending on the results, certain improvements to the 
imitation system might be necessary, leading the development of such a system 
to undergo another cycle of (refined) technical implementation and evaluation. 
The subsections that follow go into greater detail about each of the components.

2.1. Intended Application

The first thing to consider when designing and developing a human-robot imita-
tion system is the intended application. The importance of the application in the 
development of an imitation system has less to do with the end-goal and more 
to do with the interaction setting, which can be more interpersonal (e.g., mirror-
ing) or more cooperative (e.g., teleoperation). The interaction setting is import-
ant because of the specific requirements that are required in various application 
contexts, which would define the necessary distinctive features of the imitation 
system. Some applications have stricter requirements while others provide more 
room for exploration. Additionally, the application also determines which methods 
are suitable candidates for system evaluation.

The potential applications of human-robot imitation systems vary depending 
on the interaction setting and the goal to be achieved with the imitation. Exam-
ples of such applications include imitation learning [Calinon and Billard 2007], 
teleoperation [Zuher and Romero 2012], interpersonal coordination (mirroring 
and synchrony) in social interactions [Hasumoto et al. 2020; Alibeigi et al. 2017], 
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movement data collection for interactive scenarios and expressive behavior (e.g., 
building datasets for nonverbal behavior), exploration of body movements, and 
the performing arts [Nakazawa et al. 2002]. Section 3 delves deeper into each 
of these applications in terms of technical requirements and important system 
evaluation features.

2.2. Technical Implementation

Following the selection of an application, the next step is to define the interaction 
settings, which will influence the method of human motion sensing in terms of 
joint positions, as well as the translation of human motion into robot motion in 
terms of converting joint positions to joint angles. The latter is required because 
the motor commands for robots are usually specified in terms of joint angles. In 
addition, to make the conversion from joint positions to joint angles feasible, the 
human joint positions need to be derived and processed in 3D space. The two 
most common methods for detecting 3D human joint positions are the use of mo-
tion capture systems such as Vicon1 and the use computer vision algorithms for 
human pose estimation. Motion capture systems include camera based systems 
which comprise markers, attached to specific body parts (e.g., joints), and multi-
ple cameras to track the markers and provide their positions in 3D space, or sys-
tems based on inertia sensors positioned on body parts without the need for ex-
ternal cameras. Computer vision algorithms are markerless pose estimators and 
provide joint positions directly in 3D space, such as the Kinect skeleton tracking 
module [Shotton et al. 2011], or estimate the 3D joint position from 2D body pose 
estimation [Mehta et al. 2017], or provide joint positions in the 2D camera space 
[Cao et al. 2019], which can then be used in combination with a depth-sensing 
camera to get the joints in 3D space (e.g., [Zabala et al. 2020]).

When choosing a method for sensing human motion it is important to consider 
the application scenario, which may impose different system requirements for 
obtaining the 3D human joint position data (depth-sensing camera, motion cap-
ture setups, or other means of sensing). The choice of method for motion sensing 
also includes the choice between usually more accurate sensing of 3D human 
joint positions in the case of motion capture systems, or allowing the human to 
move more freely in the case of using computer vision algorithms for human pose 
estimation.

Next, a model for converting joint positions to joint angles should be selected 
according to the system requirements imposed by the imitation goal of the ap-
plication context. The imitation goal affects on the choice of the imitation type, 
which is closely connected to the method of system evaluation. The imitation 

1 https://www.vicon.com/
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type can aim to preserve the position of the end-effector with respect to the body 
[Zuher and Romero 2012], the pose for achieving body pose matching [Stoeva 
et al. 2021], or both [Alibeigi et al. 2017]. The choice of a model will depend on 
the imitation type but also the system’s efficiency and allowed time for a delay in 
the imitated movement often need to be considered. The temporal aspect varies 
from aiming for real-time, to a specific tolerable time delay which can be further 
relaxed for offline applications.

Different approaches can be found for the model used to translate 3D human 
joint positions into robot joint angles. In the fields of robotics and mechanics, 
there are two main kinematic equations used for translating between 3D positions 
and angles: forward kinematics, which is the calculation of the 3D (end-effector) 
position given the joint angles, and inverse kinematics, which is the calculation 
of the joint angles given the 3D position. Methods for calculating the robot’s joint 
angles based on the inverse kinematics include analytic and numeric solutions 
[Lynch and Park 2017; Craig 2005]. Numerical approaches are usually based 
on iterative algorithms that try to solve the inverse kinematics as an optimization 
problem (e.g., using the Jacobian). Analytical solutions, on the other hand, are 
usually approached in two ways, using geometry to find the angle between the 
links connecting two joints, or using algebra to express the angles in equations 
derived from forward kinematics. Both analytical and numerical approaches have 
advantages and disadvantages. For instance, numerical solutions are oftentimes 
much slower due to their inherent iterative nature and are highly dependent on 
the initial guess of joint angles. In contrast, even though analytical approaches 
provide closed-form solutions, it could be that they are too complex to manipulate 
into solvable equations. After choosing a suitable mode, the technical system can 
be considered complete and consists of two modules (2.1) a method for sensing 
human motion and (2.2) a model for translating this motion to a robotic platform, 
as depicted in Figure 1.

2.3. Suitable Evaluation

The next step in system design and development is to adequately choose a 
suitable method of evaluating the imitation system. Depending on the modules 
chosen during the implementation phase, it may be necessary to evaluate the 
accuracy of each module separately, before evaluating the full imitation system. 
For example, one approach is to evaluate the chosen model that translates the 
movements on how accurately it estimates joint angles from joint positions.

The first thing to consider for the full imitation system evaluation is the distinc-
tive features of the imitation type, which are most commonly either the accuracy 
of the end-effector position with respect to the body, the body pose similarity 
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between the human pose and the imitated robotic pose, or both. The second 
factor to consider (if applicable) is the computational effort or time delay, which is 
the amount of time it takes for the imitation system to capture the human motion, 
translate it to robot motion, and send it to the robot as a motion command.

The evaluation methods can include quantitative, qualitative, a mix of both 
quantitative and qualitative, and subjective measurements. Quantitative mea-
surements usually include the computation of the cosine similarity for the angular 
configuration of the pose [Guo et al. 2019; Zhang et al. 2018; Alibeigi et al. 2017], 
the mean squared error of the targeted versus actual joint positions [Guo et al. 
2019; Zhang et al. 2018; Alibeigi et al. 2017], and the computation effort [Koene-
mann et al. 2014]. Qualitative measurements, on the other hand, usually include 
trajectory plotting of the X, Y and Z axis of the end-effector [Hirschmanner et al. 
2019; Alibeigi et al. 2017; Mukherjee et al. 2015], plotting of the total error over 
time [Zhang et al. 2016; Koenemann et al. 2014], visual images, usually of motion 
sequences or specific postures, of the human posture and the robot exhibiting the 
imitated posture side by side [Guo et al. 2019; Zhang et al. 2018; Alibeigi et al. 
2017; Zhang et al. 2016; Kim et al. 2016; Mukherjee et al. 2015; Ou et al. 2015]. 
Subjective measurements are typically based on user studies in which partici-
pants are asked to rate the quality of imitation by showing images or videos of 
the actual and imitated movement [Zuher and Romero 2012]. Depending on the 
intended application of the system and the imitation type, a suitable evaluation 
should be designed and performed. A good practice in evaluations of systems is 
to combine several methods of evaluation.

3 Application-dependent Requirements

As mentioned in the previous section, the development of a human-robot imita-
tion system is highly dependent on the interaction settings of the system’s ap-
plication. Table 1 shows some of the potential applications for imitation systems 
with their system requirements, such as the methods of human motion sensing, 
the imitation type, the time delay between the performed and imitated movement, 
the evaluation features important for the evaluation process, and the trust type 
that can be facilitated and studied. In Table 1, the abbreviation “CV” stands for 
computer vision in the human motion sensing column, while in the imitation type 
column, “task-dependent” indicates that the choice of imitation depends on the 
targeted task, “both” stands for a compromise of preserving the end-effector po-
sition and body pose matching, and “any” stands for preserving any of the three 
imitation types explained in Subsection 2.2. The following subsections look into 
each of the suggested applications in relation to the aforementioned system re-
quirements in the context of the interaction setting.
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Applications Human mo-
tion sensing

Imitation 
type

Time 
delay 

Evaluation 
features Trust type

Teleoperation CV algorithms, 
motion capture both no delay

end-effector 
position, body 
pose similari-
ty, time delay

reliance

Imitation 
learning

CV algorithms, 
motion capture

task-
dependent no delay

imitation 
feature, 
time delay 

reliance

Interpersonal 
coordination CV algorithms body pose 

matching

from no 
to 5s 
delay

body pose 
similarity, 
time delay

interper-
sonal

Movement 
data collec-
tion

CV algorithms, 
motion capture

body pose 
matching flexible

body pose 
similarity, 
time delay

reliance

Exploration of 
body move-
ments

CV algorithms any no delay open interper-
sonal

Performing 
arts

CV algorithms, 
motion capture any flexible open reliance, in-

terpersonal

Table 1 Potential applications of human-robot imitation systems with their sys-
tem requirements and characteristics

3.1. Teleoperation

In situations in which the human operator cannot be physically present or in dan-
gerous environments such as search and rescue, the method of robot teleoper-
ation is envisioned as a possible approach [Penco et al. 2019; Koenemann et al. 
2014; Stanton et al. 2012]. Due to the necessity of exact mapping of the human 
motion to the robot and the required high accuracy of the end-effector position 
with respect to the human body, an imitation system targeting teleoperation re-
quires a high level of human motion sensing accuracy. For this application, a 
motion capture system usually provides more accurate readings than the use 
of available computer vision methods for the estimation of human pose. Motion 
capture often requires a specific interaction setting that typically includes several 
sensors or markers that need to be positioned on the human body, resulting in 
less spatial freedom and possibly discomfort for the interactant. This may not be 
an issue if the human and the robot are not interacting with each other face-to-
face, which is usually the case for teleoperation. On the other hand, the accuracy 
of the involved human pose estimation algorithm has a significant impact on im-
itation performance when using computer vision methods. If computer vision is 
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the preferred method due to specific task requirements, the accuracy of the pose 
estimation algorithm can be evaluated using motion capture data as a reference. 
Since the idea behind robot teleoperation is for the human to be embodied in the 
robotic platform, the imitation type should preserve both end-effector position 
and body pose matching. The imitation should be performed with no time delay 
to allow for smooth control and quick feedback when controlling the robot. Thus, 
when evaluating an imitation system for teleoperation, the most important consid-
erations for the evaluation features are end-effector position accuracy, body pose 
similarity metrics, and time delay. The type of trust that can typically be facilitated 
in this application is system reliance. For example, examining different types of 
teleoperation control and their influence on the trust of the system [Saeidi et al. 
2017] or how different time delays affect the facilitated trust in the system [Rogers 
et al. 2017]. Ideally, for providing additional information to the human controller 
in order to ease the process of teleoperation, the imitation system should also 
include a virtual reality headset (e.g., [Hirschmanner et al. 2019]) and haptic force 
feedback (e.g., [Saeidi et al. 2017]).

3.2. Imitation Learning

The concept of using imitation learning (also known as learning from demon-
stration or programming by demonstration) as a method of teaching a robot to 
perform certain actions or behaviors stems from social learning in human interac-
tions [Nehaniv and Dautenhahn 2007]. Researchers believe that robots capable 
of reproducing human movement could have advantages not only in allowing 
experts and non-experts to program behaviors for robots, but also as a means 
to better understanding of the concept of social learning [Breazeal and Scas-
sellati 2002]. In an interaction setting where a robot needs to observe a human 
and learn specific behaviors, the important challenges to consider are how to 
successfully transfer the movement from the human to the robotic platform and 
which parts of the movement need to be reproduced. For such interaction set-
tings, the use of motion capture or computer vision algorithms for human pose 
estimation is a common choice [Argall et al. 2009; Lee 2017]. However, to en-
sure that the required accuracy for imitation learning is met, both methods of 
human motion sensing should be evaluated in terms of achievable joint position 
accuracy. Because the interactant usually teaches the robot how to interact with 
the environment, in the context of imitation learning, the imitation type should 
usually preserve the position of the end-effector. However, in certain situations, 
depending on the task or behavior that needs to be imitated, it could be that both 
the end-effector position and body pose need to be maintained. Consequently, 
the choice of imitation type will depend on the task that needs to be completed 
or learned by the robot. In addition, the imitation should not have a noticeable 
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time delay between the interactant’s demonstrated behavior and the imitated be-
havior by the robot. Similarly to teleoperation, the delay between the original and 
imitated motion is important for synchronized robot control. When controlling the 
robot to perform a particular task, immediate visual feedback is required when 
the motion needs to be corrected in appropriate time. This is especially important 
for novice users, and perhaps less so for experienced interactants as they may 
be able to adjust to how the system works more easily. The evaluation features 
that need to be considered for this application context should include methods for 
evaluating the accuracy of the imitation type and measurement of the time delay. 
As for the concept of trust, an imitation system for imitation learning can provide a 
platform for studying reliance trust, where the interactant would evaluate whether 
the system works as expected in both short and long term interactions. Another 
approach to studying trust in such systems is to investigate different methods of 
providing explanation about robot behavior and its effect on the facilitated trust in 
the system [Edmonds et al. 2019].

3.3. Interpersonal Coordination

When interacting socially with a robot, it is important for the interaction to be intu-
itive and smooth, meaning that both the human and the robot mutually influence 
and adapt to each other’s behaviors. Interpersonal coordination, which includes 
mirroring and synchrony, is a phenomenon observed in human interactions as 
patterns that contribute to movement coordination and adaptation among inter-
actants [Burgoon et al. 1995]. For human motion sensing, given the spatial re-
striction imposed by motion capture systems and the use of wearable markers or 
sensors, it might be preferable for interpersonal communication involving face-to-
face interaction to rely on computer vision methods. This way, the interactant does 
not have to pay attention to the sensors/markers and will feel more comfortable 
to move and interact freely. Ideally, an internal (built-in) camera would be used, 
as no additional external equipment would be required. However, depending on 
where it is placed on the robot, the use of an internal camera has the potential 
to introduce further restrictions. Often cameras are positioned on a movable ro-
bot body part, for instance, the robot Pepper2 has a depth camera placed in its 
head at the location of its ‘eyes’. This can cause instability of the camera stream 
and, as a result, interfere with the data when the robot moves its head and per-
ceives at the same time. When mirroring human motion, the system’s imitation 
type should preserve body pose matching with the least amount of time delay. 
Compared to imitation learning and teleoperation, where the control of the robot 
requires no delay, for interpersonal coordination, the requirements on the mirror- 

2 https://www.softbankrobotics.com/emea/en/pepper
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ing behavior are more relaxed allowing for the time delay to range from no delay 
to 5 seconds. This time range comes from research in human interaction [Sato 
and Yoshikawa 2007; Louwerse et al. 2012], and it has also been investigated 
in human-robot interactions [Shimada et al. 2008]. Another significant difference 
from the applications of teleoperation and imitation learning is the complexity of 
interpersonal coordination within social interactions. In this case, the question 
of which body parts and when they should be imitated would need a greater 
consideration compared to imitation learning and teleoperation. The evaluation 
features for an interpersonal coordination system should use body pose similarity 
metrics and measurements of the time delay. Additionally, a user study can be 
designed to address the subjectivity of the perceived pose, which may include a 
collection of body pose similarity ratings as it was done in [V. Tuyen et al. 2018; 
Zuher and Romero 2012]. As interpersonal coordination usually manifests itself in 
social interactions, it provides a platform to study interpersonal trust, for instance 
how mirroring and synchrony behaviors affect the facilitated trust between the 
human and the robot. It is also important to note that privacy concerns arise in 
the context of social interactions. People who interact with the robot should be 
aware of any possible further usage of their data collected during the interaction.

3.4. Movement Data Collection

Translating human movement into robot movement is useful for designing and 
implementing body movements for interactive scenarios and expressive behavior 
for robots, especially nonverbal behavior. The ability to convert human motion 
into robot motion serves as a bridge and as a means for building datasets [Lee 
2017] or potentially as a way to design expressive behavior for the targeted ro-
botic platform [Fischer 2021; V. Tuyen et al. 2018; Liu et al. 2012; Häring et al. 
2011]. The recorded and possibly annotated datasets can then be used to de-
velop methods for recognizing and generating a nonverbal behavior of robots. 
Similar to teleoperation and imitation learning, the methods for human motion 
sensing can either rely on motion capture systems or computer vision algorithms 
for human pose estimation. In the best case scenario, for better recognition ac-
curacy, the method of human motion sensing used to build the dataset should be 
the same as the one to be used in the application scenario. In order to generate 
human-like body movements, the imitation type in such systems should be body 
pose matching, so, as for interpersonal coordination, the evaluation features 
should include body pose similarity metrics and user studies. However, unlike 
the interaction setting for interpersonal coordination, in this case the interaction 
setting would not necessarily require a real-time interaction. Thus, there could be 
a more flexible requirement for the time delay between the human movement and 
the imitated movement by the robot. However, the evaluation features could also 
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include a measurement of the time delay. The observed delay could be a useful 
indicator of the overall system performance and allow for comparison with other 
imitation systems. The type of trust, in this case, would be system reliance, and 
a particularly interesting approach would be to study how the reliance on the sys-
tem can have a feedback effect on the movement of the human being imitated.

3.5. Exploration of Body Movements

An imitation system could be useful for an overall exploration of the way the 
robot moves and getting a sense of its movement range, especially for novice 
users. Providing an interactive framework for movement exploration that relies 
on imitation could aid the interactant in understanding how the robot moves. This 
can support the creation of mental models of robotic behaviors and simulations 
of their movement capabilities. Furthermore, such a system could, under the su-
pervision of a physical therapist, potentially be used in movement therapy, which 
usually consists of movement exercises (e.g., improvisation) designed to explore 
the physical capabilities of the human body [Halprin 2003]. Additionally, such a 
system can also be used as a way to promote social skills for individuals with 
autism spectrum disorder as it has been done in [Vallée et al. 2020; Boucenna 
et al. 2014]. For the application of body movement exploration, the person being 
imitated should be free to move around in space and interact in an unrestricted 
manner. Thus, similarly to interpersonal coordination, for human motion sensing 
the use of computer vision algorithms is preferable to motion capture setups. 
Because of the interaction setting, it is important that the imitation happens in re-
al-time so that the observing-acting cycle is maintained. Accordingly, there should 
be no time delay in the movement imitation. Given the importance of how the 
body moves in this application, any of the three imitation types may apply, thus 
the evaluation features should be chosen accordingly. For body pose matching, 
the important feature for the evaluation would be the body pose similarity met-
rics, for preserving the position of the end-effector it would be the accuracy of the 
end-effector position. If the system is to be used in a therapeutic setting, it is also 
important to include experts (therapists) in the design and development process 
of the imitation system. For the type of trust, as the robot will play the role of an 
interactional partner with which an interpersonal trust can be facilitated, a possi-
ble investigation could be the link between trust and the success of movement 
therapy or improvement in social skills. Another approach could be to look into a 
possible relationship between the length of time spent interacting or moving with 
the robot and the facilitated interpersonal trust over time.
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3.6. Performing Arts

A human-robot imitation system seems like an interactive platform that is likely to 
be an attractive tool for the performing arts. The reason for this is due to its ability 
to facilitate the processes of choreography development and performance prepa-
ration, among other things [Christiansen and Lindelof 2020]. Unlike teleoperation, 
imitation learning, and interpersonal coordination, which all have rather specific 
interaction setting and requirements, in the case of performing arts the approach 
is less restricted and allows for many different requirements to be considered. For 
instance, when the interaction setting is exploratory, the application of performing 
arts may have flexible requirements, but it can also have very strict requirements, 
as in choreographed dance. Therefore, the imitation type in a system with an 
envisioned application in performance could be approached in an experimental 
way, and the evaluation features would depend on the requirements of the artists 
interacting with the system, as well as the performance itself. The choice of a 
human motion sensing method would depend on the requirements and vision of 
the artist interacting with the system. The possibilities include a motion capture 
system or computer vision algorithm. However, it should be considered that per-
formers often move their bodies in unpredictable and unconventional ways, for 
instance suddenly falling on the ground with full force. Thus, in those situations 
to avoid damaging wearable sensors or markers computer vision methods might 
be more favorable. In this case, the time delay between the performed and imi-
tated movement is rather flexible, especially if the interaction setting is explorato-
ry. When the imitation includes some delay, the artist may discovers interesting 
movement responses by the robot. Similar to the exploration of body movements 
with an imitation system, in the case of performing arts, the imitation type can be 
preserving body pose matching, the end-effector position, or both. The imitation 
system should be evaluated using evaluation features chosen according to the 
imitation type and the artist’s requirements. When developing an imitation system 
for a specific artist, or performance preparation, it is important to include the artist 
or art director in the design and development process of the system. Regarding 
trust, there is potential for both reliance and interpersonal trust to be facilitated in 
the case of performance, again depending on the interaction setting.

4 Discussion

Body motion is an important ability that allows for the fulfillment of different types 
of actions. Enabling robots to use body motion as a way to communicate and 
interact with humans is a promising behavior for a fluid and intuitive HRI. With 
the high relevance and increased research interest in nonverbal behavior for the 
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design of future robots, it is important to consider which human behaviors are ap-
propriate to adopt to robot behaviors. To allow for such research possibilities, we 
propose a framework of a human-robot imitation system in the simplest form that 
can serve as a foundation on which more complex behaviors can be developed. 
This is partly inspired by the works of [Jordanous 2020] and [Brooks 1991], which 
argue for incremental development of robot behavior, where each behavioral lay-
er adds more complexity to the robot’s capabilities.

Human-robot imitation systems have a wide range of applications from which 
many different research paths emerge. The future technical development of im-
itation systems highly depends on the advances in motion capture systems and 
robotic body design. From a broader perspective, building upon an imitation sys-
tem has the potential to provide platforms for a better understanding of how ar-
tificial agents (robots) and humans exchange movements, how they differ from 
human interactions and how they can contribute to our understanding of body 
motion. In this spirit, human-robot imitation systems could also provide further 
insights into the role body motion has in human interactions.

Even though imitation behavior is a promising skill for social robots, current 
and potential future challenges must be considered. For the design and de-
velopment of a human-robot imitation system we have identified several open 
challenges. In the following, we look in more detail into these challenges, which 
include the accuracy of sensing human motion, the correspondence problem of 
mapping the behavior from one body to another morphologically different body, 
the characteristics of the imitated motion, the choice of suitable evaluation met-
rics, and some ethical considerations when imitation systems are used in social 
interaction settings.

 - Accuracy of Human Motion Sensing      
One of the challenges that arise when dealing with the requirement of suffi-
ciently accurate imitation of human motion is choosing the appropriate method 
for human motion sensing. Due to the different characteristics of the currently 
available methods, there will be a trade-off between the availability, comfort 
handling and cost-efficiency of non-contact sensors and markerless methods 
(typically based on computer vision methods for human pose estimation) on 
the one hand, and high accuracy requirements (which are more easily met by 
motion capture devices) on the other. This compromise requires careful con-
sideration of what is possible and what is necessary (in the case of special 
conditions) to meet the envisioned imitation goal. In addition, computer vision 
methods can introduce further challenges such as dealing with ambiguities, for 
example if there is more than one person in the camera view.

 - Correspondence Problem       
Dealing with the physical differences and constraints of robots is another chal-
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lenge in designing and developing a human-robot imitation system. The task of 
properly mapping the human motion to the robotic platform has been defined as 
the correspondence problem [Nehaniv and Dautenhahn 1998]. A common ap-
proach to facilitate the mapping between dissimilar bodies is the use of human-
oid robots due to their morphology being similar to that of humans (head, arms, 
etc.). However, this only partially solves the problem, because humanoid robot 
joint usually have different degrees-of-freedom than human joints [Yamane and 
Murai 2016]. The physical morphology differences between humans and robots 
also creates challenges in different interaction settings. One possible solution 
would be to allow the interactant to change the type of imitation within the in-
teraction whenever the interactant finds it necessary. This, of course, could 
change as the interactant gains more experience with the robotic platform, but 
it would be a useful approach for novice users to try out different imitation types 
and explore the capabilities of the robot. In addition, this would allow for a better 
understanding of the robot’s imitation capabilities for the human embodying the 
robot, as well as a reduction in the difficulty of properly mapping the human to 
robot behaviors for the targeted goal of imitation.

 - Imitated Motion Characteristics      
The following two challenges are identified when it comes to the characteristics 
of the motion reproduced by the robot, such as motion speed and smoothness. 
Many humanoid robots often move at a slower speed than humans, usually be-
cause of safety measures. Thus, if the human demonstrator moves faster than 
the robot’s maximum speed there would be two possible options for approach-
ing the speed of the imitated motion. The robot would either aim at imitating all 
poses within the motion sequence resulting in a delayed imitated movement, 
or skip some poses of the motion sequence to minimize the delay to near re-
al-time imitation. Skipping some poses causes gaps in the imitated movement, 
implying that the robot will not reach all of the positions within the motion se-
quence as performed by the human. Second, smooth motion reproduction by 
minimizing motion jerkiness is still a feature that is being researched. To meet 
this challenge several methods have been proposed, such as pre-processing 
the data of the human motion [Luo et al. 2013], or post-processing the convert-
ed data to robot motion [Zhu et al. 2017]. Both pre-processing and post-pro-
cessing the motion data usually includes filters (e.g. Kalman filter) that remove 
sensor noise and smooth the motion trajectory. However, finding a suitable 
method to smooth the motion trajectory remains an ongoing research topic.

 - Suitable Evaluation Metrics       
Another open challenge that goes hand in hand with the correspondence prob-
lem is how to suitably evaluate an imitation system in terms of the success of 
the imitation. So far, there are many inconsistencies in the literature regarding 
the methods used to evaluate human-robot imitation systems, making it difficult 
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to compare systems to each other. One solution would be to provide a com-
prehensive set of evaluation metrics that can be applied selectively based on 
the distinctive features of the system, which would include a combination of 
quantitative, qualitative, and possibly subjective observational evaluation meth-
ods. In this context, it would also be important to define the imitation type and 
identify the aim of the imitation. The imitation goal can be to focus on the motion 
itself (e.g., how human-like the motion is) or the accomplishment of a specific 
task (e.g., the success of grasping an object). This will also determine which 
distinctive features will be the focus of the evaluation process. The goal is to 
find a suitable method that measures how successful the imitation is based on 
the goal of the imitation and the system’s key features (e.g. imitation type, time 
component, etc.).

 - Ethical Considerations in Social Interaction Settings   
When dealing with tracking of human data, it is important that privacy issues are 
taken into account and that people interacting with the technology are provided 
with transparent information on how their data is being used. Concerns have 
also been raised that imitation systems designed for social interactions, such 
as in the case of interpersonal coordination, may deceive interactants. This 
deception is described as deceiving interactants into thinking that the robot has 
more cognitive abilities than it does [Sharkey and Sharkey 2020]. However, the 
authors argue that not all deceptions are wrong as long as the deception does 
not cause any negative impact on the person or society in general. This distinc-
tion between wrong and not wrong deceptions is a topic of ongoing discussion 
in the fields of ethics and philosophy. On the other hand, findings in social psy-
chology indicate that interpersonal coordination increases likability and rapport 
between interactants [Burgoon et al. 1995]. These findings may have an impact 
on how the way interpersonal coordination is transferred to be used in human- 
robot interactions. The ability of the robot to exhibit interpersonal coordination 
could be used to some advantage for the application or the stakeholders selling 
the robot, which could have a negative impact on the interactant. Thus, an open 
question from an ethical point of view is: How can we ensure that the imitation 
system is not used for the wrong deception of the interactants? And is it ethical 
(because of the possible deception) to allow robots to take part in social inter-
actions and express interpersonal coordination with the interactants?

5 Conclusion

Imitation systems have a wide range of potential applications within the field of 
human-robot interaction. This paper proposes a method for designing and devel-
oping a human-robot imitation system in light of various application scenarios. 
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The following elementary system components are identified: intended applica-
tion, technical implementation, and suitable evaluation. Each of these elements, 
as well as their interrelationships are described and discussed. Based on an ex-
amination of several potential applications, the interaction setting with its specific 
requirements is identified to be a key aspect to consider in system design. The 
interaction setting can range from having a higher interpersonal component (e.g., 
imitation for the purpose of interpersonal coordination) to having a higher coop-
erative component (e.g., imitation targeted for teleoperation) interaction settings. 
The system requirements that may emerge from the interaction setting have an 
important influence on decisions for the technical implementation, but also for 
choosing a suitable evaluation method. The interaction setting is also closely 
related to the possibility of facilitating different types of trust between the human 
and the robot. Finally, open challenges in developing human-robot imitation sys-
tems are discussed along with possible approaches as a way to tackle them. 
Further research should aim to better understand in what ways body motion con-
tributes to the overall interaction between a human and a robot, and how it can 
be tested not only as a stand-alone capability but also in combination with other 
robotic social capabilities.
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Abstract

In this work, we address motion planning for robots in human-robot collaboration. An overview of important prop-
erties of a motion planning algorithm in terms of safety and human comfort is provided. In terms of comfort, we 
emphasize fluency, legibility, and human-like motion. Furthermore, existing planning algorithms are reviewed and 
contrasted in terms of these desired properties. Based on this review of the literature, a receding horizon trajectory 
optimization approach is proposed, and its main features are highlighted.
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1 Introduction

In recent years, there has been an increase in demand for robots capable of 
working in the proximity of humans or even collaborate with them. Possible appli-
cations range from collaborative tasks in industry, such as load sharing tasks or 
joint assembly, to service robots in domestic environments. Because traditional 
safety measures such as fences are no longer appropriate for these applications, 
novel concepts are required to enable safe collaboration. Aside from safety, col-
laborative tasks give rise to additional requirements in task orchestration and 
adaptable robot behavior based on observations of the environment. Further-
more, human comfort during the interaction is critical in establishing the robot as 
a trustworthy collaborator. 

These requirements are typically handled by different layers in the automa-
tion architecture. First, a cognitive decision layer coordinates tasks between the 
human and the robot. This layer gives explicit goals to a motion planning layer, 
which are then executed by an underlying controller layer.

In this work, we focus on the motion planning layer while explicitly considering 
the interface to a suitable controller for task execution. In the first step, an over-
view of the requirements with respect to safety and human comfort in human-ro-
bot collaboration (HRC) will be provided. Second, existing planning algorithms 
proposed in the literature will be shortly reviewed given these requirements.

Based on this analysis, open issues towards a flexible motion planning ap-
proach for HRC are identified. A receding horizon trajectory optimization planner 
is proposed as a contribution to resolving these issues. For this, we take advan-
tage of the possibility to formulate the requirements for safety and comfort during 
the interaction as objective functions and constraints for trajectory optimization.

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.34727/2022/isbn.978-3-85448-052-5_6
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-3407-4588
https://orcid.org/0000-0001-7995-1690


Florian Beck, Andreas Kugi

2 Collaborative Robots

Collaborative robotics applications require not only algorithmic solutions for the
control, planning, and cognitive layers, but also suitable mechanical structures. In
recent years, several collaborative robots, also referred to as cobots, have been
developed and brought to market. Examples include robots by Universal Robots,
the KUKA LBR iiwa, and Franka Emika’s Panda. The latter two are based on tech-
nology developed at DLR [Hirzinger et al. 2002] focusing on lightweight, torque-
controlled robots with elastic joints. The main advantage of the lightweight design,
while maintaining a reasonable payload, is that it reduces the inertia of the robot
links which directly contributes to reducing injuries upon impact. Another benefit of
such lightweight collaborative robots is their ability to be mounted on mobile plat-
forms, allowing for mobile manipulation. Furthermore, these robots feature seven
degrees of freedom (DOF), which increases the manipulability through kinematic
redundancy. The 7 DOF robot arms also mimic the human hand to some extent,
allowing analogies in planning and control to be drawn between the human and
the robot.

In our work, we use the KUKA LBR iiwa 14 R820 as a collaborative manipulator
arm, which can also be mounted on DS Automotion’s Sally, a differential drive
mobile platform, shown in Fig. 1 as a reference platform.

Figure 1 The KUKA LBR iiwa 14 R820 collaborative robot with a gripper (left)
and KUKA LBR iiwa 14 R820 mounted on DS Automotion’s SALLY, a differential
drive mobile platform (right).
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3 Motion Planning Requirements for HRC

Motion planning algorithms serve as a central component in the robot’s automation
architecture. In this section, the desired properties of motion planning algorithms
with respect to human-robot collaboration, in particular safety and comfort, as well
as existing approaches from the literature will be reviewed.

3.1 Safety

The most important criterion for enabling close collaboration between humans and
robots is safety. In the context of industrial robots, safety is typically ensured by
fencing or structural measures surrounding the robot, such that the robot moves
only if no humans are in close proximity. This is of course incompatible with col-
laborative tasks. As a result, safety concepts are required to avoid collisions or
to mitigate the consequences of impact in case of collisions. An overview of de-
sign criteria for safe human-robot interaction, both on the mechanical construction
level and for the algorithm design, is given in [Alami et al. 2006]. In the following,
we focus on algorithm design, assuming appropriate mechanical properties as
described in Section 2.

In [Haddadin et al. 2017], the authors distinguish between two phases, namely
pre-collision and post-collision. Motion planning is mainly concerned with the pre-
collision phase. This means that collision-free trajectories must be planned while
still meeting of task completion requirements. Typical collision avoidance ap-
proaches require a geometric representation of the robot’s environment. Due to
the computational complexity, objects are often approximated by convex shapes.
Although this simplifies pairwise collision checks, the environment can still be non-
convex if it contains multiple convex shapes. Using these convex representations,
algorithms like the Gilbert-Johnson-Keerthi (GJK) algorithm [Gilbert et al. 1988;
Cameron 1997] can be employed to check whether the robot is in collision with
the environment in a given configuration. Another popular collision checking ap-
proach is the V-Clip Algorithm [Mirtich 1998]. The paper’s performance compar-
ison does not indicate a clear improvement, but rather depends on the specific
application.

Collision checking is computationally expensive in motion planning in general
because pairwise checks between obstacles and the robot, or parts of the robot,
must be performed. Furthermore, depending on the planning algorithm this may
have to be repeated several times. For safety, it is also important to consider that
such collision checking approaches are only executed at discrete points in time.
Collisions between two sampling points are theoretically possible depending on
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the time discretization intervals. There are two solutions to this problem. First,
sampling density can be increased. This, however, comes at significant compu-
tational costs due to the increased number of samples required for representing
a movement. Second, collision detection can be extended to a continuous-time
approach. Examples for continuous collision checking can be found in [Schulman
et al. 2014] and [Merkt et al. 2019]. Such collision detection approaches are also
applicable in dynamic environments. However, the environment geometry must
depend on time. Hence, a motion model of objects in the environment is required
to predict their movement.

For motion planning approaches, the post-collision phase must be considered
in addition to the pre-collision phase. The post-collision is typically treated in the
underlying control layer. Detection of collision and appropriate reaction strate-
gies are proposed in [De Luca et al. 2006] and [Haddadin et al. 2008] through
torque measurements in the joints. These strategies are typically combined with
impedance control [Ott 2008], enabling a compliant robot behavior. Such com-
pliant behavior is often desired in the Cartesian space of the robot end-effector.
To use such control laws, the motion planning algorithm must provide sufficiently
smooth trajectories, i.e. at least two times continuously differentiable. Further-
more, due to the presence of the inverse Jacobian in the control law, Cartesian
impedance control requires singularity-free trajectories. In this regard, it is criti-
cal not only to avoid singular configurations during planning, but also to include
a sufficiently large safety margin around the singularities. This is because, in the
proximity of singularities, small velocities in the task space can still result in large
velocities in the joint space.

3.2 Natural Motion and Comfort

In addition to functional aspects of a planner, such as reaching a goal, feasibility
of the trajectory, and the adherence to safety aspects according to Section 3.1,
human comfort must be taken into account when planning a robot’s motion. In
general, it is difficult to rigorously define robot motion that is comfortable for hu-
mans. It is highly dependent on how a human perceives the situation and can
vary greatly depending on the individual. Furthermore, it may be dependent on
the robot’s capabilities and design. Studies in human-robot interaction (HRI) try to
identify such properties. Furthermore, it is desirable to formalize such properties
to an extent such that they can be considered during planning. This was accom-
plished for certain criteria, which will be discussed in the following. An overview of
social aspects and psychological factors for safety in HRI can be found in [Lasota
et al. 2017].
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One of the most discussed aspects regarding comfort is proxemics [Hall 1963],
i.e. the notion of distance between humans or a human and a robot, respectively,
during certain interactions. The influence of a separation distance between a robot
and a human was for example investigated in [Arai et al. 2010; Koay et al. 2006;
Kulić and Croft 2007]. In a collaborative setting, distance is frequently constrained
by the task at hand. Aside from the desired end-effector goal, there are often
additional DOF that can be used to determine the pose or movement of the robot in
space, depending on the specific task. For a mobile manipulator, this includes the
positioning of the vehicle itself concerning the end-effector goal and the human.

An important concept with respect to comfort is legibility, as for example dis-
cussed in [Lichtenthäler et al. 2012] to increase the perceived safety. Legibility is
a measure of how well the robot can convey its intent. In the motion planning con-
text, this means that movement has to be planned such that ambiguity is reduced
making goals easily inferable by a human. In some cases, this can be achieved by
certain exaggeration of the movement, for example moving in a circular arc toward
an object. Of course, this type of exaggeration is not always achievable, espe-
cially if several target objects are located close to each other. In such a scenario,
it depends on other factors, e.g. if the human can infer where the robot is moving
next. This cannot be solved using motion planning alone. An optimization-based
formulation of legibility can be found in [Dragan et al. 2013], which also gives a
comparison to the notion of predictability. Predictable motion is defined as pre-
dicting how a motion will look like if the goal has already been determined. As a
result, the inference direction is reversed. In this regard, predictable motion can
differ from legible motion. Predictability or legibility is preferred depending on the
collaborative task at hand. For example, if the task consists of a fixed, sequential
process, a human already knows what the robot’s goals are, and predictability
is more important than legibility. Legible motion, on the other hand, is preferred
when the task is ambiguous.

In [Hoffman 2019], an overview of methods to evaluate fluency in HRC is given.
They provide a definition and a model for assessing fluency. Fluent collaboration
occurs when a human and a robot achieve a high level of coordination, resulting
in precisely timed, efficient sequences of action. In a user study, they discovered
that human idle time, i.e. the human waiting for the robot, as well as the functional
delay of the robot, has a significant influence on subjective fluency. Longer hu-
man idle time is perceived as increasing fluency, which was indicated by feedback
from participants who thought the robot did a better job. Increasing the functional
delay, on the other hand, has a negative impact on the sense of fluency. This
can be directly related to the robot’s time to action following the completion of the
human’s turn during the collaboration. The requirement of short functional de-
lays implies that fast planning and replanning are essential properties of motion
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planning algorithms. An example of fluency for robot-human handovers is given
in [Cakmak et al. 2011] considering the functional delay. They propose that con-
veying intent is a major factor in fluency. If the robot does not make its intentions
to hand over an object clear, functional delays increase and the sense of fluency
decreases during the interaction. This demonstrates that not only fast planning
is required, but approach directions and timing must also be considered for com-
fortable interactions. Further examples of the importance of approach directions
during handovers are given in [Koay et al. 2007] and [Sisbot and Alami 2012].
Human motion and action prediction are extremely useful for reducing such func-
tional delays and increasing fluency. There is a substantial body of literature on
human motion prediction in terms of long-term prediction, i.e. full reaching mo-
tions, see, e.g., [Luo et al. 2018], as well as short-term predictions obtained by
tracking algorithms. Both are important for motion planning. Short-term predic-
tions primarily improve the observations, resulting in more accurate estimates of
the goals and dynamic obstacles in the environment. Long-term prediction, on the
other hand, can be used to estimate human intentions and thus, influence fluency
directly. Prediction combined with rapid replanning results in both reactive and
anticipatory action [Hoffman and Breazeal 2007].

Depending on the mechanical structure of the robot, also human-like motions
can be planned. Anthropomorphic robot arms, for example, such as the KUKA
LBR iiwa, mimic the structure of a human arm with seven DOF. Optimal control
theory was used to analyze human reaching motions in relation to the hand pose,
see, e.g., [Flash and Hogan 1985] and [Todorov and Jordan 2002]. The results
show that hand movement minimizes jerk, leading to smooth motions with bell-
shaped velocity profiles. These findings provide explicit criteria that, in principle,
can be applied to robotic motion planning. Maximizing the smoothness of the
trajectories is somehow contradictory to minimizing the time, i.e. time optimality,
which is commonly desired in industrial processes to maximize throughput. Fast
robot movements, however, are perceived as less safe when interacting with hu-
mans [Arai et al. 2010]. This implies that the smoothness of robot motion is ex-
tremely important in HRC. Another important aspect is motion planning in the task
space, i.e. Cartesian end-effector coordinates because most existing motion plan-
ning algorithms are designed in the joint space. In the case of a redundant robot,
the nullspace motion must also be considered. The nullspace motion typically de-
termines the robot’s elbow movement, which is strongly dependent on the robot
structure and can only be determined on a very limited basis by HRI.
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4 Motion Planning Algorithms

In this section, we give an overview of existing motion planning algorithms in the
literature while also assessing their capabilities with respect to the criteria identi-
fied in Section 3. Because of its importance in robot autonomy, motion planning
has received a lot of attention in robotics research. The corresponding algorithms
can be categorized into planning for static and dynamic environments. While we
are primarily interested in real-time planning in dynamic environments, algorithms
proposed for static environments are frequently used as the foundation for devel-
oping real-time capable methods for dynamic environments.

In static environments, sampling-based methods received a lot of attention.
Their primary benefit is that obstacles do not need to be explicitly modeled in the
configuration space. A collision detection module is instead used to determine
whether or not a sample in configuration space is in collision. This greatly im-
proves the planning efficiency [LaValle 2006]. Two important representatives of
sampling-based algorithms are Probabilistic Roadmap (PRM) [Kavraki et al. 1996]
and Rapidly-exploring Random Trees (RRT) [LaValle and J. 2001]. While PRM
invests heavily in preprocessing to provide fast multi-query planning, RRTs are de-
signed to be fast single-query planners. The basic RRT algorithm has probabilistic
completeness, i.e. in the limit a path, if it exists, will be obtained with probability
one. For a simplified version of PRM, this was proven as well [Kavraki et al. 1998].
Since their initial publication, several extensions were proposed to PRM and RRT
motion planning. For our purpose, extensions toward optimal motion planning are
the most relevant. Thus, for instance, the asymptotically optimal algorithms RRT*
and PRM* were proposed in [Karaman and Frazzoli 2011]. Although sampling-
based motion planners have several desirable properties, particularly probabilistic
completeness, they frequently suffer from non-smooth trajectories, which require
further post-processing. This ultimately increases the planning time. Further-
more, complex objectives and constraints lead to a high computational load. This
can be a problem when formulating the objectives for comfort, as discussed in
Section 3.2.

As a possible solution to these issues, trajectory optimization was proposed. Al-
though, in general, trajectory optimization returns only locally optimal trajectories,
it has been successfully applied to robotic motion planning. Trajectory optimiza-
tion can be used to refine trajectories obtained from sampling-based planners, but
it can also be used as a stand-alone algorithm. In [Ratliff et al. 2009; Zucker et al.
2013], an optimization-based planner called Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) was proposed. The objective function consists of
two cost terms, an obstacle cost based on Euclidean distance fields and a smooth-
ness cost that takes velocities and accelerations into account along the trajectory.
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The trajectory is updated iteratively using covariant gradient descent. The update
rule ensures that the trajectory remains smooth while decreasing the cost. The
experiments demonstrate the algorithm’s successful application to robotic manip-
ulation. One significant drawback, which the authors also mention, is that due to
the fixed discretization, only trajectories of a predefined length are considered.

In [Kalakrishnan et al. 2011], a stochastic optimization approach for motion
planning called Stochastic Trajectory Optimization for Motion Planning (STOMP)
is presented. The authors propose using a series of noisy trajectories that deviate
slightly from the current candidate trajectory, and are then simulated to determine
their costs. The candidate solution is updated based on these costs. One of the
main advantages of this approach is that, because of derivative-free stochastic
optimization, it can deal with general constraints for which gradients are not al-
ways available. This can be an advantage compared to CHOMP [Ratliff et al.
2009; Zucker et al. 2013] if desirable cost functions are not differentiable.

The method in [Schulman et al. 2014] is similar to CHOMP [Ratliff et al. 2009;
Zucker et al. 2013], however, the authors make use of sequential convex opti-
mization. In each iteration, a convex approximation of the nonlinear trajectory
optimization problem is constructed. A trust region method is used to ensure that
the approximation remains valid. In addition, infeasible constraints are converted
to ℓ1 penalties. A quadratic programming solver is used to solve the convex sub-
problem. For collision checking, GJK as mentioned in Section 3.1 is used. To en-
sure continuous-time safety, the collision checking procedure takes into account
a swept-out volume, which is a polyhedral approximation of the free configuration
space between two time steps. When compared to CHOMP [Ratliff et al. 2009;
Zucker et al. 2013] and sampling-based planners implemented in the open motion
planning library (OMPL) [Şucan et al. 2012] including RRT [LaValle and J. 2001],
the experiments show a significant improvement in terms of speed, the problems
that can be solved, and the quality of the resulting trajectories. Furthermore, this
framework allows for inclusion of more complex cost functions, such as those re-
lated to human comfort.

Recently, a framework for guaranteed sequential trajectory optimization
(GuSTO) [Bonalli et al. 2019] using sequential convex programming (SCP) was
proposed. In contrast to TrajOpt [Schulman et al. 2014], which makes use of
SCP as well, theoretical guarantees for convergence to at least a stationary point
are given by the authors. Numerical simulations demonstrate that this approach
provides more accurate results in less time compared to other state-of-the-art
SCP-based planners.

To capture dynamic environments and real-time planning, several approaches
can be found in the literature. Extensions to RRT planning include [Li and Shie
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2002; Ferguson et al. 2006] and [Zucker et al. 2007]. In addition, [Svenstrup et al.
2010] use the RRT algorithm in combination with a dynamic potential field. The
potential field takes into account the robot’s position in the environment, its goal,
and the humans moving in its vicinity. To account for changes in the environment
the planner is implemented as a model predictive controller (MPC). To that end,
only the first few steps of the planned trajectory are executed, while the planner
calculates a new trajectory on-line. In [Sun et al. 2015], a similar RRT-based ap-
proach for high-frequency replanning was developed. A stochastic motion model
of the robot is used. Several independent RRTs are executed in parallel to quickly
find an optimal plan. The lowest cost plan is then chosen. While a single RRT will
not find an optimal solution, it is proven that running several RRTs in parallel will
asymptotically converge to an optimal plan. However, sampling-based planners
for dynamic environments have the same drawbacks as their static counterparts.

In [Park et al. 2012], a similar concept using trajectory optimization is proposed.
The motion of dynamic obstacles is taken into account by predicting their motion
over a short-time horizon and computing a conservative local bound on their loca-
tion and velocity. Based on this information, a constraint optimization problem is
solved to compute a plan. Because dynamic object trajectories are only predicted
for a short period of time, prediction uncertainty grows quickly. The planner is
executed again in each time step, and only one step of the trajectory is executed
before replanning.

The works [Ghazaei Ardakani et al. 2015, 2019] present an MPC approach
for real-time point-to-point trajectory generation for a robot manipulator. A linear
kinematic robot model is used, given by a double integrator system, where joint
positions, velocities and accelerations serving as optimization variables. The fi-
nal trajectories are generated using linear interpolation with a fixed sampling time.
Because of the fixed sampling intervals and the goal constraint on the final step,
it is assumed that the trajectory duration is sufficient to reach the goal while tak-
ing the robot’s kinematic limits into account. The authors successively reduce the
sampling period in the experiments, increasing the time resolution of the trajectory
as the robot approaches the goal. The fixed sampling period, on the other hand,
implies that the robot trajectory is initially quite coarse, which can be problematic
in terms of constraint satisfaction, such as collision constraints for safety. Due to
the convex formulation of the optimization problem, the authors report fast conver-
gence of their algorithm. The convex formulation, on the other hand, significantly
limits the available optimization criteria.

In contrast, in [Krämer et al. 2020] a different approach utilizing a cost-to-go-
term was proposed replacing the requirement of a goal constraint. This allows
for a fewer discretization points along the trajectory without sacrificing sampling
density. This is especially important in terms of safety because high sampling
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density reduces the likelihood of collision between trajectory samples while being
computationally less expensive than continuous collision checking as, for exam-
ple, done in [Schulman et al. 2014]. The results of [Krämer et al. 2020] show that
achieving planning times below 100ms per MPC iteration for pick-and-place tasks
is feasible.

In [Agboh and Dogar 2018], an extension of STOMP [Kalakrishnan et al. 2011]
to real-time replanning for grasping in cluttered environments is proposed. Initially,
an open-loop trajectory is generated with numerous iterations to obtain a locally
optimal solution. Starting with this initial trajectory, replanning is done with fewer
iterations and with feedback from the current state. High-quality trajectories can
be generated while maintaining fast planning times if the inital trajectory is a good
initialization for replanning. The experiments show that the approach works well
for grasping in cluttered environments that do not change too quickly. For moving
targets or obstacles, the initialization is not a good approach since the trajectory
can already be infeasible when the planner has finished.

A local receding horizon trajectory optimization given a global reference path
in a difficult terrain is proposed in [Howard et al. 2010]. In [Toit and Burdick 2012],
robot motion planning is formulated as a stochastic dynamic programming (SDP)
problem. The authors explicitly address uncertainty rooted in the robot’s environ-
ment. Because of the stochastic context, constraints are formulated as chance
constraints [Toit and Burdick 2011], meaning that the constraint has to be fulfilled
with a certain confidence. Given the complexity of the SDP problem, it is approx-
imately solved using stochastic receding horizon control in the belief space. In
dynamic uncertain environments, the stochastic approach provides more accu-
rate models for planning. However, when compared to deterministic solutions,
the additional computational effort is significant.

Recently, an MPC concept for autonomous guided vehicle motion planning was
published [Mercy et al. 2018]. The authors use B-Spline trajectory parametrization
to guarantee constraint satisfaction in the resulting nonlinear trajectory optimiza-
tion problem. In contrast to [Toit and Burdick 2012], obstacles are modeled and
predicted in a deterministic way facilitating a linear prediction model. The exper-
iments show that dynamic obstacles in the environment can be safely avoided
when combined with fast replanning.

MPC can also be used to plan and track a robot’s trajectory at the same time.
This has the advantage of not requiring the use of a trajectory following con-
troller. Furthermore, the dynamic constraints of the entire system can be system-
atically considered allowing for more aggressive trajectories. The MPC framework
CIAO [Schoels et al. 2020] is based on a novel convex inner approximation of the
collision avoidance constraint. This enables the planning of kinodynamically fea-
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sible collision-free trajectories in continuous time. A real-world experiment with
a differential drive mobile robot demonstrates the unified trajectory optimization
and tracking. Planning for multi-body robots, on the other hand, has yet to be
demonstrated.

Simultaneous trajectory optimization and tracking was also applied to full dy-
namic models of robot manipulators, see, e.g., [Tassa et al. 2012] and drones,
see, e.g, [Neunert et al. 2016]. Recently, Kleff et al. [Kleff et al. 2021] proposed
an MPC approach based on differential dynamic programming (DDP) in real time
on a collaborative robot. However, so far, MPC with full dynamics has only been
solved for simplified problems, with additional objectives such as obstacle avoid-
ance being neglected. As a result, for the currently available real-time hardware,
approaches with separate trajectory planning and trajectory tracking control are
typically used.

5 Receding Horizon Trajectory Optimization

In this section, we provide a brief overview of a receding horizon trajectory opti-
mization approach for robot motion planning that takes into account the require-
ments from Section 3. In comparison to previous works discussed in Section 4,
we explicitly take into account the combined requirements from Section 3, namely
pre-collision and post-collision safety, legibility and smooth robot motion while
enabling fluent interaction. We maintain compatibility with Cartesian impedance
control by introducing computationally efficient singularity avoidance based on
penalty functions. In addition, a novel via-point approach for receding horizon tra-
jectory optimization is discussed providing a framework for planning legible and
human-like motion with low computational overhead. Due to our emphasis on
computational efficiency in the aforementioned features, fluent interactions can
be ensured.

The planning approach considers robot manipulators under kinematic con-
straints. Note that robot dynamics are not considered in the planner. It is assumed
that the underlying controller, i.e. a Cartesian compliance control scheme [Ott
2008], compensates for the nonlinear dynamics resulting in a remaining linear
double integrator system. The motion planning problem is formulated as a trajec-
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tory optimization in the form

min
u0|n,...,uN−1|n

N−1∑
k=0

l(xk|n,uk|n) (1a)

s.t. xk+1|n = Φxk|n + Γuk|n (1b)

x0|n = x1|n−1, u0|n = u1|n−1 (1c)

x ≤ xk|n ≤ x, k = 0, . . . , N − 1 (1d)

u ≤ uk|n ≤ u, k = 0, . . . , N − 1 (1e)

for the time steps k = 0, . . . , N − 1, with fixed sampling time Ts. The optimization
problem (1) is solved at every sampling instant n for the finite planning horizon
NTs. Only the first step of the optimal control input is applied to the system until the
next sampling instant n+ 1. The optimization problem is then solved again, now
starting one sampling time Ts ahead and therefore predicting one step further into
the future. Hence, the planning horizon is said to be receding. Eq. (1a) describes a
general objective function to be minimized for the planning horizon nTs to (n+N−
1)Ts depending on the robot’s state xk|n and the input uk|n at the time (n+ k)Ts,
k = 0, . . . , N − 1. The objective function includes a cost term that represents the
distance to the goal such that the robot moves toward this goal. Additional cost
terms can be added depending on the specific application, which will be discussed
in greater detail in the remainder of this section. The resulting linear system of
the robot dynamics is an equality constraint defined by Eq. (1b). The planner is
initialized from the previously calculated trajectory through Eq. (1c). State and
input constraints, specifically addressing joint limits, velocity limits, and higher
derivatives, if necessary, are considered in Eq. (1e) where x, u, and x, u denote
lower and upper bounds, respectively.

The receding horizon trajectory optimization shares advantages of the trajec-
tory optimization approach over sampling based algorithms as stated in Section 4.
This is particularly relevant to the flexibility of objective functions and constraints
in modelling desired properties in human-robot interactions and ensuring smooth
trajectories. Furthermore, we use a cost-to-go term for reaching the goal in com-
bination with fixed sampling times similar to what is done in [Krämer et al. 2020].
This allows for fast planning while still maintaining tightly sampled trajectories.
Fast planning times are essential to reduce the robot’s functional delay, enabling
fluent interactions. Nonetheless, safety cannot be sacrificed for the sake of fast
planning times. As mentioned in Section 3.1, safety violations can in principle
happen between the discrete time steps of the trajectory optimization. Due to
the computational effort, we do not consider continuous-time collision checking
but instead, rely on small sampling times Ts. This property is in contrast to pre-
vious approaches in the literature. For example, [Ghazaei Ardakani et al. 2015]
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and [Mercy et al. 2018] demand that the final point in the planning horizon already
reaches the goal. This requires either a fixed duration of the trajectory, i.e. in-
dependent of the distance to the goal or the introduction of the duration as an
additional optimization variable, increasing the complexity and thus the computa-
tional effort of the problem.

Collision checking for receding horizon trajectory optimization can be performed
using well-known approaches from the literature. However, the gradient of the
objective function and constraints can be provided to improve the optimization
algorithm’s convergence behavior. To this end, we use a smooth distance ap-
proximation as introduced in [Vu et al. 2020]. We extend the formulation from
rectangular boxes and points to spheres as basic obstacle shapes to allow for
more complex environments. Because collision checking is frequently the bottle-
neck, limiting to simple shapes results in faster optimization times. In the context
of collision checking, the receding horizon framework also enables planning in
dynamic environments. New information about objects in the environment can
be incorporated due to the constant replanning. Furthermore, by including ob-
ject states in the dynamic constraints (1b), predictions of object movements in the
planning horizon can be taken into account.

In addition to safety considerations in the pre-collision phase, we also address
compatibility with Cartesian impedance control [Ott 2008] to enable post-collision
safety. The Cartesian impedance controller requires trajectories to be at least
two times continuously differentiable and singularity free. In the proposed ap-
proach, sufficient smoothness is guaranteed by the equality constraints (1b) and
(1c). Note that, in general, the sampling times of the trajectories are significantly
lower than those required for the execution of the controller. As a result, for the
controller, the trajectories must be interpolated and resampled. The optimization
framework provides several ways to make sure that the planned trajectories are
free of singularities. As mentioned in Section 3.1, a safety margin around sin-
gularities has to be taken into account. A distance to a singular configuration
can in general be defined by the so-called manipulability measure [Yoshikawa
1985]. Alternatively, if a robot’s singular configurations are known, direct distance
measures in the configuration space can be used. The safety margin can be
formulated as an inequality constraint ensuring a minimum distance to singular
configurations or by demanding a minimum amount of manipulability. In view of
the computational costs, the singularity avoidance is realized by a penalty function
which is added to the objective function l(xk|n,uk|n). Note that, in principle, this
does not guarantee singularity-free motions due to competing cost terms, how-
ever, such a situation can be avoided by selecting a sufficiently large weight for
the penalty function.
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Besides safety, we explicitly address comfort discussed in Section 3.2 within the
receding horizon trajectory optimization framework. First, we consider human-like
movement, as for the example investigated in [Flash and Hogan 1985]. Human
movement of the hand is regarded as minimizing jerk there. This corresponds to
minimizing jerk along an end-effector trajectory in the task space in the robotic
applications under consideration. This formulation can be easily incorporated into
the trajectory optimization problem, however, it would require planning in the task
space. Direct planning in the task space makes the consideration of the joint
limit constraints more involved. Because of the nonlinear relationship between
the joint and the task space, enforcing smoothness in the joint space is computa-
tionally more efficient but does not always result in human-like movement in the
task space. Planning in the joint space, but formulating the cost-to-go term in the
task space based on the forward kinematics is another option, again at the cost of
higher computational effort. Thus, we propose to approximate a cost-to-go term
in the task space by placing via-points in the task space along the planned trajec-
tories. The approximation is more or less coarse and computationally expensive
depending on the number of via-points. Such intermediate goals are also impor-
tant for a variety of other robotic tasks. Grasping for example requires the gripper
to be aligned with an object in a so-called pre-grasp pose before the grasp point
is reached. Furthermore, via-points can also aid the establishment of comfortable
interactions by ensuring appropriate approach directions and end-effector orien-
tations. In addition, intermediate goals can help to disambiguate goals resulting in
legible robot trajectories. Again, this is a computationally efficient approximation
compared to what is done, e.g. in [Dragan et al. 2013] to achieve legible robot mo-
tion. In previous works, see, e.g., [Schulman et al. 2014; Ghazaei Ardakani et al.
2015], a common approach for intermediate goals was to constrain points along
the trajectory to via-points. This requires predetermined timings for the via-points
along the trajectory. Furthermore, for a receding planning horizon, this approach
is not feasible because the via-point may not be reachable within the horizon.

In contrast, we propose to formulate the optimization problem in such a way
that only the relative timing between via-points, i.e. a sequence of via-points,
is considered, rather than the exact timing along the trajectory. To that end, we
introduce a parametrized reference path that linearly interpolates from the starting
configuration through the via-points to the goal. The path parameter’s dynamics
are added to the optimization problem to represent the progress along the path. In
contrast to classical path-following control, see, e.g., [Böck and Kugi 2014, 2016;
Faulwasser et al. 2017], we are not interested in precisely following the path, but
only in accurately passing through the via-points. Therefore, the cost weights are
adjusted so that progress along the path is favored over precise tracking between
via-points. To pass the via-points exactly, a path progress dependent constraint
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is introduced. Instead of being specified in advance, the optimizer determines the
timings and velocities through the via-points in this formulation.

6 Conclusions

In this work, we outlined the requirements for motion planning algorithms in col-
laborative human-robot tasks. In addition to physical properties of collaborative
robots, a brief overview of algorithmic safety measures for planning algorithms,
particularly collision checking, was provided. Although safety is the topmost pri-
ority, it is not the only requirement for planning in human-robot collaborative tasks.
In this context, properties related to comfort including proximity, legibility, fluency,
and human-likeness of robot motion were discussed. Furthermore, the state-
of-the-art motion planning algorithms were evaluated concerning these require-
ments. Finally, a motion planning framework based on a receding horizon opti-
mization approach was outlined. This method enables the flexible specification of
control objectives and the systematic incorporation of constraints to easily adjust
the desired properties for HRC.
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I See What You Did There: Towards a Gaze 
Mechanism for Joint Actions in Human-Robot 
Interaction 

Michael Koller   , Astrid Weiss   , Markus Vincze

Abstract

We imagine that service robots must collaborate with humans in physical object manipulation tasks to be of assis-
tance in everyday scenarios, such as setting a table. This collaboration requires the capability of joint attention to 
smoothly accomplish a shared goal. One special modality for joint attention is the gaze behavior of an actor. Herein, 
we discuss the human gaze in physical tasks and its underlying cognitive mechanisms, a novel probabilistic robotic 
gaze controller in object-centred collaborative physical tasks, and its inclusion in a well-known joint action human-ro-
bot interaction (HRI) benchmark. First, we discuss human gaze behavior as an important modality for signaling, de-
tecting, and monitoring joint attention processes. This is followed by an overview of joint attention implementations 
in HRI and commonly used artificial intelligence methods for planning and plan recognition. These methods are used 
to mimic qualities of different components in psychological joint attention models in humans. In object manipulation 
tasks, the gaze behavior is not only used to gather information about the environment, but also has a communicative 
role, as the gaze direction can be interpreted by the interaction partner. The intended actions and beliefs about the 
current world state are communicated through the gaze. We argue that robotic gaze behavior, which humans easily 
interpret, will improve the interaction capability of a social robot. We investigate this claim in an already established 
HRI joint action benchmark scenario of collaboratively building a tower out of different blocks. To this end, we pro-
pose a stochastic gaze controller for joint action tasks and present results of a pilot study.

Keywords

human-robot interaction, joint attention, joint action, gaze, eye-tracking

1 Introduction

Think of a situation where you have to coordinate with another person in a phys-
ical task at hand. Let us say that you and a friend attempt to move a sofa up 
a staircase. Both of you have the same goal, namely, to bring the sofa up into 
another apartment, and the sofa would be too heavy for either one of you, to 
attempt to do so alone. Hence, each of you grabs one end of it. It is also clear to 
you that your actions influence each other, such that you must monitor and react 
to each other. Similarly, you can signal to your friend how you imagine to squeeze 
the sofa around the tight corner up ahead. You probably will not verbalize each 
and every intention, but you just push the sofa in one direction more than strictly 
necessary to signal a direction, or you catch the gaze of your friend by intently 
looking into their eyes, and then gaze into a direction you intend to go. A short 
nod on their side could signal that they understood. Both of you proceed just for a 
few seconds with the now shared and agreed upon plan, until you have to check 
in with your friend to coordinate again. 

Collaboration is highly necessary and not overly mentally taxing for humans. 
Nevertheless, when paying close attention to these collaborative processes that
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occur almost automatically, it seems that there are numerous different compo-
nents on different levels of abstraction at work. For example, how do we notice
the focused attention of others? Which mental processes let us adapt and align
our plans? How do we infer the plans of others? How do we make sure that the
other person is really on the same page as us? How do we choose which kind
of signal to use for which kind of information? How do we draw the attention of
others and signal attention on our part? One must consider all these questions
when implementing the capability of human-robot collaboration on a social robot.

In this chapter, we first contribute a discussion of results in psychology related to
this topic. Specifically, we review research on joint attention [Baron-Cohen 1994;
Mundy and Newell 2007] and theory of mind [Baron-Cohen 1997] with a focus on
the human gaze in physical tasks. These are important building blocks generally
required for the success of collaborative tasks in human-human interaction (HHI).
First, we properly differentiate the two terms and observe how theory of mind
builds on joint attention. Then, we focus on joint attention in the robotic context.
We contribute a review of different approaches employed by roboticists to provide
robots with joint attention capability or at least a technically feasible equivalent.
Finally, we propose a novel probabilistic robotic gaze controller for a joint action
benchmark between the human and robot proposed by Clodic et al. [2017], based
on building a tower out of various wooden blocks. For object-centered collabo-
rative physical tasks, this represents an approach to generate realistic, intuitive,
and interpretable gaze behavior. We report the initial results of a pilot study and
discuss how to include it into the joint action benchmark. Our contribution extends
a stochastic gaze controller for static scenarios to dynamic ones.

2 Joint Attention in Psychology

Joint attention has been studied since the 1970ies [Scaife and Bruner 1975]. Re-
search on joint attention in psychology yielded structural and procedural models,
as well as analyses whose cues are used to signal the state of joint attention
between humans. If we intend to have service robots in the future that share en-
vironments with human beings and provide help in everyday physical tasks, they
must be endowed with the ability to engage in joint attention [Krämer et al. 2011]
in a similar way as two humans.

Joint attention is the process of sharing one’s attention with another person, us-
ing social cues for coordination. The coordination effort focuses on a third object,
event, or stimulus [Akhtar and Gernsbacher 2007]. One of the earliest reports of
joint attention appeared 1975 in an article by Scaife and Bruner [1975] and stud-
ied the gaze following ability in infants. The experiment showed that only 30% of
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two to four month old children engage in gaze following, whereas from the age of
eleven months every infant is able to do so. To this day, a significant amount of
research is conducted on joint attention in child development.

How can we achieve something functionally similar to human joint attention in
Social Robotics? First, we consider some results of cognitive and social psychol-
ogy to better understand how joint attention empowers humans. Furthermore, we
consider the components constituting joint attention and how it is embedded in
the broader coordination process.

2.1 On Theory of Mind and Modeling Joint Attention

One insightful approach is to recognize joint attention as a necessary building
block for the more high-level mental capability of Theory of Mind (ToM). Tomasello
[1995] describe joint attention and ToM as relevant in the field of social cognition,
as they are concepts explaining how humans process information about other
humans in social situations. Children at the end of their second year of life already
possess the following capabilities: “1) They understand other persons in terms
of their intentions. 2) They understand that others have intentions that may differ
from their own. 3) They understand that others have intentions that may not match
with the current state of affairs (accidents and unfulfilled intentions).” [Tomasello
1995, p. 105]

The term “theory of mind” was coined by Premack and Woodruff [1978] and
comprises several mental capabilities that develop later in children, around the
ages of three to four. It allows them to represent more complex mental states than
intentions, namely: “1) They understand other persons in terms of their thoughts
and beliefs. 2) They understand that others have thoughts and beliefs that may
differ from their own. 3) They understand that others have thoughts and beliefs
that may not match with the current state of affairs (false beliefs).”[Tomasello 1995,
p. 104] 1

Baron-Cohen [1994, 1997] claimed a structural relationship between the sep-
arate mental modules of joint attention and ToM. In fact, they claimed that the
human ability they call “mind-reading” requires at least four components that build
on each other. Mind-reading is defined in the sense that humans can often infer
the thoughts, beliefs, plans, and emotional states of other people they observe or
think about, in short, reason about “mental things.”

1 Although the term joint attention originated in developmental psychology, other approaches in psy-
chology also provided results on the topic, some of which is covered in the following subsections.
In these, adults who exhibit a fully developed joint attention capability are the subject of the study.
As our robot model is also not developmentally inspired, we do not focus on child development for
the remainder of this chapter.
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Figure 1 Mind-reading system, adapted from Baron-Cohen [1994].

The four component system consists of the intentionality detector (ID), the eye-
direction detector (EDD), the shared attention mechanism (SAM), and the theory
of mind mechanism (ToMM) (Figure 1). The author claims the modularity to be a
necessary part of the model, as different clinical diagnoses can be explained by
deficits in specific modules. The ID interprets self-propelled motion of entities in
terms of its desires and goals. The EDD specializes in detecting eyes or eye-like
stimuli, recognizes the direction of the gaze, and enables the mental attribution
of the ability to see an observed entity. The purpose of the SAM module is to
integrate the two types of information provided by the ID and EDD. This module
already allows humans to determine whether another entity has the same target of
visual attention. The ToMM module builds on the SAM module and achieves two
goals: First, it allows inferring mental states in others from their observable be-
havior. Second, it allows us to generate explanations for observable behavior by
integrating these hidden mental states into theories [Langton et al. 2000]. ID and
EDD form dyadic representations (e.g., a cat chases a mouse (ID), or a cat sees
a mouse (EDD)). The SAM module, however, builds triadic representations that
are not possible only in the ID and EDD (e.g., I see a cat that chases a mouse).
Finally, the ToMM module is able to represent the full range of mental state con-
cepts. These are referred to as M-Representations and enable descriptions of
mental states, where an agent has an attitude toward a proposition (e.g., Johnny
believes that “the money is in the biscuit tin.”). There is research that builds on
this model in the fields of clinical, developmental, and comparative psychology
(where the latter studies the mental processes of non-human animals).
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Figure 2 An example of amental rotation task, adapted from [Just andCarpenter
1976].

2.2 Procedural Model of Joint Attention

Another approach to explain joint attention is to categorize processes involved in
a successful joint attention event. From observations in infants, the two core pro-
cesses are responding to joint attention (RJA) and initiating joint attention (IJA)
[Mundy and Newell 2007]. RJA refers to the ability to follow the direction of the
gaze and gestures of others. This allows to establish a common point of refer-
ence. IJA describes an infant’s ability to use gestures and eye-contact to direct
the attention of others. Targets of attention are either objects, events, or the in-
fant themself. Clinical research shows that developmental deficits arise in either
of these two processes separately. Comparative studies in non-human animals
show that animals have the capacity for one of these processes, while little to
none for the other. Chimpanzees, for example, can respond to, but rarely initiate
joint attention [Tomasello et al. 2005].

2.3 Eye-Mind Hypothesis

The gaze occurs first to gather information, while it also signals information to
observers, either intentionally or unintentionally. Just and Carpenter [1976] in-
troduced a simple, yet powerful idea, namely the “eye-mind hypothesis.” At that
point in history, cognitive psychologists strived to understand what was then called
the central processor of the humanmind. Their experiments involved eye-tracking
while performing mental rotation of Tetris-block-shaped three-dimensional objects
(Figure 2) as well as checking whether displayed sentences correctly described
the content of pictures next to them. The authors discovered relations between
the ongoing mental operation and the gaze fixation target.

In summary, they found empirical evidence that the “locus of eye fixations re-
flects what is being internally processed” and that the “locus of the eye fixation
can indicate what symbol is currently being processed” [Just and Carpenter 1976,
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p. 53]. The term symbol indicates a mental content or entity, something one can
think about. For example, when thinking about your favorite mug, your mental
representation of that mug is a symbol.

However, there are limits to the eye-mind hypothesis: Webb and Renshaw
[2008] argue that the eye-mind hypothesis is more likely to hold, when a person
is performing a visual task, as opposed to pure cognitive tasks or tasks involving
modalities other than the gaze.

2.4 Types of Gaze Behavior

As discussed in previous sections, there is strong evidence of some connection
of the mental focus of attention and the current gaze target. In situations where a
potential interaction partner is present, there are several plausible gaze targets.
Looking at objects or specific locations other than the interaction partner is referred
to as the deictic gaze. When two interaction partners are attending to each other’s
gaze it is calledmutual gaze, colloquially eye contact. Gaze following is the action
of attending to the gaze of the interaction partner, detecting their gaze direction,
and then focusing their own gaze onto the stimulus that is being attended by the
partner. Kaplan and Hafner [2006] also disambiguated the state of joint attention
from gaze events that appear similar, but have a lower degree of coordination: 1)
Simultaneous looking at an object that is triggered by a “pop-out” effect or salient
event; 2) Coincidental simultaneous looking at the same object; 3) Gaze following
of one agent, while the other pays no attention to the fact that they are being ob-
served; 4) Coordinated gaze at the same object, but attention to different aspects
of it (e.g., action intent (like playing with it), or aspect (like color)).

Gaze also plays a large role in pure conversation settings. For example, staring
at the other person is often uncomfortable, unnatural, and does not lead to a
smooth conversation experience for either participant. Therefore, gaze aversion is
often equally important and serves different roles: First, it regulates the intimacy of
a conversation. Secondly, it is utilized for turn-taking in a conversation. Gazing at
the addressee after an utterance while being silent indicates that the other person
should take the floor. Thirdly, averting the gaze indicates cognitive effort. Thus,
a speaker can signal that they are not yet done with their turn, even though they
are currently silently formulating a statement in their mind [Andrist et al. 2014].
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3 Joint Attention in Human-Robot Interaction

An envisioned goal for Social Robotics is close collaboration between humans
and robots, reaching beyond humans and robots working on different subtasks
that lead to a common end result (e.g., pick-and-place robots in production). Ac-
tual collaboration between humans and robots is a sequence of shared actions
toward a shared goal and requires coordination [Kolbeinsson et al. 2019]; in other
words, joint attention as employed in the sofa moving example mentioned in the
introduction. In our work, we explicitly focus on human-robot interaction (HRI)
use cases surrounding object manipulation (e.g., picking up objects) and exclude
settings with a stronger social focus.

There is no definitive theoretical model for joint attention on a robot. For imple-
mentation purposes, one approach is to view the desirable input-output relation
for a given scenario as the requirement and use whichever technique is available
and achieves the result. For example, a human and a robot can both generate
plans for solving a given problem, but their specific methods can differ.

Additionally, Krämer et al. [2011] argued that the width and depth of human
coordination capabilities in social contexts will be out of reach for technological
systems in the foreseeable future (although constant progress is being made).
We must instead direct our attention to artificial intelligence (AI) research and look
for feasible components that solve simplified problems or help with a small part of
the problem.

The authors split the problem of developing a ToM for Social Robotics into a
micro (actual interaction), meso (relationship building), and macro level (roles and
persona). On the micro level, they associate ToM, perspective taking, shared
intentionality, and common ground. Common ground refers to mental content
of which all interaction partners know that this content is known by everyone.In
relation to these levels, our work addresses a joint attention implementation on
the micro level, excluding considerations on the meso and macro level.

3.1 Implementing Joint Attention for HRI Tasks

HRI research has produced several results regarding joint attention implemen-
tations on robots. These include the capability of drawing attention to another
reference point, as well as establishing, monitoring, and ensuring joint attention
during an interaction. The interaction settings are either conversational with dif-
ferent points of interest in the environment or physical such as object handovers
or other object manipulations.
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These scenarios differ from pure conversational settings between a human and
a robot. Typically, joint attention HRI settings involve at least another object, lo-
cation of interest, or event besides the two agents. The human and robot both
measurably focus their attention on this third entity or even physically interact with
it. Imai et al. [2003] proposed an HRI joint attention mechanism in 2003. They
presented the difficulty of drawing a person’s attention to another reference point.
This includes how to make a person understand the communicative intention of
the robot, and how to deal with the person’s attention status. They implemented
the pointing and gazing functionality on a humanoid robot, enabled the robot to
perform the mutual gaze, and represented the person’s attentional focus as a
spatial coordinate. They conducted an experiment, where the robot acted as a
presenter of a scientific poster to a human participant. Results indicate that hu-
mans lookedmore frequently at the poster, when the robot displayed the proposed
attention mechanism.

Huang and Thomaz [2010, 2011] extended the Responding and Initiating Joint
Attention (RJA, IJA, Chapter 2.2) model by an explicit Ensuring Joint Attention
component (EJA). The EJA component in their framework encapsulates the abil-
ity to monitor another’s attention to verify that joint attention is reached and main-
tained. They describe a cannonical joint attention episode between two agents
comprising five steps: 1) Connection of two agents, where they become aware of
one another and anticipate an interaction; 2) Joint attention request by the initiat-
ing agent, where it focuses the attention on a third object and uses communicative
channels such as pointing, gesture, and voice; 3) Joint attention response, where
the other agent also focuses on the third object; 4) Monitoring, where the initiat-
ing agent ensures joint attention by switching the focus between the other agent
and the referential focus; 5) Joint attention is reached, the interaction continues.
The authors equipped their social robotic platform with a finite state machine, a
procedural representation of the described joint attention episode. The percep-
tion capabilities of the robot included face detection, marker detection to perceive
pointing actions, and speech recognition for a few phrases, which were used to
check the attentional state of the human interaction partner. The humanoid robot
had a movable head with two degrees of freedom and eyes with two degrees of
freedom, as well as movable arms for pointing and a speaker for verbal commu-
nication. The authors conducted several experiments. In the first one, the robot
had to show that it can respond to joint attention, by attending to objects that the
humans pointed at. In the other experiments, which were video-based, the robot
had to direct the attention of a human to a presentation as a tour guide, ensure at-
tention while delivering a verbal message and while giving directions. The overall
result indicates that robots with their joint attention implementation yielded better
results in the responding to pointing actions task, and were considered more nat-
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ural in the video-based experiments. Huang and Thomaz [2010] mentioned, that
it is unclear how to design the specific timings of the EJA component.

Pereira et al. [2019] created an autonomous gaze system for the Furhat robot (a
mountedmannequin head with an animated video-projected face) for a puzzle-like
spatial reasoning task conducted on a tabletop. Their attention system is split into
a proactive and a responsive gaze layer with different priority levels. Gaze events
of higher priority override those with lower priority. The timing of gaze shifts is
uniformly sampled from predefined ranges. The human participant, task objects,
and the surrounding environment (for gaze aversion) are possible gaze targets.
The proactive layer handles the gaze related to the speech acts of the robot (eye
contact, IJA at task objects) and idle gaze behavior through gaze aversion. In
the responsive layer, user speech activity and a detected mutual gaze led to a
mutual gaze, while gaze tracking and object tracking was used for RJA events to
gaze at objects. The system was then used to engage with the user during the
task, comment on their progress and provide hints for the correct move. In a user
study, self-reported data suggested that the robot with both responsive and the
proactive layers was perceived as more socially present than the robot with only
the proactive component, as only the former was able to react to the user and
thus engage in joint attention.

Joint attention capabilities have also been shown to improve collaborative phys-
ical tasks like handovers in HHI [Frankel et al. 2012], but also HRI. Grigore et al.
[2013] created a two layer architecture for physical robot-to-human handover tasks
for a humanoid robot. The first layer represents the physical state of the handover
as a Hidden Markov Model with the states “Robot pick up,” “Robot hold,” “User
grap,” and “Robot not hold.” These states, however, are only estimated by the
current and torque values measured in the robot hand. A higher-level layer was
then added that serves as an additional safety check to release a grasped cup to
the human under the right conditions. The authors observed that human users
performed a sequence of actions in a successful handover: browsing the envi-
ronment, looking at the target cup, (optionally looking at the cup repeatedly), and
finally grasping the cup. The second layer registers the gaze pattern of the human
by monitoring the head direction. Only if the described gaze pattern is detected
before registering a grasp attempt, the robot releases the cup. The extension of
the handover architecture has been empirically shown to result in fewer unsuc-
cessful grasp attempts.

Similarly, Moon et al. [2014] compared HRI handover scenarios with varied
humanoid robot gaze behavior. In an HHI handover study they detected two gaze
patterns of the agent handing over the object: The shared attention gaze is gaze-
directed at the projected handover location. In addition to this behavior, a turn-
taking gaze pattern occurs sometimes, which consists of establishing eye contact
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while reaching out. These findings were implemented in a humanoid robot, which
resulted in the experimental conditions of no gaze (baseline), shared attention
gaze, and the shared attention gaze plus turn-taking cue. The authors found that
human users reached for the handover object earlier in the two gaze conditions,
and reported a trend of self-reported preference for the turn-taking behavior over
the other two conditions.

3.2 Planning for Joint Human-Robot Interaction

As Baron-Cohen [1994] mentioned, humans are expert mind readers. Hence,
when a human observes another human in an everyday situation, the observer
most likely forms an idea about what the observed person is trying to achieve
with their current actions. For example, if you see someone in a kitchen opening
the cupboard drawer containing all the mugs, you will probably already think about
which drink they want to consume, while all they did was simply opening a drawer.
Notable, it is quite possible that the observed person will do something different,
but our experience tells us that getting a drink is the most probable goal given
such an observation. One research direction on Joint HRI is to explore methods
for simulating this human capability, namely AI planning.

We distinguish between symbolic and subsymbolic planning: In a formal lan-
guage, symbols are atomic tokens of a language. This means they cannot be
split into smaller units of meaning. Symbols are manipulated with some kind of
procedure to build more complex expressions. This is (mostly) comparable to our
spoken language with its single tokens, such as “cat,” “in,” and “tree.” From these
tokens one can build expressions “cat in tree” or “tree in cat.” One of these makes
more sense from our experience than the other, but both are correct expressions
in our language. In turn, the expression “cat tree in” would not be considered
as part of our language. There is simply no valid symbol manipulation sequence
that can generate this expression. Nevertheless, symbols alone do not have any
meaning in themselves, and the problem of assigning symbols to references in
the physical or social space is referred to as the symbol grounding problem [Har-
nad 1990; Coradeschi et al. 2013]. In contrast, subsymbolic planning involves a
more direct representation of the problem. Consider a map where one must find
the shortest route between two points. There are no tokens that are manipulated,
just path finding reasoning with the data provided by the map.

Generally, subsymbolic planning is often used for collaborative problems such
as social navigation (i.e., safely moving through a crowd of people [Mirsky et al.
2021]) or human-robot handovers, where the problem is represented and solved
in a task space like the Euclidean space of a suitable dimension. For more ab-
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stract or high-level planning problems, however, a symbolic approach makes the
problem formulation more compact. In this book chapter, we focus on such rep-
resentations.

Before formulating the problem itself, however, wemust consider our underlying
assumption, namely the rationality of all involved agents. Broadly, this means that
an agent would rather perform an action that results in a benefit to them, rather
than harm. In the frame of the problem definition, the question is how to define a
cost function, or even how to know that optimizing the expected cost for a problem
is even the right thing to do [LaValle 2006]. Assigning reward (or cost) values
to certain outcomes of a decision process may be intuitive. These may be of a
monetary value, or of a more subjective value, like choosing between washing the
dishes or sweeping the floor. Thus, every action is assigned a reward value. If the
action outcome is stochastic, then a reward distribution is assigned to each action.
An example of this is a game where an agent chooses between receiving 1000 €
or letting a coin flip decide whether they receive 2000 € or nothing. Although the
expected value of both actions is the same, most people will have a preference
for one or the other, depending on their inclination toward gambling. Thus, using
the expected value alone is insufficient to model the preferences of agents. This
is solved by deriving a so-called utility function for all action outcome distributions.
For a utility function to exist, a rational agent must be able to provide a consistent
ranking of different probability distributions over outcomes according to the axioms
of rationality [LaValle 2006]. Thus, each action outcome is assigned an utility
value. Finally, a cost function can be derived from the utility function.

Markov Decision Processes (MDP) can be used to solve problems in sequential
decision theory [LaValle 2006], where agents repeatedly chose actions according
to their current state. A single agent MDP is defined by 1) a non-empty state
space X, which is a finite or countably infinite set of states; 2) for each x ∈ X a
finite, non-empty action space U(x) with a termination action (it is applied when
reaching a goal state); 3) a finite, non-empty nature action space Θ(x, u) for each
x ∈ X and u ∈ U(x) (a nature decision maker represents uncertainty in the action
outcome); 4) a state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u); 5) a set of stages, which is either infinite or set to a
fixed, maximum stage (i.e., how many sequential actions can be taken before the
problem must be solved); 6) an initial state xI ∈ X; 7) a goal set XG ⊂ X, and 8)
a stage-additive cost functional L. The goal of the agent is to find a plan to reach
a goal state from the initial state. Because there are stochastic state transitions, a
policy π : X → U must be found for all x ∈ X that minimizes the cost. Alternatively,
π can be a mapping from a state to a probability distribution over the action space.
Then, this corresponds to a randomized instead of a deterministic strategy.
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Markov chains are a simplification of this model without an explicit decision
maker. Nature determines the outcome of the next state alone. Markov chains
are used to model stochastic processes and, like MDPs, fulfill the Markov assump-
tion (equation 1). X1, X2, . . . , Xt denotes the sequence of random variables up to
timestep t, where the outcomes are xi ∈ X. This means that only local informa-
tion, and not the entire history of the process is used to determine the probability
of the next state transition.

Pr(Xt+1) = xt+1|X1 = x1, X2 = x2, . . . , Xt = xt) = Pr(Xt+1) = xt+1|Xt = xt)

(1)

Generally, artificial agents have some sensing capability to determine the cur-
rent state they are in. However, due to nature, sensor errors can occur. This
leads to anoher type of uncertainty, besides stochastic state transitions, namely
state uncertainty. This means that the agent does not know for sure whether it
is in a single current state xt ∈ X, but holds a belief about the current state, ex-
pressed as a probability overX. Including this belief into planning lifts the problem
formulations from the state space into the state belief space.2

For joint action scenarios, it is important to model more than one active decision
maker. This leads to the inclusion of the game-theoretic concept of the two-player
nonzero-sum game [LaValle 2006]. One formulation is to extend the MDP defi-
nition by another agent. Herein the two agents (players) P1 and P2 have their
respective action spaces U1 and U2. In zero-sum games, there is only one cost
function L : U × V → R ∪∞, which one player regards as reward, and the other
player as cost. In the nonzero-sum game, however, each player has a different
cost function (like L), namely L1 and L2. Both players now aim to minimize their
costs according to their respective cost function. Thus, in such games different
degrees of cooperation can be formulated, from total cooperation to a zero-sum
game. This formulation can be lifted to sequential games on game states by ex-
panding the MDP definition by another player.

In symbolic planning problems, if the planning problem uses deterministic ac-
tion outcomes, a wide-spread approach in robotics is to employ classical planning.
A classical planning domain (i.e., a state-transition system) is a triple Σ = (S,A, γ)

or a 4-tuple Σ = (S,A, γ, cost). S is a finite set of possible states of a system. A is
a finite set of actions that an actor can perform. γ : S×A → S is a partial function
called the state-transition function. When γ(s, a), s ∈ S, a ∈ A, is defined, then a is
applicable in s, and γ(s, a) ∈ S is the outcome of the action. cost : S×A → [0,∞)

is a partial function with the same domain as γ, defining a metric, which is to be

2 Literature presented in this chapter as well as our contribution only concerns planning in state
space.
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minimized, such as the monetary cost or time. In this kind of representation, there
are the assumptions of a finite, static environment, no explicit time (except the
cost, if it is to be interpreted in this way), and no concurrency, indicating that ac-
tions cannot be performed in parallel. Actions are deterministic, which means that
the outcome of an action is known with certainty [Ghallab et al. 2016].

In the formulation above, there is a finite set of states (S = (s0, s1, . . . )) with
no specific relation to one another. A more succinct way of describing states is
by using state-variables (predicates) and objects. Hereby, states are defined as
specific instantiations of these state-variables. These state-variables can use ob-
jects as arguments. A concrete example is the planning domain blocksworld in
the Planning Domain Definition Language [Fox and Long 2003] (PDDL), which is
a formal planning language that is commonly used for robotic tasks that involve
planning in semantic domains. It is an approach to encode a classical planning
problem, derived from previous formal languages like the Stanford Research Insti-
tute Problem Solver (STRIPS) [Lifschitz 1987]. A PDDL problem is encoded by a
domain and a problem instance, where the domain describes the state-variables
and operators, which are uninstantiated action templates. Once an operator is
given parameters, it is called an action. Operators, like pickup, are defined with
objects as possible parameters (?ob), preconditions, and effects. Only when the
preconditions are met in the current state, the action is performed by applying
the effects of the action on it. This is done by adding and/or removing predicates
from a state. The problem instance describes the existing objects, the initial state,
and the goal. The solution represents a plan, which solves the problem. There
are PDDL versions that allow durative and concurrent actions, continuous and
conditional effects, etc., however, we disregard these options for simplicity.

3.3 Plan Recognition in Classical Planning

Classical, symbolic AI planning is an approach to endow a robot with a planning
capability suitable for joint HRI situations. However, it is only a part of the solution.
A robot must also be able to infer the goal and plan of the interaction partner. To
this end, classical planning plan recognition is employed [Ramírez and Geffner
2009, 2010; Sohrabi et al. 2016]. An advantage of this approach is the reuse of
the planner that the robot uses to generate its own plans. The plan recognition
problem is formulated as a triple T = ⟨P,G,O⟩, where P is a planning domain, G
is a set of goals, and O is a sequence of observed actions. When the sequence
O ends in a state that is a goal, the goal recognition is trivial; however, when the
observation ends in a state that is not a goal, the problem is to predict which is
the most likely goal, to rank these goals with regard to their relative probabilities,
or to assign probabilities to the different goals. Various approaches have different

161



Michael Koller, Astrid Weiss, Markus Vincze

ways of executing this, but their commonality is to transform the original planning
domain to accommodate the observations and subsequently compare the cost
of different plans. Different plans are generated for a single goal, e.g., one that
satisfies the observations and one that does not. When the cost of adhering to the
observation for a goal is significantly higher than reaching the goal without doing
so, that goal is probably not likely to be the actual goal of the observed actor. This
builds on the assumption of rationality of an agent, i.e., that one attempts to fulfill
their desires in an effective and efficient way.

3.4 A Benchmark in HRI for Joint Action

Situations that are simple and intuitive to solve for a human team, such as building
a specific tower out of wooden blocks on a table, prove to be complex and difficult
for current joint attention research. Therefore, this setting - a human and a hu-
manoid robot who attempt to build a block tower - is used as a recurring scenario
in joint action research [Johnson et al. 2009; Schulz et al. 2018; Barchard et al.
2020; Jensen 2021].

Pure plan recognition research often only treats problems that are already for-
mulated in formalisms like PDDL. Similarly, the problem formulation of plan recog-
nition does not deal with the continuous coordination effort that is necessary in
joint attention situations. Devin et al. [2017] combined classical planning in the
block world domain with the demands of joint action problems. In their study, they
set up a joint action scenario with a human participant and a PR2 robot3 (Figure
5, left). The PR2 robotic platform was equipped with several optical sensors and
two arms with pincer grippers. The setup includes fiducial markers on the blocks
to facilitate their recognition. The robot was able to perceive the world state (i.e.,
the current arrangement of blocks) and manipulate the blocks.

The robot and the human participant have a shared goal. They stand on oppo-
site sides of a table and attempt to build a specific block tower with blocks lying
on the surface. Howeer, each agent is only able to reach some of the blocks,
hence they must collaborate. To introduce another challenge, there is not one
single fixed sequence that results in the correct block tower (Figure 3). For exam-
ple, there are two places for putting the red blocks and each actor has access to
one of the two red blocks. They need to coordinate who picks which placement
spot. The following difficulty arises when the agents must place the block stack
green-blue-green. Again, each actor has access to only one green block. Thus,
the actors must coordinate who places the first green block.

3 https://robots.ieee.org/robots/pr2/, Image source: https://www.wevolver.com/wevolver.staff/pr2
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Figure 3 Joint action task described in [Devin et al. 2017]. Left: Initial configu-
ration. Right: Goal State.

The authors approach this scenario as a multi-agent planning problem. The
robot finds plans by modeling three discrete actors (itself, the human, and a ficti-
cious X agent) who can place the blocks. In valid plans, actions that are assigned
to the X agent mean that either of the two actors human or robot will perform the
action. Notably, in the example above, there could be multiple open actions at
once, e.g., placing the two initial red blocks in the center. In the shared plan,
when the next necessary step is an action performed by the human, the robot
waits for its completion. When the next necessary step is a robot action, the robot
performs it. However, whenever an action is assigned to the X agent, the robot
has different approaches for enacting this shared plan, namely acting lazily (i.e.,
waiting for a specified amount of time and watching whether the human will per-
form the action) or in a hurried way (i.e., the robot always attempts to immediately
perform an X action. Furthermore, agent assignments can change during the plan
execution, such that the plan must be recalculated after each step. For example,
when one actor places the first green cube, the placement of the second cube is
no longer an X agent action, as only the other agent has a green block left. This
demonstrates the complexity of this simple collaborative block world problem as it
already exposes numerous interesting and difficult aspects of joint action and re-
quires further research effort. Thus, to establish a standardized scenario, Clodic
et al. [2017] propose a joint action scenario similar to Devin et al. [2017]. Their
goal was to facilitate finding answers to the following questions: “What knowledge
does a robot need to have about the human it interacts with [...]?”; “What informa-
tion should the human possess to understand what the robot is doing and how the
robot should make this information available [...]?” [Clodic et al. 2017, p. 2] The
proposed simple HRI scenario has the following setup and assumptions:
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Figure 4 Left: Initial configuration. Middle and Right: The two possible goal
states.

The common goal of the human and robot is to build a stack of four blocks in a
specified order with a pyramid on top. They are on opposite sides of the table and
face each other. Each agent has access to two of the four blocks. There are two
pyramid pieces, one on either agent’s side of the table. Only one of the two agents
is supposed to place the pyramid piece at the end of the action sequence. The
agents are restricted to the actions of the block world domain, plus a handover
action, and a possibly support tower action.

Figure 4 illustrates the initial and the possible goal states. Both agents are
assumed to perceive the current world state and thus are able to locate objects
and assess their reachability by either agent. Finally, each agent is able to observe
actions of the other.

4 Toward a Gaze Mechanism for Joint Actions

As described above, one of the two core questions posed by Clodic et al. [2017]
is how a robot should signal information that is important to the human in order
to enable smooth collaboration. We argue that the gaze is a useful modality for
this specific benchmark task even for robots, as it is highly intuitive for humans
to interpret, and is perceived constantly without being bothersome (in contrast to
continuously verbalizing information, for example). It is furthermore potentially
easier to perform than other non-verbal behavior, e.g., pointing.

Conveniently, commonmobile service robotic platforms such as the PR2 byWil-
lowGarage or the Toyota Human Support Robot4 (HSR) (Figure 5) have head-like
extensions with two degrees of freedom that house forward-facing optical sen-
sors. Therefore, the head orientation represents in fact the direction of gaze.
Social humanoid robotic platforms, such as Pepper from Softbank Robotics5 or
Nao6 (Figure 6) have the same degrees of freedom in their heads and have al-

4 https://robots.ieee.org/robots/hsr/, Image source:
https://developer.nvidia.com/embedded/community/reference-platforms/toyota-hsr

5 https://www.softbankrobotics.com/emea/en/pepper
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Figure 5 Two domestic service robots. Left: Toyota Human Support Robot
(HSR). Right: PR2 by WillowGarage.

ready been used in gaze related HRI studies. Research has shown that their head
orientation communicates attention [Breazeal et al. 2005; Takayama et al. 2011]
and is interpreted as gaze by human participants. We, therefore, propose that the
gaze in the joint action benchmark will significantly smooth the interaction between
the human and the robot, as it has previously in the different communicative HRI
settings surveyed by Admoni and Scassellati [2017].

4.1 Comparison of Human-derived Gaze Mechanisms

It is important to model the gaze behavior of domestic service robots in a way that
it primarily does not impede their functionality, and secondly serves a communica-
tive purpose in joint attention and joint action situations. The human gaze is very
effective at doing both simultaneously. During object manipulation tasks, humans
gaze at task-relevant objects and locations [Hayhoe and Ballard 2005; Pelz et al.
2001]. This behavior is a rich source of information for an interaction partner in
collaborative scenarios. In the ideal case, a robot would use its gaze to improve
its belief about the current world state, as well as utilize the communicative as-
pect of gaze. Therefore, a model of the human gaze in joint action tasks can be
used as an initial heuristic. The most important characteristics of such a model
are the gaze locations and timings, i.e., when to look at what. Another, perhaps
less important factor, are the transition dynamics, i.e., which animation profile is
exhibited by gaze transitions.

When implementing a gaze model for a robot that interacts with another actor
and objects in its environment during a joint task, the question of when the robot
looks at a specific gaze target needs to be addressed. More specifically, which se-

6 https://www.softbankrobotics.com/emea/en/nao
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Figure 6 Two social humanoid robots by Softbank Robotics. Left: Nao. Right:
Pepper.

quence of gaze targets and fixation durations communicates the attentional (gaze)
focus of the robot to the human actor? We assume that the gaze is divided be-
tween the objects the robot manipulates itself, the object manipulations of the
human partner, and the human’s hands and face. The gaze at the objects that
the robot wants to manipulate is (at least at some point in the process) necessary
for the proper execution of the planned action. Thereby, the robot communicates
its own attentional focus through gaze. The gaze at the object manipulations by
the human is necessary to assess the current world state. The gaze at the face
of the human is necessary to ensure the joint attention status. Similarly, at each
point, the gaze of the robot could be interpreted by the human to draw conclusions
about the attentional state of the robot.

This might seem to overly complicate the block stacking benchmark task, how-
ever, it represents only an initial step to solve more difficult scenarios. Examples
of these include tasks with more than two actors, and tasks that include more
movement, such that not each important location of attention is captured in a sin-
gle camera angle, for example when objects are positioned further apart, when
actors do not face each other all the time, or when objects are occluded.
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4.2 Modeling the Sequence of Gaze Targets

Next, we discuss how to create a gaze model for the above-mentioned tasks.
Lehmann et al. [2017]; Acarturk et al. [2021] employed a specific methodology for
creating a gaze controller specifically for gaze aversion in conversational settings.
They recorded two eye-tracking datasets in dialogs between two humans, where
one participant was the interviewer and the other the interviewee. One dataset
was generated from the view of the interviewer, the other one from the view of
the interviewee, using a wearable Tobii Glasses 27 eye-tracker. For each inter-
view perspective they used a sequential data mining method to derive the most
common gaze shifts, where the following gaze targets were encoded: the face of
the dialog partner (referred to as gaze contact fixation by the authors), and gaze
aversion directions relative to the position of the face (down, up, left, right, and
diagonal directions).

More importantly for this book chapter, stochastic models are also used to
model gaze sequences. (First order) Discrete-Time Markov Chains (DTMC) de-
scribe sequences of gaze directions using theMarkov property assumption (Equa-
tion 1, Section 3.2), i.e., only the previous gaze target determines the probability
of the next gaze direction and the possible states are in the set
Ω = {center, up, down, left, right, up−left, up−right, down−left, down−right}.

A simplifying assumption was made, namely time-invariance, meaning that the
probabilities do not change depending on the position in the sequence. This al-
lows the gaze model to be represented as a Markov chain transition matrix of size
|Ω| × |Ω|. A cell matrix cell value pij represents the probability of changing the
gaze from target xi to xj and the rows must sum up to 1.

The authors argued that a gaze controller producing such stochastic behav-
ior will be helpful in HRI conversational settings. Further, they have future plans
to validate this idea by implementing it on a humanoid robot and conducting HRI
validation studies following themethodology of Andrist et al. [2014], where the pro-
posed model with proper gaze timings was tested against a baseline with static
gaze and a baseline with inverted timings (“anti-timings”). The study argued that
both baselines should lead to a worse evaluation of the robot by the human inter-
view partners than the proposed model.

This kind of gaze control is aimed at conversational HRI settings and has nu-
merous useful applications, such as tour and info guidance, receptionist duties,
etc. Mobile service robots such as the Toyota HSR can additionally perform object
manipulation tasks and require gaze control for them, as argued above. Provid-

7 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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Figure 7 Gaze data capturing during the pilot study. Left: Initial position. Middle:
Eye-tracked participant places a block from the reachable area. Right: Placement
of the pyramid block. Both participants can place their pyramid, and after a nego-
tiation phase, the other participant places the final piece.

ing a gaze controller for the joint action benchmark task described earlier is thus
helpful to handle more realistic scenarios in the future.

5 Data Collection for our Stochastic Gaze Control

We describe how to adapt the procedures from Lehmann et al. [2017]; Acarturk
et al. [2021] to a collaborative object manipulation task. In a pilot study, we recre-
ated the block stacking task with the pyramid top presented in Clodic et al. [2017]
(Figure 7). Two human participants sit opposite each other at a table. One of the
two participants per trial wore a PupilLabs Core8 [Kassner et al. 2014] eye-tracker
with monocular eye-tracking.

We tested two pairs of participants (n = 4). Each pair conducted two trials.
After the first trial, they swapped positions, such that each participant wore the
eye-tracker in one trial. All participants were briefed by the experimenter. The
participants were asked to read and sign an informed consent form. They were
instructed to collaboratively build a specified tower (from bottom to top: green -
red - lavender - blue - pyramid). Figure 4 depicts the view of the person wearing
the eye-tracker. This person was instructed to act as if only the red block, blue
block, and right pyramid is reachable for them. The person sitting opposite was
instructed to act as if they can only reach the green block, the lavender block, and
the left pyramid.

The participants were instructed to follow a set of rules: (1) Use only your right
hand. The task was simple enough for humans, such that non-disabled persons
can use their right hand even if it is not their dominant hand. (2) The right hand is
supposed to always be above the table. (3) The left hand is supposed to be out
of sight underneath the table. (4) Participants were asked not to rotate the blocks
while moving them.

8 https://pupil-labs.com/products/core/
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The participants were informed that this is not a test and that speedy execution
is not important. Starting a grasping action while the other person is still placing
their block was not forbidden. The blocks display fiducial markers facing the per-
son wearing the eye-tracker and participants were asked to grasp the block in a
way that does not occlude the markers. The placement position of the bottom
block was also marked on the table with fiducial markers. These rules and restric-
tions were implemented such that the resulting behavior is similar to the one of a
robot during such a task.

The two participants were asked to memorize and recite the correct block stack-
ing sequence before the experiment to avoid execution mistakes and to limit gaze
and other behavior that is not associated with shared plan execution. The par-
ticipants were not allowed to discuss any strategy before the task and were not
allowed to speak during its execution.

The participant wearing the eye-tracker is referred to as the robot (R), because
the recorded gaze behavior is meant to be implemented on a service robot in the
future. The other participant is referred to as human (H). X denotes the X Agent
(X). The resulting interactions included only actions that were in accordance with
the optimal plan:
(pickup H green) (place H green table) (pickup R red)
(stack R red green) (pickup H lavender) (stack H lavender red)
(pickup R blue) (stack R blue lavender) (pickup X yellow)
(stack X yellow blue)

Gaze behavior that results from these interactions thus depicts gaze behavior
for smooth interaction without errors. During the last step, where the two agents
need to negotiate who picks up their pyramid piece, gaze behavior indicative of
negotiation will take place. The generalization is naturally only possible for an ap-
propriately large sample size and only for populations with the same demographic
properties. In this chapter, only a preliminary feasibility check with a small sample
size is presented, and the obtained results serve as an exemplary outcome.

The goal of this experimental setup is to elicit successful collaboration and the
corresponding gaze behavior in the person wearing the eye-tracker. Large-scale
plan re-negotiations during the task must be avoided. Small-scale negotiations
(i.e., resolution ofX agent actions) fall within the capabilities of the planning formal-
ism. This choice is motivated by the consideration of the full robot architecture: In
problms that are more general than the chosen experimental setting, large-scale
plan deviations might occur. However, after each action (planned or unforeseen),
the visual sensors of the robot will detect the resulting world state, which will be
used as the initial state to the planning problem. Then, a new shared plan will
be calculated. This might result in a new planned sequence of actions. The robot
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gaze controller always acts with respect to a determined plan, as described below
in further detail. Thus, if a new plan is calculated, the gaze is adjusted according to
the newfound plan. Plan changes occur due to unforeseen actions; however, this
does not result in unspecified gaze behavior. The robot gaze always corresponds
to the belief of the robot and visualizing the belief of the robot through gaze is the
goal of this gaze controller.

During the trials, the strategy to overcome the ambiguity of who places the
pyramid was always solved with the “turn-taking” strategy, where the person who
placed the topmost rectangular block waits for the other person to place the pyra-
mid. In our small sample, the placement of the pyramid occured either immedi-
ately or after a short period of inactivity.

For each gaze data sample, we conducted the following evaluation: Using fidu-
cial markers9, as well as (the partner’s) hand and face tracking [Lugaresi et al.
2019] allowed the recognition of these objects in the eye-tracked video. By defin-
ing a 100 pixel radius around each target, we distinguish eye fixations of the other
person’s hand and face, as well as the placement location of the bottom block
on the table, as well as all other blocks and pyramids. Furthermore, we encode
fixations gazing at none of the above.

For each sample, a sequence of fixations is extracted from the gaze data, and
we create a DTMC transition model by counting the transitions. In this scenario,
this yields a 8× 8 matrix (pyramids are counted as one object). The gaze targets
are the face of the partner, the hand of the partner, the placement location on the
table, the four blocks, and the two pyramids, which are counted as one object due
to their interchangeability.

For this gaze controller, we disregard fixations that do not fall in the radius of
any target. If a fixation falls on a spot in the visual field that is currently in the
radius of more than one target, we count split transitions and mark more than one
object as currently active, until the gaze falls on a single object again.

The aggregated model in Table 1 was derived with the gaze model for every
sample. There are two possibilities of arriving at the probability values, which sum
up to 1 per row: Either the frequency counts of the transitions are averaged per
sample, and then the averaged matrices are added and again normalized per row.
This is the variant we chose, since it leads to equal representation of each sample.
Another method is to add all frequency count tables and only then normalize over
the rows.

The controller can then be applied to create gaze behavior by choosing a basic
timestep unit, e.g., one second (This varies with the task, and the robot embod-

9 https://april.eecs.umich.edu/software/apriltag
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Next Target

Target Face Hand Table Green Red Lavender Blue Yellow

Face 0.12 0.12 0.29 0.17 0.17 0.13
Hand 0.13 0.23 0.02 0.22 0.11 0.11 0.07 0.11
Table 0.11 0.37 0.08 0.25 0.04 0.04 0.11
Green 0.30 0.05 0.24 0.14 0.05 0.17 0.05
Red 0.10 0.10 0.25 0.12 0.23 0.10 0.10

Lavender 0.38 0.07 0.07 0.11 0.26 0.11
Blue 0.19 0.04 0.11 0.04 0.14 0.48

Yellow 0.67 0.17 0.08 0.08

Table 1 DTMC transition probabilities of eye-tracked locations.

iment.) and creating a gaze sequence by starting in a random or predetermined
(e.g., face) state. The next state is always sampled with the probability weights of
the row of the current state.

Further work is planned to split the gaze controller into two parts and to analyse
whether the gaze behavior in the action phase (placement up to the last block)
differs from in the negotiation phase (placement of either pyramid).

5.1 Creating a Gaze Controller for Time-Variant Scenarios

Table 1 indicates the specific objects the participants gazed at during the whole
task duration. This neglects an important factor, namely the dynamic nature of
the time-variant task. During the task, the world state is defined by the block
arrangement and whether an actor is currently grasping a block. It is clear to both
actors which block to grasp next (or whether to negotiate who should place the
pyramid top). For the plan execution, the following block to be placed has another
role to the actors of the current action than a block that has already been placed.
Therefore, we annotate the video samples with the current state of the world, i.e.,
which blocks have already been stacked (neglecting whether a block is grasped
or not). Thereby, we partition the set of blocks, pyramids and table placement
location into sets of past, previous, current, next, and future. The current block
is the one that must be picked up and placed at a specific point in time. The
previous block is the block that was placed right before the current block. Prior to
placing the first block, previous indicates the table placement location. The next
block indicates the block to be placed after the current block. Past and future
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Next Target

Target Face Hand Past Prev. Curr. Next Future

Face 0.08 0.08 0.19 0.11 0.19 0.33
Hand 0.16 0.19 0.09 0.27 0.20 0.09
Past 0.11 0.11 0.78

Previous 0.12 0.12 0.12 0.12 0.50
Current 0.20 0.35 0.19 0.22 0.03

Next 0.23 0.12 0.11 0.06 0.31 0.15 0.03
Future 0.33 0.50 0.17

Table 2 DTMC transition probabilities of eye-tracked locations in their dynamic
context of the plan execution.

blocks group blocks that have been placed before previous, and must be placed
after next, respectively. The controller in Table 2 is derived with this dynamic
assignment of object roles. Hence, we preserve the time-invariance assumption
of the gaze controller with this transformation from block identities to temporal
roles.

5.2 Future Work

We tested the described pipeline to derive a gaze controller with transition prob-
abilities based on a larger sample size. Careful attention to the validity of the
result must be paid, as numerous design choices have been taken in the aggre-
gation method of the different study participants and filtering of fixations in single
samples. Therefore, we propose a validation study, where a pre-programmed
humanoid robot and a human participant perform the described task. The robot
functions according to the same assumptions as the one described by Clodic et al.
[2017]. The robot acts in two different conditions: It can place the final piece proac-
tively (try to do it itself) or “lazily” (wait until the human places it). During the task,
the robot exhibits gaze behavior in accordance with the gaze controller derived
from the empirical data collection. There will be two baseline conditions, namely
one where the robot does not display any gaze behavior at all, and another one,
where the robot acts according to “anti-timings,” as in the study of Andrist et al.
[2014].

For the gaze controller, there are numerous possible elaborations. For exam-
ple, the state space of the temporal roles could be expanded by the belief of who
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the believed actor of that action is. The state space would then be {past, previous,
current, next, future}×{robot, human,Xagent}. The robot gaze could thus vary
when the robot believes that the human is about to perform the next action in con-
trast to when the robot believes that it is to perform the next action itself.

While the approach in Lehmann et al. [2017]; Acarturk et al. [2021], and Andrist
et al. [2014] has worked in conversation settings, it is unclear how gaze processes
with dynamic gaze targets are handled by a robot. As human-like object manipula-
tion capabilities are the current goal of service robotics research, human-like gaze
behavior in object manipulation tasks is also beneficial, as humans are known to
actively seek out information that helps solve the current task. This approach has
a counterpart in robotic vision, called active vision [Aloimonos et al. 1988]. Fu-
ture research can make use of the derived gaze timings to more reliably focus on
important aspects of a scene, according to the ongoing task.

6 Conclusion

In this chapter, we mainly focused on research in psychology and HRI on joint
attention, although there are numerous other related interesting subfields that in-
fluence how to think about joint attention in service robotics.

In psychology, attention is studied in numerous different scenarios, such as
sustained attention, vigilance, and other low-level models of attention. In develop-
mental psychology, research on the autism spectrum disorder in infants and devel-
opmental robotics explore how social collaboration abilities develop and emerge
in complex behavior frommore simple prerequisites. Studies in neuroscience and
psychophysics focus on the neurological processes leading to the attention phe-
nomenon. Differential psychology studies how personality traits lead to different
modes of attending to stimuli.

Similarly, for AI/robotics, there are numerous fields that deserve amention in at-
tention research. Visual attention is an inductive bias, often used in visual pattern
recognition and machine learning research. Multi-agent reinforcement learning
deals with the emergence of communication protocols between untrained agents
and how they attend to each other to solve complex collaborative tasks. In dif-
ferent computational cognitive architectures, joint attention may be a feature that
emerges from the dynamic interplay of different architecture components. In ma-
chine vision, object detection plays a critical role regarding which objects can be
paid attention to. Only if an object is detected, segmented, or classified, it will
be able to enter the center of attention. In planning and scheduling, there are
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numerous different paradigms with many different frameworks, of which a single
one was chosen as the focus in this chapter.

To summarize this chapter, first, structural and procedural models of joint at-
tention from the psychological perspective were discussed. The special relation
between ToM and joint attention was of particular interest. We then focused on
gaze as the main sensory modality. Information gathered through gaze not only
provides necessary information to calculate mental representations of one’s sur-
roundings, but it is also driven top-down to focus on areas that are crucial to form
a coherent explanation. This gaze behavior can be a source of information for
observers.

Second, we reviewed how these insights are used to create robotic implemen-
tations for different joint attention or joint action scenarios. The scenarios included
conversations with locations of interest other than conversation partners or collab-
orative physical tasks with different manipulable objects.

Third, decision-theoretic and classical planning were reviewed for their use in
such collaborative physical tasks. Special attention was paid to plan recognition
and the usefulness of a benchmark (building a tower out of blocks) for joint action
in HRI.

Finally, we proposed a method for learning a stochastic gaze controller for such
tasks from data. The joint action benchmark of jointly building a tower was used as
experimental foundation. We presented a method to preserve the time-invariance
assumption of the stochastic controller by assigning temporal roles to objects.
These roles are assigned dynamically by checking the current world state and the
shared plan. This was followed by an outlook on future research needed for the
development of a novel gaze mechanism for joint actions in HRI.

Clearly, the work presented in this chapter only is a building block to a sig-
nificantly larger research problem, namely how to enable humans and robots to
succeed in dynamic collaborative tasks. However, it also demonstrates that at-
tention is a topic that must not only be considered relevant for HRI research, but
for the entire robotics field.
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Robot Learning from Humans in Everyday Life 
Scenarios
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Abstract

Robots need to be able to learn about novel environments and acquire new capabilities during deployment. Robot 
learning from humans is a paradigm to enable the human user to teach robots certain information and skills without 
programming knowledge. In this chapter, we provide an overview of this domain and present some of our work as 
concrete examples. First, we address grounded language learning with the goal to create connections between 
words and references (e.g., objects, locations) in social environments. We present our incremental word learning 
systems using the Pepper robot. Following that, we introduce to learning low-level actions from demonstrations. 
We present our systems with an industrial robotic arm and a dexterous robotic hand. Then, we address the role of 
the teacher in the learning process. We investigate the human factors that are important for facilitating the learning 
process and present the results of our user studies. We conclude with open challenges and opportunities for further 
research.
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1 Introduction

Robots are increasingly being placed in unconstrained environments, such as 
homes, where they must adapt to new situations. They cannot be preprogrammed 
to perform every task with every object in every environment. They need to be 
able to learn about new tasks with unseen objects in novel environments. Learn-
ing from users’ input is one way to acquire this knowledge. Examples of infor-
mation provided by the user could include demonstrating a task or providing lan-
guage feedback via speech. Robotic learning from humans enables novice users 
to teach new tasks to a robot without extensive programming knowledge. There-
fore, the topic of learning from human teachers has received increased attention 
in recent years [Ravichandar et al. 2020].

Chernova and Thomaz [2014] motivate learning from humans using robots in 
the household. Vacuum cleaning robots have become ubiquitous in recent years. 
They can be placed in an unknown environment and start operating immediately. 
They can even create a map of the environment to navigate from room to room 
autonomously. This works well as long as certain constraints are met, such as a 
flat floor without stairs, cables, or other obstacles.

A general-purpose household robot must complete a much wider and more 
complex set of tasks. A user would expect it to empty the dishwasher, clean the 
bathtub, or store objects in their designated storage location. These tasks are 
not only more complex in terms of manipulation and perception but also need to 
be performed in less constrained environments. Each household is unique and 
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different from other households. There could be similarities that can be exploited,
such as the same type of existing object (e.g., cupboards, drawers, or fridges) or
the same type of room (e.g., kitchen, bathroom). However, the storage location
of certain objects, such as plates, mugs, or cookie jars, can be unique and arbi-
trary for each home. These conditions cannot be preprogrammed into the robotic
knowledge base in the factory but must be learned by a robot, once it arrives in a
new household, similar to a new person moving in. There has to be the possibility
for the user to extend the robot’s knowledge and modify its behavior. Learning
from demonstrations (LfD) methods attempt to learn information, and action poli-
cies (i.e., how to perform a task) from examples provided by humans.

Additionally, household robots must be controlled by users directly. A popular
and intuitive approach is to use voice commands such as “Put the strawberry jam
into the food storage cabinet.” Modern speech recognition algorithms perform
well and can convert a spoken language to text even from a distance, as demon-
strated by stationary voice assistants integrated into speakers at users’ homes
[Berdasco et al. 2019]. A more challenging task is to make sense of what has
been said. A robot might not know which object is meant by “strawberry jam”,
what location by “food storage cabinet” and maybe not even how to perform the
action “put”. “Grounded Language Learning” [Matuszek 2018] is the process of
assigning words to references in physical and social spaces. It is a subfield of
robotic learning from humans but is often not mentioned in the context of LfD.

Human factors are an important consideration when learning from human teach-
ers. Many papers focus on algorithms for learning policies from demonstrations.
The role of human teachers is often overlooked. Especially, novice users cannot
be treated as infallible oracles who always provide perfect demonstrations to the
robot. Instead, users are part of the learning loop and influence the final perfor-
mance of the robot immensely. A learning system must consider the human in
the loop and accommodate their needs.

The field of “Robotic learning from humans” is very broad, with many different
application fields. However, we focus on two domains as an example to provide a
starting point for discussing the human factors connected to the learning system.
The main contributions of this chapter are:

• We give an introduction to the field of grounded language learning and
present our framework with the Pepper robot. It is focused on iterative lan-
guage learning and being transparent towards the human teacher.

• We discuss the topic of learning low-level actions from human demonstra-
tions and give an overview of recent approaches. We present our setups
with an industrial robotic arm and a dexterous robotic hand in simulation.
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• We investigate different human factors involved in the learning process such
as the teacher’s workload, self-efficacy, transparency and trust. We present
the results of our experiments with a robot teleoperation setup, a language-
learning setup and an interaction scenario.

In Section 2, we provide a brief overview of the field of “grounded language
learning,” highlighting our two approaches with the Pepper robot. Section 3 dis-
cusses “learning of low-level actions” with examples using industrial robotic arms
and simulated robotic hands for dexterous manipulation, with a special emphasis
on input methods. In Section 4, we discuss the teacher side of the learning loop to
identify human factors that must be considered when building learning systems,
such as workload, self-efficacy, and trust. Section 5 concludes the paper and
mentions opportunities for further research in this field.

2 Grounded Language Learning

Robots are increasingly being used in environments where theymust be controlled
by untrained nonexpert users. Using one’s voice to give commands or commu-
nicate intent is a very natural approach in everyday life. Therefore, speech is a
very popular modality for giving instructions to robots and has been extensively
studied [Matuszek 2018].

Grounded language (also known as situated language) connects the natural
language to references in physical and social spaces [Tellex et al. 2020]. For ex-
ample, the word “mug” can be connected to a class of objects, the word “fridge” to
a storage location different for each home, or the word “put” with a series of motor
controls dependent on the specific object. The purpose of grounded language
learning is to create these word-reference connections.

Many datasets have been introduced because of the various scenarios to which
grounded language learning can be applied. An early example was the MARCO
dataset [MacMahon et al. 2006], which addresses the problem of navigation in-
structions. It consists of navigation instructions for a simulated robot (e.g., “With
the wall on your left, walk forward.”). The goal of the system is to understand and
follow these instructions with a simulated robot. Other examples of datasets that
can be used as starting points for language learning are object detection datasets.
They provide natural language class labels for the images. Imagenet has many
class labels (e.g., snail, broccoli, teapot) [Deng et al. 2009]. It uses the WordNet
[Fellbaum 1998] hierarchy of sets of synonyms that describe meaningful concepts
by adding images to each set. Other datasets extend image labels to describe en-
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tire images, such as “a kid sitting on the side walk eating a slice of pizza.” in the
COCO dataset [Lin et al. 2014].

Robots have a various sensors that enable them to use different modalities
for grounded language learning such as detected objects, human movements,
and recognized actions. Multimodal datasets are used to cover more modalities
of real-life scenarios than the above-mentioned. Gaspers et al. [2014] present
a dataset where human participants show object manipulation actions to a robot
and explain what they are doing. It includes video, audio and human posture data.

We introduced the action verb corpus dataset geared toward object manipu-
lations [Gross et al. 2018], consisting of 390 simple actions (i.e., take, put, and
push) of 12 humans following pictured instructions of tasks and describing what
they are doing. It includes audio, video and motion data of hand joints and ob-
jects. The dataset is annotated with utterance transcriptions, part-of-speech tags,
which object is currently moved, and whether a hand touches an object, or an
object touches the ground/table. This type of cross-modal and cross-situational
data can be used to create systems that learn from humans demonstrating ac-
tions while explaining what they are doing. A robot could infer the object name of
a manipulated object and the name of the action. The action could be defined by
its outcome or by its trajectory. The data can also be used by the robot to replicate
the presented action.

Cooccurrence statistics of words and references are often used in computa-
tional models that learn from this type of cross-situational data [Krenn et al. 2020].
Taniguchi et al. [2017] provided an overview of different approaches. However,
these methods often require large datasets or batches of examples for learning,
which is often disadvantageous when deploying a robot in a new environment to
learn about new concepts from a human teacher. Additionally, noisy real-world
data collected by a robot usually differ from those provided on datasets. Consider
a situation where to teach a new concept to a robot, the user must first gather
a dataset, which is of course cumbersome and not feasible for a robot at home.
However, an incremental learning system uses each new sample to update the
probability of a word-reference pair.

We introduced a word-learning system for the Pepper1 robot, as a concrete
example, in Hirschmanner et al. [2018a]. The goal is to learn word-object and
word-action mappings in a human-robot interaction scenario. The setup and sys-
tem architecture are shown in Figure 1. The human teacher demonstrates actions
(i.e., take, put, push) to the robot and explains what they are doing. The system
infers the type of action from the movement of an object obtained from an object
detector processing visual data. The output of the speech recognition module

1 https://www.softbankrobotics.com/emea/en/pepper
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Figure 1 A user performs an object manipulation action (left). Overview of the
system architecture (right) used for the language learning system. Tracked ob-
jects are used to identify actions and then aligned with the utterances. Normalized
pointwisemutual information is used to estimate object/action-word cooccurrence.
From Hirschmanner et al. [2021].

is aligned with the action to create utterance-situation pairs. An example of an
episode with two utterance-situation pairs would be <I take the box - ACTION1
OBJECT1>, <and put it next to the can. - ACTION2 OBJECT1 OBJECT2>. We
use the normalized pointwise-mutual information (npmi), which is a measure of
the likelihood of an object/action-word cooccurrence. The npmi value is updated
after each detected situation-utterance pair. We propose two extensions to this
system to increase transparency for the human teacher, in Hirschmanner et al.
[2021]. These extensions will be addressed in more detail in Section 4.

The approaches described above usually treat the robot as a passive observer.
However, unlike a computer program, a robot is an embodied agent, which can
actively request new information by directing the attention of the human teachers
toward some unknown references through pointing, gaze, or verbal utterances.
This can also be motivated by findings in the developmental psychology of chil-
dren during language acquisition. They actively request the names of objects
using deictic gestures, such as pointing or gaze [Krenn et al. 2019]. A robot can
formulate full sentences to acquire knowledge of its surrounding. At public events,
we experimented with a Pepper robot that points at objects and formulates ques-
tions about the objects pointed at [Hirschmanner et al. 2018b]. The questions did
not only refer to the name of an object (i.e., “How do you call this object?”) but
also to its function (i.e., “What do you use it for?”) and the users’ preferences
(i.e., “How do you like it?” “What does it mean to you?”). We used a relatively
simple approach that uses part-of-speech tagging to identify nouns, verbs, and
adjectives in users’ responses. The number of occurrences of each word in these
categories is summed up for each object, providing the robot information about
the objects modeled using the cultural space model [Schürer et al. 2018]. In this
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preliminary study, we looked at how human teachers respond to questions from
robots.

This section provides a brief introduction to grounded language learning. We
want to motivate further development of incremental and active word learning sys-
tems for robots, similar to Bisk et al. [2020]. For a general introduction to robots
that use language, we refer to Tellex et al. [2020].

3 Learning Low-Level Actions

When deploying a service robot at home, it can already perform certain actions,
such as grasping objects and placing them somewhere. In our example of the
household robot, the user might give the voice command “Put the salad bowl
into the dishwasher.” Assume that it has already learned which object is meant
by “salad bowl” and which location by “dishwasher” through grounded language
learning. There could be a problem in which the robot puts the bowl into an unsat-
isfactory position or is unable to place the bowl at all. The user will probably know
a good strategy for positioning the bowl in the dishwasher. The user can teach the
robot the low-level action of placing this specific bowl into the dishwasher using
an LfD algorithm.

When creating an LfD system, the following numerous design decisions must
be addressed. Which input method is used by the teacher to demonstrate the
action? How is the demonstration represented (i.e., which state space is used)?
Which algorithm is used to learn the presented demonstration? We give a short
overview of the different possibilities to address these design decisions. At the end
of the section, we present some concrete projects where we implement learning
action policies from human demonstration. We direct the interested readers to
Billard et al. [2016] and Chernova and Thomaz [2014] for a general introduction
to the topic. A detailed view of the algorithms used in LfD can be found in Osa
et al. [2018]. Recent advances are summarized in Ravichandar et al. [2020].

A human teacher can provide demonstrations to a robot in several different
ways. Teleoperation is a popular method. The human teacher controls the robot
via some device, such as a keyboard, mouse, or joystick to make the robot di-
rectly perform the action that is to be learned, which is often cumbersome and
difficult to do for novice users [Whitney et al. 2020]. To overcome these limita-
tions, researchers investigated using methods, such as motion tracking to repli-
cate the human motion on the robot [Chernova and Thomaz 2014]. Kinesthetic
teaching is an alternative to teleoperation, in which a human manually guides the
end-effector of the robot to perform the task [Ravichandar et al. 2020]. For tele-
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operation or kinesthetic teaching, the sensor data of the robot (e.g., joint angles,
end-effector positions, and torques) can be recorded directly and used as input
for the machine learning algorithm. We compare kinesthetic teaching to teleop-
eration on a Pepper robot concerning to the workload on the human teacher in
Hirschmanner et al. [2019], which is summarized in Section 4.

Alternatively, some approaches exist that learn directly from observing a hu-
man performing an action, making teaching much easier and more natural to the
human teacher. The drawback the machine learning problem becomes more dif-
ficult because the human movements must be encoded or mapped to the robot’s
movement [Ravichandar et al. 2020]. Other technical problems may occur if the
human performs the task in a way that the robot cannot properly perceive (e.g.,
fast movements, occlusions, or leaving the field of view).

The next design decision is how to store and process the demonstrations. In
this chapter, we will mainly discuss deriving a policy π : S → A that maps from a
state vector s ∈ S to a low-level action a ∈ A. Other approaches learn policies
that output complete trajectories instead of low-level actions. Instead of policies,
alternative learning outcomes in LfD can be plans or a reward function for re-
inforcement learning (i.e., Inverse Reinforcement Learning) [Ravichandar et al.
2020]. The choice of state space S and action space A depends on the con-
crete problem statement. A very simple state space S may represent the current
time, resulting in an open-loop control, where no feedback on the robot or its en-
vironment is provided to the policy. Additionally, the robot’s sensor data, such
as end-effector positions, joint angles, joint velocities, and torques can be used.
Sensor data from the environment of the robot can also be included, which can
be high-level, such as the pose of an object received by an object pose estimator
or low-level, such as a light detection and ranging sensor (LIDAR) or raw camera
images.

Similarly, the action spaceA can be defined in different ways. Low-level policies
could output torques applied to each robot joint. Motion controllers can be used
to output actions as end-effector poses or velocities in Cartesian or joint space.
Actions can also be defined as trajectories or even sub-tasks as a high-level repre-
sentation. The choice of granularity of the state and action space depends on the
concrete problem, as previously stated. Naturally, the state depends on the avail-
able sensors and the teaching approach. For example, when using kinesthetic
teaching, using raw camera images as the input might be problematic because
the human teacher moving the robot is only present during the demonstration
phase. Thus, the image would necessarily be different when the robot executes
the action without a teacher. Additionally, a balance should be found between
providing enough information to accurately represent the demonstration and not
introducing too many dimensions to make the machine learning problem too dif-
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ficult (“curse of dimensionality” [Bellman 1957]). Similarly, for the action space,
a simple representation that can still perform the required task is preferable. For
example, for a task involving pushing an object on a table, the two-dimensional
(2D) position of the end-effector at a fixed distance to the table might be sufficient.
If a device is used to teleoperate the robot, the obvious choice for the action space
would be the same domain that is used by the demonstrator, such as the steering
angle and acceleration for a remote-controlled car.

A recorded trajectory τ consists of a state vector s and an action vector a per
timestep. The complete demonstration D can then be defined as

τ = [s0,a0, s1,a1, . . . sT−1,aT−1, sT ,aT ], D = {τi}Ni=1 .

Training a policy π(s) = a from these demonstrations can be seen as a super-
vised learning problem. Over the years, many different supervised learning ap-
proaches have been applied to LfD. Popular approaches include support vector
machines (SVM) [Chernova and Veloso 2009], Gaussian mixture models (GMMs)
[Khansari-Zadeh and Billard 2011], and Gaussian processes [Choi et al. 2016].
In recent years, artificial neural networks (ANNs) have gained popularity (e.g.,
Rahmatizadeh et al. [2018]; Zhang et al. [2018]; Young et al. [2021]). There have
also been many approaches that address specific problems occurring in LfD. For
example, the DAGGER algorithm reduces the number of demonstrations required
and, therefore, the load on the human teacher by generating additional demon-
strations [Ross et al. 2011].

Hand Tracking

Demonstrations Learned Policy

Figure 2 A user teleoperating a Kuka robotic arm using hand tracking to perform
a task. The demonstrations are used to learn a policy represented as a neural
network. From Hirschmanner et al. [2020].

We present an LfD approach in Hirschmanner et al. [2020], as a concrete ex-
ample of how to address the different design decisions. We trained a policy on the
Kuka LWR IV+ [Bischoff et al. 2010] robot to push a box to a certain position on the
186
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Figure 3 Overview of the system. The dashed lines represent the procedure for
collecting demonstrations for training. The continuous lines represent the infor-
mation flow during policy execution. From Hirschmanner et al. [2020].

table. The demonstrations were recorded using a teleoperation setup based on
hand tracking from an RGB webcam. The setup is shown in Figure 2. The state of
the robot and its environment are represented as an RGB-D image and the end-
effector position of the robot in Cartesian space at the five previous timesteps. For
the actions, we use the relative end-effector position∆p ∈ R3 in Cartesian space.
These representations were chosen to capture the entire scene without requiring
a separate method to obtain the object pose. The policy is represented as a con-
volutional neural network (CNN) based on the architecture of Zhang et al. [2018].
It includes two auxiliary tasks during the policy training to predict the current and
final end-effector position from the input images. The architecture is shown in
Figure 3. We recorded 98 demonstrations at a 10Hz sampling rate. For the eval-
uation, we placed the box in different positions on the table, which were unseen
during the demonstrations. The robot started to push the box in 86.1% of the trials
and reached the goal in 58.3%.

These results indicate some problems with pure supervised learning methods.
Demonstrations will not cover each possible configuration in the problem space.
During the policy execution, the agent encounters situations unseen during the
demonstrations. The situation when the source domain distribution differs from
the target domain distribution is referred to as a “covariate shift” [Osa et al. 2018].
Several data-efficient trajectory-learning methods addressed this generalization
problem recently. Task-parametrized models of movement [Calinon 2016] use
GMMs and represent demonstrations in different frames of reference to improve
generalization. Probabilistic movement primitives [Paraschos et al. 2018] repre-
sent movement policies in the form of a distribution of trajectories that can be
conditioned on desired via-points to adapt to new situations. Kernelized move-
ment primitives [Huang et al. 2019] extend this idea to a nonparametric approach
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Translate to
robotic hand

Inverse
kinematic

model

Leap Motion Controller

Collect human finger positions

Simulated robotic hand 

Physics engine PyBullet

Figure 4 Teleoperation system used to collect the dexterous manipulation tasks.
The Leap Motion hand tracker is used to control a simulated robotic or human
hand in simulation. The two tasks are shown in the left column of the image on
the right. From Zahlner et al. [2020].

geared toward high-dimensional inputs and extrapolation of demonstrated trajec-
tories. One limitation of these trajectory-learning approaches is that the task pa-
rameters, such as object poses or obstacles, must be provided to the system
when executing the policy, for example, by computer vision algorithms [Pervez
et al. 2017]. Additionally, they require a motion planner that converts the trajec-
tory to low-level actions.

One problem with supervised learning is that a learned policy will not outper-
form the teacher. Researchers have worked on using expert demonstrations in
reinforcement learning, as an alternative. In this alternative learning paradigm,
the agent can discover new policies through exploration. A reward function is
required, which returns a value depending on how beneficial a certain step is to
achieve the goal of the task. The machine learning algorithm attempts to maxi-
mize the sum of rewards over all timesteps. In the previous box pushing example,
this reward function could be the negative distance of the box from the goal. Re-
inforcement learning is usually very time-intensive because actions that solve a
certain task must be discovered through exploration. When expert demonstra-
tions that solve the task are available, this process can be speed-up (e.g., Nair
et al. [2020]).

Similarly, we used demonstrations to accelerate the learning process for two
dexterous manipulation tasks in Zahlner et al. [2020]. The setup consists of the
Shadow Dexterous Hand2 in the PyBullet3 simulator. The tasks involved reaching
a target position for each fingertip and manipulation of a block to rotate it to a cer-
tain orientation. Demonstrations are provided using a teleoperation system that
tracks the human hand using a Leap Motion Controller4 to replicate the current

2 https://www.shadowrobot.com/dexterous-hand-series/
3 https://pybullet.org
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hand poses on the simulated hand. The teleoperation system and the different
tasks are shown in Figure 4. The state space consists of the absolute angle and
velocity of all 20 joints and additional task-specific data. For the reaching task,
the current and target Cartesian positions of the fingertips are added to the state.
For the object manipulation task, the cube’s current and target Cartesian poses,
as well as its linear and angular velocities, are provided. The action space of
both tasks consists of the 20-dimensional noncoupled hand joints. Both tasks
were designed to be similar to the ones presented by Plappert et al. [2018]. We
trained the policy with deep deterministic policy gradient (DDPG) [Lillicrap et al.
2016] and hindsight experience replay (HER) [Andrychowicz et al. 2017]. The
policy was represented as a neural network. We used demonstrations for pre-
training the policy using supervised learning. We saw a speed-up compared to
reinforcement learning without pre-training from 2.2 · 106 to 1.2 · 106 timesteps for
the reaching task. No comparable speed-up was observed for the cube manip-
ulation task. We hypothesize that this is because the goal in the manipulation
task is often reached randomly during exploration and thus does not profit from
demonstrations. Additionally, the quality of the demonstrations was low because
of the difficulty in manipulating a cube in the simulation without haptic feedback.

Learning the reward function from expert demonstrations is another approach
to combining demonstrations and reinforcement learning. This domain is known
as inverse reinforcement learning (IRL). Themain idea is that the teacher performs
demonstrations that optimize an unknown reward function. IRL approaches try to
find this reward function. This problem is ill-posed since the expert’s behavior
could be explained using multiple functions. The retrieved reward function is then
used to train a motion policy using standard reinforcement learning algorithms in
a subsequent step. Because of to the limited scope of this chapter, we refer to
Osa et al. [2018] and Arora and Doshi [2021] for an extensive overview of IRL.

4 Human Factors

In the previous sections, we have addressed how a robot can use the information
provided by a human teacher to acquire new skills and knowledge. We did not
discuss the influence of the learning process on the user and vice-versa. The
human teacher is a part of the learning loop and significantly affects the final per-
formance of the robot. A learning system must consider the humans in the loop
and accommodate their needs. However, few studies have been conducted to
evaluate the role of the teacher and how the teaching behavior influences a learn-

4 https://www.leapmotion.com
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ing system [Sena and Howard 2020]. See Vollmer and Schillingmann [2018] for
a recent review.

When designing a system that learns from humans, several factors must be
considered. The teaching process must be designed in a way to keep the work-
load of the user minimal. Low mental and physical workloads lead to higher qual-
ity and quantity of training data by keeping the human teacher motivated and en-
gaged [Cui et al. 2021]. The quality of the training data directly affects the learning
outcome.

In the context of learning low-level actions, we compared theworkload of human
demonstrators using a virtual-reality teleoperation setup and kinesthetic guidance
in Hirschmanner et al. [2019]. The human teacher wears a virtual reality headset
with an attached Leap Motion Controller to teleoperate the Pepper robot shown in
Figure 5. The camera stream is displayed in the headset. The current head orien-
tation of the user is imitated by the robot. The hand pose is tracked using the Leap
Motion Controller, which is also transferred to the robot. Thus, the robot imitates
the upper-body movements of the user. The robot’s physical dimensions and con-
straints are different from those of humans. However, humans can still complete
the task successfully because they receive immediate feedback and can adapt
to the situation. We compared this setup to kinesthetic guidance, in which users
moved the arms of the robot manually. In a user experiment (n=21), participants
performed an object grasping task and a pouring task that required controlling both
of the robot’s arms. Most of the users preferred the teleoperation system for both
tasks stating because it was easier to learn. The workload was measured using
the NASA-TLX questionnaire [Hart and Staveland 1988]. Compared to kinesthetic
guidance, the workload of the users was lower when using teleoperation for the
pouring task. We also observed a reduction in task duration for the pouring task
when using the teleoperation setup, as an objective measure. Contrary to these
results, previous research demonstrated that users preferred kinesthetic guidance
to teleoperation [Fischer et al. 2016; Praveena et al. 2019]. This is not contradic-
tory; rather, it emphasizes the importance of tailoring the teaching method to the
concrete scenario.

Another important factor that contributes to the workload of the teacher is the
number of demonstrations required to train an algorithm. Approaches based on
deep learning often require many demonstrations to reach satisfactory perfor-
mance. Mandlekar et al. [2021] report that 40 demonstrations from a proficient
teacher were sufficient to train simple actions, such as lifting an object. For a
more complex task, such as transporting a hammer from the workspace of one
robot arm to the workspace of another robot arm with a handover operation, the
success rate dropped from 72% when using 200 demonstrations to 30.7% when
using 40 demonstrations. To overcome the sample inefficiency of deep learn-
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Oculus Rift Virtual Reality Headset
Leap Motion Hand Tracking Sensor
RGB Camera

(a) Teleoperation Setup (b) Grasping Task (c) Pouring Task

Figure 5 The human demonstrator uses the virtual reality teleoperation setup
to control the Pepper robot to perform two different tasks. The human head and
hand poses are then transferred to the robot. From Hirschmanner et al. [2019].

ing approaches, one can start with a pretrained policy and only ask for human
demonstrations if the robot fails (e.g., DelPreto et al. [2020]) or a policy trained for
a different task and apply meta-learning with a low number of demonstrations to
transfer it to a new task (e.g., Finn et al. [2017]). Algorithms that learn trajectories
instead of low-level actions using GMMs or movement primitives (e.g., Calinon
[2016]; Paraschos et al. [2018]; Huang et al. [2019]) are designed to require few
demonstrations (<10) but require task-parameters, such as object poses.

Additionally, the teacher’s mental model of the learning system should align
with the actual model to facilitate good teaching behavior of the user [Cakmak
and Thomaz 2014]. A robot needs to be able to communicate the current state
of the learning system and how the teacher can improve teaching examples to
the teacher. These topics are also investigated in the context of transparency in
human-robot interaction and explainable artificial intelligence (AI) to increase trust
in robots [Papagni and Koeszegi 2021].

Robots, as embodied agents, can expose the current state of the user through
various means, such as visualization, movements, text, speech, lights, and im-
agery [Wallkötter et al. 2021]. A combination of these different modalities is of-
ten used. In Hirschmanner et al. [2021] we investigated the efficacy of different
modalities. We integrated transparency mechanisms using visualization and de-
ictic gestures in our word-learning system described in Section 2. As a visualiza-
tion, the Pepper robot displays its current lexicon and the output of the speech
recognition system on its screen. The robot uses deictic gestures, such as look-
ing and pointing at objects to either request additional information or to announce
the learned word of the object. This behavior is motivated by early-childhood lan-
guage learning in humans [Krenn et al. 2019]. We did not observe any significant
performance difference between the base, visualization, and deictic gestures con-
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ditions in a user experiment (n=32). However, the users’ knowledge of the sys-
tem’s state positively correlates with the self-reported perception of control and
perceived learning success. Users exhibited more interactive behavior when the
robot used deictic gestures which might help keep the user engaged, but it also
increases noise in the training data. These results encourage further investigation
of the transparency mechanism in LfD systems.

Additionally, a learning system should consider factors that influence the user’s
self-efficacy and perceived control when teaching the system. Self-efficacy is the
confidence of a user in being able to perform actions to accomplish a certain task
[Bandura 1982]. In the context of a teaching system, self-efficacy is the confi-
dence in being able to teach a new task or concept to a robot. High self-efficacy
is important to increase the user’s willingness to engage with a robot and to keep
them motivated to interact with a learning system in a long-term deployment [Püt-
ten and Bock 2018; Robinson et al. 2020].

The way the robot interacts with the user can influence these factors. We con-
ducted a user experiment (n=29) in Zafari et al. [2019] to study the effect of the
interaction style. The task of the user was to build a house of cards. The Pepper
robot observed the user and interacted with them using natural language output,
such as “Very nice, keep up the good work.” The speech output was controlled by
a researcher following a script. In the person-oriented condition, the robot used
motivational sentences to support the user. In the task-oriented condition, the
interaction was focused on the task progress and pushed the participant to im-
prove their performance. In the neutral control condition, the robot was only a
game instructor and commented on the task progress. We did not tell the partic-
ipants that they were demonstrating how to build a house of cards to the robot,
but the scenario could be used for an LfD system. We found that users in the
person-oriented condition reported higher self-efficacy and that they experienced
the interaction as less frustrating than in the task-oriented condition. Additionally,
participants performed the task significantly longer and thus stayed engaged for a
longer time in the person-oriented conditions than in the neutral condition. These
results indicate that the interaction style of a robot can also be used to positively
influence the human demonstrator and as a consequence, they might be willing
to provide more training data in learning from a human setting.

Another important factor to investigate is how trust is influenced in learning from
humans setting. A low trust may cause the human teacher to abandon the sys-
tem. Over-trusting the system may lead to the user ending the teaching process
before the system has learned a task reliably and failing to monitor the trained
agent, which may result in unwanted behavior or even accidents [Lewis et al.
2018]. DelPreto et al. [2020] found that low accuracy in an LfD task reduces
trust and increases the users’ workload. They also found tendencies that users
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overestimate the robot’s skills. Hedlund et al. [2021] found that when robots fail
to perform the learned tasks, participants’ trust in the robot and themselves as
teachers decreases.

5 Conclusion and Open Challenges

In this chapter, we presented our work and set it into the context of the field of
robotic learning from humans. First, wemotivated the need for grounded language
learning of social robots, i.e., connecting words with references such as objects.
Learning these connections is required for a robot to follow voice commands. We
presented two word-learning systems using the Pepper robot. Following that, we
addressed the field of learning low-level actions from demonstrations. We covered
the main design choices that must be made when developing a learning system.
We presented two systems with different robotic setups to demonstrate different
design decisions. Furthermore, we discussed the role of the human teacher in the
learning system. We emphasized the importance of considering factors, such as
workload, self-efficacy, and trust during the teaching process to obtain good train-
ing examples and keep the user motivated. We presented three user studies for
different robotic setups that investigated workload, transparency, and self-efficacy.

The field of learning from human users is emerging, as more robots move into
living spaces. There are still many open problems to be tackled. Robots need
to be able to acquire information from spoken language to make interactions with
humans more natural. Grounded language learning methods that can incremen-
tally process the high-dimensional multimodal data that robots will encounter in
everyday situations must be developed [Bisk et al. 2020]. Additionally to spoken
language, they need to be able to understand nonverbal communication to better
interact with humans.

Learning action policies from demonstrations has accelerated in recent years
[Ravichandar et al. 2020]. Many algorithms have been developed to address the
special conditions and constraints associated with learning from human teachers.
However, it is often difficult to compare the approaches because of the limited
number of available benchmarks using real demonstrations provided by humans
that have advanced other fields such as computer vision or reinforcement learning.
Two of the few examples are Mandlekar et al. [2021] and [Sharma et al. 2018].
New standardized benchmarking methods on real robotic systems will be required
to advance the field of learning motion policies from human demonstrations.

Demonstrations are usually task-specific and do not cover the entire problem
space. A promising direction for further research is to develop algorithms that
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generalize better across tasks, domains, and robots. A combination of demon-
strations with reinforcement learning could be useful in this regard and should be
examined further. Demonstrations can be used to shorten the long training times
of reinforcement learning algorithms. Additionally, these systems often require
tedious hyperparameter tuning, which is not feasible for novice users. Further re-
search is required to develop methods that require few hyperparameters and are
easy to tune automatically.

The role of the teacher and teaching behavior have been under-represented
in the robotic learning from humans pipeline [Vollmer and Schillingmann 2018].
High-quality training data from the human teacher facilitates the learning process.
To ensure this, the teacher must be considered as a part of the learning loop
when designing a system. Further research should aim to create non-intrusive
and intuitive teaching systems to minimize the workload of the user and keep
them motivated and engaged.

If we want to deploy robots that learn from humans in users’ homes, the effect
of the learning system on the users must be studied further. Users will only accept
these systems, if they see an added value in them and if they enjoy using them
[de Graaf et al. 2017]. We believe that self-efficacy is an important concept in
that regard. We must investigate which factors influence the trust of the user in
the system to find a balance between not overtrusting the system and trusting it
enough to use it continuously.
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Abstract

Robots are developed in the hope to solve various problems that our societies currently face. One of the most 
pressing problems is the aging population, placing increasing pressure on the care system as people live longer, and 
often with chronic diseases. Robots are also considered as a possible solution to this problem. However, imagina-
tions of the role of robots are frequently driven by technology-utopian top-down agendas without regard to practical 
realities of everyday life of the older adults and other stakeholders they seek to support. This chapter presents an 
overview of assistive technology for the aging population, along with building blocks for Human-Robot Interaction 
(HRI) research in these contexts, and the challenges that arise. On this basis, we characterize ways of conducting 
bottom-up research to explore trustworthy HRI for older adults in home environments.
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1 Introduction

Robots and artificial intelligence (AI) are being developed to solve various prob-
lems that our societies currently face. One of these problems is associated with 
the aging population. The demographic changes placing pressure on care sys-
tems [World Health Organization 2020b], as people live longer and often with 
chronic diseases. In order to support people’s independent daily living and to also 
meet the increasing demand of caregivers and for aging in place, there is a trend 
to envision assistive robots as a next generation of technical solutions for Active 
and Assisted Living (AAL). Studies have already demonstrated positive effects of 
robots on people’s health and well-being in living spaces [de Graaf et al. 2015; 
Klamer and Allouch 2010; Tsiourti et al. 2014; Wada et al. 2005, 2004; Broadbent 
et al. 2016].

However, despite technical advancements and many years of research on a 
wide range of AAL technologies since the 1990s [Haslwanter et al. 2020] – in-
cluding safety systems, security, monitoring, communication, and entertainment 
systems, and home automation [Turner and McGee-Lennon 2013; Haslwanter 
et al. 2020]) –, there is still a limited uptake even of basic AAL technology on the 
market [Haslwanter and Fitzpatrick 2017], let alone more complex solutions such 
as assistive robots.

One reason for this limited uptake of assistive technologies might be related to 
the issue of trust. Previous research suggests that older adults use a language in-
dicating distrust in relation to digitalization [Knowles and Hanson 2018]. Similarly, 
trust is also considered a critical topic in Human-Robot Interaction (HRI) research 
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[Billings et al. 2012; Schaefer 2016; Mcknight et al. 2011]. A lack of trust has also 
been identified as a barrier for older adults using health information technologies 
[Fischer et al. 2014], which can therefore be anticipated as a challenge for assis-
tive robots in this context.

Another reason for an anticipated limited uptake of assistive robots might be 
related to unrealistic conceptualizations of human-robot constellations and older 
people at home. Previous research has revealed discrepancies between what 
older adults expect from future assistive robots and what state-of-the-art tech-
nology can actually deliver [Weiss and Spiel 2021; Vincze et al. 2014]. Given 
that AAL research has been going on since the 1990s, there is a growing body 
of research applying and studying these technologies in use also outside of con-
trolled laboratory settings [Lussier et al. 2020; Turner and McGee-Lennon 2013; 
Masterson Creber et al. 2016; Axelrod et al. 2009]. From this research, we are 
gaining a growing understanding of the contextual factors regarding putting these 
technologies to work. Nevertheless, to date, studies on assistive robots in rela-
tion to trust have largely been lab-based [Schwaninger et al. 2019] and studies 
outside of the lab are often too short and/or focus only on specific aspects, such 
as usability and technology acceptance (e.g., [Bajones et al. 2019]), but not ad-
dressing the whole adoption process. Therefore, we do not have any concrete in-
sights on the role of trust and the impact of contextual factors for assistive robots 
in older people’s homes, yet.

This chapter presents a review of recent related work on assistive technology 
and robots (being a recent instance of assistive technology) to support aging at 
home. First, we present a section on assistive technology for the aging popula-
tion, discussing related work on tech- nology for active and assisted living, robots 
as a recent instance of these, and perspec- tives on aging. We then discuss 
building blocks for bottom-up research on assistive robots. These building blocks 
include related work on how to understand living spaces, and people and stake-
holders there. We follow with a section where we propose to explore trustworthy 
HRI for older adults in home environments taking bottom-up approaches. Here, 
we also describe various case studies (to be found in referenced publications) 
on investigating peo- ple’s practices, on co-creation methods for robots, and on 
longitudinal studies with robots. We close the chapter with a Conclusion section.

2 Assistive Technology for the Aging Population

AAL technologies have been promoted for many years for aging in place. In this 
section, we aim to gain a better understanding of assistive technology for the 
aging population. We therefore discuss related work on technology for active and 



205

Bottom-Up Research on Assistive Robots for the Aging Population 

assisted living, on robots as a recent instance of assistive technology, and on 
perspectives on aging as such.

2.1. Technology for Active and Assisted Living

AAL technologies have been promoted for many years [Haslwanter et al. 2020; 
Choukou et al. 2021] as a way to meet the desire among older adults to stay 
healthy and live autonomously in their homes for as long as possible [Bieg et al. 
2022; Peek et al. 2015; Liu et al. 2016; Bloom and Luca 2016]. Their goals are 
among others, to enable an independent, active, and self-determined life [Vimar-
lund et al. 2021; Brauner and Ziefle 2021; Nilsson et al. 2021; Dupuy et al. 2016], 
stay socially connected [Schomakers et al. 2018; Blackman et al. 2016] or to 
feel safer in everyday life at home [Turjamaa et al. 2019]. Relevant technologies 
include safety systems, systems for security, monitoring the health status [Lussi-
er et al. 2020], communication, and entertainment, as well as home automation 
[Turner and McGee-Lennon 2013; Haslwanter et al. 2020]). Notably, that the term 
AAL has also been motivated by a research funding scheme of the European 
Union for Aging Well in the Digital World1. Furthermore, the term – given its broad 
scope – overlaps with related terms such as smart home technologies or geron-
technologies, and the distinction between these terms is not clear-cut.

AAL technologies are either implemented as individual services or comprehen-
sive systems that combine a number of different services (multi-service systems). 
While specific contexts of application, use cases, and desired outcomes regard-
ing AAL technologies are highly diverse, they share two general characteristics: 
First, they are ambient, meaning that they are seamlessly integrated into people’s 
environment, realized through a wide array of different embedded technologies 
[Schomakers et al. 2018], such as camera and sensor systems integrated into 
the immediate home environment, wearable devices [Correia et al. 2021], or 
smart everyday-objects [Cicirelli et al. 2021]. Second, they assist people. Exam-
ples include the implementation of a voice-controlled smart home environment, 
designed to support people with visual impairments [Vacher et al. 2015] (where 
smart homes can also involve robots [Do et al. 2018]; more about these later), 
or rehabilitation technologies designed to assist people by motivating them and 
promoting exercises after a stroke [Axelrod et al. 2009].

Blackman et al. [Blackman et al. 2016] identified three generations of AAL. The 
first generation of AAL technologies includes community, social, and personal 
response systems, mostly designed as wearable devices that can be used to 
trigger an alarm to contact a person in a 24-h call center. The benefit is poten-
tially decreased stress levels among older adults and their family and caregivers; 

1 https://www.aal-europe.eu/
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as well as the ability to live at home longer. Meanwhile, a disadvantage is that 
the person actually must wear the device, which can be stigmatizing, and also 
remember to do so in high-risk situations such as when getting up at night. The 
second generation of AAL technologies is characterized by integrated electronic 
components which not only respond to, but also detect emergencies with sen-
sors [Blackman et al. 2016], such as a fall, or environmental hazards [Sixsmith 
2000]. These technologies are used within the home only, and they may feel in-
trusive. The third generation of AAL technologies combines the benefits of earlier 
technologies, aiming to detect and report problems and also prevent them. By 
integrating computing systems and assistive devices, such as wearable and envi-
ronmental sensors into living spaces, they monitor both the environment and the 
older person. A potential benefit is also reduced stigma associated with monitor-
ing and assistance by embedding technology within everyday objects and hiding 
them [Blackman et al. 2016].

2.2. Robots as a recent Instance of Assistive Technology

A recent instance of AAL are assistive robots, which are embodied agents2. The 
variety of tasks that such assistive robots are envisioned to take over is manifold. 
In the broader scope of healthcare, one of the application areas includes medical 
robotics. Medical robots are being used increasingly, for example, to support sur-
gical procedures [Nwosu et al. 2019]. There are robots used for pain relief [Azeta 
et al. 2018], and studies propose assistive uses of robots in dementia or care of 
older adults [Nwosu et al. 2019]. Robots are also proposed to enhance health 
and psychological factors of people in general and older adults in particular, for 
example, by providing companionship [Cifuentes et al. 2020]. Researchers have 
worked on robotics for tele-healthcare [Azeta et al. 2018], for instance providing 
assistance and being remotely operated by a doctor [Martinez-Martin and del 
Pobil 2017]. Health-related applications also include robots for rehabilitation (e.g. 
Auto Ambulator), including neuro-rehabilitation [Krebs et al. 2021]. Other work 
has proposed mobile robots to aid physiotherapists in their work [Gerling et al. 
2016]. There are also various applications of AI in healthcare, for example, pro-
cessing and analyzing patient data [Amisha et al. 2019]; and while these do not 
necessarily require robots per se, they may assist doctors in primary patient care.

Other types of service robots were also proposed for home environments. 
They can be very broadly defined as “assistive devices designed to support peo-
ple living independently” [Martinez-Martin and del Pobil 2017], for example, by 

2 Note, what constitutes a robot is not clear cut, especially in comparison to other assistive tech-
nology. Robots are often characterized as embodied agents [Feil-Seifer and Matarić 2009]; and 
they are also treated as a separate entity in academic disciplines, see e.g. https://humanrobotin-
teraction.org
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assisting with mobility, household tasks, and monitoring safety and health [Marti-
nez-Martin and del Pobil 2017]. Because these robots need to adapt to the living 
conditions to some extent, they require a certain degree of complexity [Marti-
nez-Martin and del Pobil 2017]. Furthermore, they are embodied. They can assist 
in mobility (such as Friend II), or support in fetching and carrying (such as Boltr). 
Robots have been designed for personal care, (e.g. Bestic) and for cleaning (e.g. 
the vacuum cleaner robot Scoooba) [Werner et al. 2015]. They can be also in-
tended for older adults to feel safer and stay longer in their homes by providing 
fall prevention measures, as well as emergency detection and handling [Marti-
nez-Martin and del Pobil 2017; Bajones et al. 2018].

Assistive robots can offer functionalities for social purposes, for example, 
telepresence robots to connect to other people (e.g. Giraff). Companion robots, 
such as Hector and the seal robot Paro, are intentionally designed as emotional 
agents [Werner et al. 2015]. They are designed to proactively assist older adults 
in everyday tasks, reduce stress and promote well-being, to enhance social inter-
action and elicit emotional responses [Martinez-Martin and del Pobil 2017]. Po-
tentially, companion robots also include entertainment robots (e.g. Ifbot) [Werner 
et al. 2015], or social robots for therapy and care [Cifuentes et al. 2020]. As an 
example of social robots, pet-like robots are proposed to increase well-being of 
patients during hospital stays [Cifuentes et al. 2020]. Similarly, baby-type robots 
are designed for being taken care of an older person requiring nursing care, as 
part of Babyloid-centered therapies for promoting motivation to older adults [Mar-
tinez-Martin and del Pobil 2017].

2.3. Perspectives on Aging

While assistive technologies aim to target older adults, there is no universal 
agreement on what aging and age (in particular old age) actually mean. There 
are furthermore various perspectives across cultures and generations [Palmore 
1999], and across research disciplines. Broadly, the different approaches and 
understandings of aging can be found under the umbrella term ‘gerontology’. Dif-
ferent conceptualizations of aging can be either implicitly or explicitly embodied 
into technology design [Harley 2011; Fitzpatrick et al. 2015], which is why we aim 
to reflect on the forming of these conceptualizations.

Different definitions of aging are used at the policy level. The World Health 
Organization (WHO) promotes Active Aging [World Health Organization 2002], 
where aging is regarded as the process of optimizing opportunities for health, 
participation, and security in order to enhance the quality of life over time [World 
Health Organization 2018; Foster and Walker 2015]. Active Aging applies to in-
dividuals and groups, as well as entire populations [World Health Organization 
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2018]. Another term employed by the WHO is Successful Aging [Bowling and 
Dieppe 2005], which also has a proactive, but rather normative approach. It con-
sists of three elements, including the reduction of disease and disability, mainte-
nance of high cognitive and physical functioning, and active engagement with life 
[Rowe and Kahn 1997]. A term that is being used also by the WHO more recently 
is Healthy Aging, which places focus on “creating the environments and oppor-
tunities that enable people to be and do what they value throughout their lives” 
[World Health Organization 2020a]. Not having any physical or mental diseases 
is not a requirement for healthy aging, as it is more about how these conditions 
are handled to support well-being, to enable older adults to remain a resource 
(e.g., to their families, communities and economies); with a particular focus on 
creating environments that minimize the exposure to health risks, access to qual-
ity health and social care, and a focus on the opportunities brought by aging 
[World Health Organization 2020a].

While these perspectives on aging at a policy level seek to promote a rather 
active lifestyle, participation and quality of life, other perspectives on aging have a 
different focus. A dominant view tends to conceptualize aging from a bio-medical 
or from a social point of view. Here, aging is also associated with an accumulation 
of loss, and “an ongoing ‘diminishment’ of function” [Fitzpatrick et al. 2015]. From 
a bio-medical point of view, aging is reflected in physical, biological and cognitive 
aspects of functioning, and it is also addressed through various types of health-
care services [Harley 2011]. As a person’s cognitive performance changes over 
time, the neurobiological changes are regarded as a decline, for instance, due 
to losses of cognitive capacity, like memory. Besides these bio-medical models, 
there are social models of aging: Activity theory is intrinsically linked to a loss 
of participation in society and in social roles beyond retirement [Harley 2011; 
Fitzpatrick et al. 2015]. From this perspective, aging adults who engage in daily 
activities that they perceive productive age successfully. They may, for example, 
engage in volunteering, care-giving and self-development [Karim et al. 2018]; ac-
tivities in which there is furthermore a value of social interaction. According to this 
perspective, people’s level of activity is further linked to life satisfaction, which 
also affects a person’s view on themselves (self-concept) [Diggs 2008]. Another 
social model of aging is disengagement theory. From this point of view, disen-
gagement is regarded as an adaptive response to aging, and increasing social 
withdrawal with age is regarded as normal and healthy. Older adults voluntarily 
transfer the power to younger generations; which is even regarded as beneficial 
for both the aging society and individuals [Diggs 2008]. Both bio-medical mod-
els and social models of aging place emphasis primarily on the deficits of aging 
[Harley 2011; Fitzpatrick et al. 2015], and they see older people as rather passive 
recipients of social and medical intervention. They ignore the subjective experi-
ence and individual adaptations made in day-to-day life.
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In contrast to a focus on decline, aging as adaptation is covered in other stud-
ies. Here, aging is regarded as a positive developmental lifespan process [Erik-
son and Erikson 1998]. The model of Lifespan Development postulates eight 
successive stages of individual human development that are influenced by bio-
logical, psychological and social factors throughout the lifespan [Orenstein and 
Lewis 2020]. According to Erkison’s Lifespan development, a person’s identity is 
adapted in line with one’s life stage. Middle and late adulthood in particular are 
regarded as relevant, because active and significant personality development 
also takes place at these stages. Further, the stage of old age is concerned with a 
conflict between integrity and despair or disgust, where the individual looks back 
and reflects, also gaining wisdom [Erikson and Erikson 1998]. Tornstam [Torns-
tam 2005] extended Erikson’s lifespan development with an additional stage in 
life, Gerotranscendence. In this additional stage, individuals tend to become less 
self-occupied, increasingly feeling affinity with past generations, and decreas-
ingly interested in superfluous social interaction. They may also experience a 
decreased interest in material things, and positive solitude becomes increasingly 
important to them [Tornstam 2005]. 

Another perspective suggests that developmental opportunities of “successful 
aging” take place when there is a compensation for age-related declines by de-
veloping other capacities, namely by selectivity with optimization and compensa-
tion [Baltes and Baltes 1990]. From this point of view, older adults can promote 
their quality of life by selecting particular life goals over others. They can acquire 
and coordinate personal resources for selected goals (optimization) and employ 
alternative means to reach a certain goal (compensation) [Harley 2011]. Accord-
ing to Socio-emotional Selectivity, perceived proximity of death can affect older 
adults’ selectivity. The perspective is based on the assumption that social contact 
is motivated by a range of different goals, ranging from basic survival to psycho-
logical goals. The importance of these goals fluctuates depending on our age, 
in particular, emotional regulation increases with older age, while the acquisition 
of information, and the desire to affiliate with unfamiliar people becomes less 
important. Therefore, socio-emotional selectivity triggers increasing emotionally 
meaningful and socially-oriented goals. In this manner, older adults avoid super-
ficial social contact and seek to deepen intimacy [Carstensen 1992; Carstensen 
et al. 1999]. Joyce and Loe argued that older adults are active adaptive agents 
to technology. They argue that this group of people does not consist of passive 
consumers, but “technogenarians” who creatively utilize and adapt technological 
artifacts to fit their needs [Joyce and Loe 2010]. With this in mind, assistive tech-
nology must be designed in a way that people are able to adapt it to their specific 
needs, also taking into account their home environment and stakeholders. Spec-
ifying these needs requires certain building blocks to be considered in the design 
process, as outlined below.
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3 Building Blocks for Bottom-Up Research on Assistive 
Robots

While assistive technology has been developed since many years for aging in 
place, there are certain building blocks that need to be considered apart of the 
technology itself for aging. Given that bottom-up research as it is presented here 
involves an engagement with situated experiences, such building blocks include 
at least living spaces (such as different types of homes), and people and stake-
holders living and working in these environments. These two building blocks are 
characterized in the following.

3.1. Understanding Living Spaces

Different types of living spaces are often implicitly or explicitly considered for ag-
ing, such as private homes and institutional care homes, where home is certainly 
a culture-specific term. According to previous research, home can be regarded 
as an abstract concept related to a wide set of associations and meanings. It is 
a physical space with subjective attachments to it [Pani-Harreman et al. 2021], 
which holds a symbolic meaning [Moore 2000]. The multifaceted aspects of 
home can be described as “a place, a relationship and an experience” [Gillsjö 
et al. 2011]. In a study conducted with older adults in particular, home has been 
conceptualized as a place that has been built together for a long period of time, 
a relational place, a place “closest to the heart” [Dahlin-Ivanoff et al. 2007], an 
experience, and freedom. It has been associated with security (due to the familiar 
neighborhood, memories and functionalities), and freedom (being a place for re-
flection, a social meeting-point, and leaving your own mark) [Dahlin-Ivanoff et al. 
2007]. It is associated with belonging, and the experience of home of older peo-
ple in particular has been associated with a movement between the well-known 
present and the unknown future (i.e., as there may be a day where one has to 
leave home) [Gillsjö et al. 2011]. Moore also points out that the following basic 
terms have been frequently associated with home: privacy, security, family, inti-
macy, comfort, and control [Moore 2000]. Studies concerning changes of home 
due to relocation, aging or physical or/and cognitive frailty [Leith 2006; Renaut et 
al. 2015; Case 1996] indicate that aging in a familiar environment is also likely to 
have a positive impact on the wellbeing of older adults in later life [Pani-Harreman 
et al. 2021; Van Dijk et al. 2015]. Certainly, aging at home is also connected to 
financial aspects like the opportunity to receive care at a lower cost [Pani-Harre-
man et al. 2021].

Conceptualizing home is important, because of the way in which technology is 
envisioned to be used at home, which may have an effect on design choices. In-
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novations may have changed the way we perceive home, as well as the physical 
quality of the home itself. For example, telephones used to be an important part 
of home, often situated in an easily accessible place. This communication spot at 
home has now become more flexible, through the use of mobile devices. When 
considering technology installed for telehealth, research suggests that rehabil-
itation technologies can have an impact both on physical arrangements of the 
home and on how home is perceived and felt, which must be considered when 
designing these technologies [Axelrod et al. 2009]. With an increasing number 
of digital applications to be used at home, the quality of the home as a place can 
change. With an increasing use of health-related applications, home can be per-
ceived as an extended care facility [Boyne and Vrijhoef 2013]. A potential risk is 
designing technical artifacts proscribing fragile, home-bound users, where older 
adults are envisioned to be bound to their physical homes through the use of as-
sistive technology. In contrast, people may want to maintain their social networks 
also in places outside the home [Aceros et al. 2015]. If robots are designed for 
home environments, home as a place and associated home practices need to be 
taken into account to promote quality of life. For example, home organization is 
relevant to consider for HRI [Cha et al. 2015], and as are power relations [Lee 
et al. 2017a]. These are also connected to people and stakeholders at home, 
which are further characterized in the following

3.2. Understanding People and Stakeholders

Another issue to consider is the people who live and work in home environments. 
AAL technologies are intended to support older adults while aging in place [Chouk-
ou et al. 2021]. The group of older adults is, however, quite diverse in itself, and 
people within the same age cohort may have drastically different needs. There-
fore, technological solutions aim to either target a broad spectrum of people, re-
sulting in rather complex systems with a high degree of functionalities, or people 
with very specific needs (e.g., to support or promote physical or psycho-social 
health). The target group is also often referred to as primary users [Werner et al. 
2015]; the term “user” has been debated in previous research [Bannon 1995].

Besides the group of older adults, other people are involved in the interaction 
with assistive technologies. As mentioned above in the case of telemonitoring 
for patients with chronic heart failure [Boyne and Vrijhoef 2013], including in the 
home environment, older adults are in contact with other people even if they 
live on their own. These – often called secondary users [Werner et al. 2015] – 
include all kinds of peers, extended family, or care workers, such as informal or 
formal care workers, sometimes also referred to as caregivers. There exists work 
on proposing robots to support secondary users, such as formal care workers 
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in institutional settings [Johansson-Pajala et al. 2020], or informal care workers 
(where some work also involved long-term co-design activities [Moharana et al. 
2019]). Some work has aimed to design trustworthy care robots [Stuck and Rog-
ers 2018], where such work has emphasized the direct role of robots as care 
workers (interestingly, rather than the robots’ potential for supporting the work 
practices of human care workers, for example).

The caregivers’ profession is relevant for envisioning robots in home environ-
ments, especially when it comes to institutional care homes. Recently, workers 
have been confronted with a growing number of challenges, including low rec-
ognition of one’s contribution, inadequate pay and workload, strong emotional 
experiences and increasing work-related stress and burnout [Foà et al. 2020]. 
In contrast, working autonomy, professional growth, positive relationships with 
colleagues and older adults increase job satisfaction [Foà et al. 2020]. Many care 
homes are understaffed, which forces caregivers in Europe to work overtime [Foà 
et al. 2020], as is the situation for hospital nurses, with a reported decrease in 
patient safety and quality of care, or even care left undone [Griffiths et al. 2014]. 
Missed care in the medical context again not only leads to decreased patient sat-
isfaction, but it can also lead to medical problems like medication errors, urinary 
tract infections, patient falls, pressure ulcers, care quality and patient readmis-
sions [Recio-Saucedo et al. 2018]. A response to these professional burdens is 
to support care workers in providing healthcare assistance, in performing dai-
ly tasks, or in the increase of self-management [Martinez-Martin and del Pobil 
2017]. Despite the evident role of care workers, especially in institutional home 
settings, their role has been rarely considered in action. Few exceptions include 
Hornecker et al. who have referred to the triadic interaction between a robot, 
a care worker, and an older person, and hence constitutes one of the very few 
multi-actor approaches [Hornecker et al. 2020]. They argued that such interaction 
can only be satisfyingly designed when all parties are taken into account.

Similarly, tertiary users have been hardly addressed in relation to assistive 
robots [Werner et al. 2015]. These include service providers, installation and 
maintenance technicians, insurance companies, municipalities, architects, social 
agencies, and guarantors of privacy, safety, and ethical procedures [Johnson et 
al. 2014]. Certainly, their needs and preferences can be very different from the 
needs of primary or secondary users (e.g., given the financial aspects that are 
also sometimes related to receiving care [Pani-Harreman et al. 2021]).



213

Bottom-Up Research on Assistive Robots for the Aging Population 

4 Exploring trustworthy HRI for Older Adults in Home 
Environments

As discussed above, a variety of assistive technologies has been developed 
since the 1990s for aging at home, including robots as a recent instance. Fur-
thermore, different types of living spaces that involve different people/stakehold-
ers must be considered; and different perspectives on home and aging that are 
reflected in technology design may open novel design spaces. For example, a 
robot could prescribe a home-bound person, or it could promote a more active 
lifestyle and choices, also becoming part of an environment that promotes com-
munity or autonomy.

Despite these various perspectives entertained in previous studies, challenges 
remain in practice. We described only a few of these challenges in Section 1, 
including a lack of marketable AAL products despite numerous years of research, 
as well as trust as a critical topic related to the limited uptake.

The integration of assistive robots into everyday life depends heavily on de-
sign choices. While some of these choices are technical or directly related to the 
design of a technical artifact, such as when defining how a robot should respond 
to contextual factors [Rosenthal-von der Pütten et al. 2020], others may be not 
be limited to technology itself. However, when developing robots in a top-down 
manner, many of these opportunities for exploring different design approaches 
are potentially being missed. Furthermore, challenges in integrating robots in re-
al-world settings are unlikely to be revealed in laboratory HRI studies or in obser-
vations of short-term interactions even when using authentic settings [de Graaf 
et al. 2015]. For example, while technical readiness is a key requirement for ro-
bots, it is also necessary to understand processes in the real world that robots are 
intended to assist with, for example, the manner in which people live and work. 
Understanding people’s values is likewise important, such as what autonomy 
means for people [Hornung et al. 2016], or the specific issues that people raise 
in relation to trust or distrust. If these issues are only fully understood in practice, 
after the robot has already been built, then the opportunities for change or re-de-
sign are limited or very costly. A bottom-up approach engenders an earlier en-
gagement with people and their context when designing technology [Broadbent 
et al. 2016], and this can potentially clarify these sorts of problems earlier to save 
time and costs later. Here, different approaches have been proposed, such as 
placing focus on people’s social practices [Wulf 2009; Wulf et al. 2011; Kuutti and 
Bannon 2014; Ganglbauer et al. 2013; Schmidt 2018], participatory approaches 
[Lee et al. 2017b; Lan Hing Ting et al. 2018; Frennert et al. 2012; Weiss and Spiel 
2021], or long-term studies with robots [Irfan et al. 2019, 2021; de Graaf et al. 
2017, 2018]



214

Isabel Schwaninger, Astrid Weiss, Geraldine Fitzpatrick

In the following, we propose different ways of understanding and designing as-
sistive robots (and trustworthy HRI) by engaging with the context of older adults. 
To understand current issues bottom-up and to avoid re-inventing the wheel, we 
propose to learn from people’s current practices and their use of current assis-
tive technologies to understand the challenges and to provide lessons learned 
for designing robots for this context. Furthermore, we propose methodological 
explorations for participatory design to explore ways of conceptualizing robots 
in people’s living spaces in relation to their social practices. Here, a closer look 
at trust is promising, especially in home environments and in relation to home 
practices. Further, building on existing work, we propose long-term studies to be 
conducted with robots to support people working in living spaces.

4.1. Investigating People’s Practices

One approach to conduct bottom-up research with robots is a focus on peo-
ple’s practices. In Human-Computer Interaction (HCI), a shift from interactional 
research to practice-based research in the everyday is also reflected in the turn 
to practice [Kuutti and Bannon 2014]. While early methods in HCI were inspired 
by psychological sciences involving controlled short-term, lab-oriented studies, 
which are according to Kuutti & Bannon [Kuutti and Bannon 2014] embedded in 
the Interaction paradigm, this is not the case in the recently emerging Practice 
paradigm. In previous practice-oriented work, the practical accomplishment and 
“dynamic and situated ‘interactional’ aspects [...] to be accounted” [Fitzpatrick 
2003, p. 91] was highlighted. Generally, practice approaches explore “[...] histor-
ical process and performances, longer-term actions which persist over time, and 
which must be studied along the full length of their temporal trajectory[,][...] situ-
ated in time and space”[Kuutti and Bannon 2014, p. 3543]. Further, the broader 
context is taken into account, and it is “intervowen within the practice” [Kuutti and 
Bannon 2014, p. 3543].

As a starting point, there is an opportunity to choose a topic like trust, a topic 
which is known to be important in HRI [Billings et al. 2012] and in the context of 
older adults and technology [Knowles and Hanson 2018; Fischer et al. 2014], 
and to investigate it across the literature. There may be other research areas that 
have a longer tradition for understanding people’s practices [Kuutti and Bannon 
2014], which is an opportunity for mutual learning. Research in the related area of 
Computer Supported Cooperative Work (CSCW) has taken a practice approach 
in collaborative care engagements [Fitzpatrick and Ellingsen 2013]. While CSCW 
research does not necessarily focus on robots, we took a critical look at the liter-
ature to identify research gaps in HRI and CSCW specifically in relation to trust 
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and robots, investigating what CSCW can can contribute to an understanding of 
trust in the field of HRI [Schwaninger et al. 2019].

Moving from the literature to the real world, there are also opportunities to in-
vestigate people’s use of AAL technologies (e.g., sensor-based technologies or 
technology for communication) to provide lessons learned for designing robots. 
This can be done in private households, as we did in other work [Schwaninger 
et al. 2020]. Taking a socio-technical perspective, we mapped out relationships 
between older adults and various actors in a network, pointing to relatedness 
needs and how technologies were integrated in relationships [Schwaninger et al. 
2020]. Furthermore, since the COVID-19 pandemic, there has been also an in-
crease in technology usage in various areas other than care [Marston et al. 2020; 
Cmentowski and Krüger 2020; Mastrianni et al. 2021], where previous research 
has also emphasized the potential of technology as a response to isolation in 
the care context that has occurred [Gallistl et al. 2021]. While COVID-related 
restrictions have been ordered top-down by governments, earlier studies have 
shown how healthy aging is strongly perceived as an active achievement that in-
cludes the management of lifestyles, health and illness, and the active balancing 
of social life and financial and material circumstances [Sixsmith et al. 2014]. Due 
to these tensions, we used the opportunity to explore how the pandemic has trig-
gered the usage of technology and the readiness to engage with current or future 
AAL technologies in different types of homes, and further how it has affected ag-
ing and associated experiences. We found that there was an impetus to enhance 
digital literacy triggered by COVID experiences, and increasing workload associ-
ated with new ways of putting technology to care work [Schwaninger et al. 2022]. 
There is also a potential for the use of robots that are similar to communication 
technology like tablets, which have so far more been accessible in everyday life 
compared to robots in living spaces. However, the work that is required to make 
use of robots as part of care work certainly needs to be tackled.

4.2. Exploring Co-creation Methods for Robots with Older Adults

Given assistive technology needs to fit into complex realities of older adults, par-
ticipatory design has been increasingly promoted and recognized as an “import-
ant route to context-sensitive, person-centered and sustainable health innova-
tion” [Langley et al. 2019, p. 3] for older adults. Recent HRI research has also 
explored participatory methods for designing robots for older people and care 
contexts [Frennert et al. 2013; Lee et al. 2017b; Lan Hing Ting et al. 2018; Geor-
giou et al. 2020; Rogers et al. 2021]. Participatory design can support designers 
in developing robots that meet older adults’ needs, capabilities and preferences 
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on the one hand [Rogers et al. 2021], and promote mutual learning between re-
searchers and participants [Lee et al. 2017b] on the other.

While participatory design has been conducted in HCI for some time, in HRI, it 
is still relatively new and comes with specific challenges [Weiss and Spiel 2021]. 
As robots are technically complex, the involvement of older adults, for exam-
ple, in building prototypes is not straight-forward. While co-designing screens, 
for example, could be done with pen and paper, building a robot prototype re-
quires technical skills. Therefore, the co-design process itself also involves mul-
tiple people and, consequently, their perspectives [Rogers et al. 2021]. In re-
cent participatory design studies, Lan Hing Ting et al. [Lan Hing Ting et al. 2018] 
used ethnographic methods to explore the co-design and evaluation process of 
a mobile social robotic solution for older adults following a living lab approach, 
involving the people considered to be primary users, sociologists, designers, and 
engineers. Furthermore, the use of robot prototypes can be beneficial for co-de-
sign to involve older adults with actual systems that they can discover [Lee et al. 
2017b] and potentially extend. In prototyping workshops however, Bråthen et al. 
[Bråthen et al. 2019] found that developing a story about a robot in the context of 
older people’s homes and in the daily life of older adults is essential for success-
ful design and prototyping.

A challenge in participatory design or co-design for robots with older adults is 
that several stakeholders are involved, often working as interdisciplinary teams 
[Lan Hing Ting et al. 2018] (e.g., gerontologists, social scientists, engineers). 
To make collaboration in these teams more effective, there are opportunities to 
support such teams with tools [Axelsson et al. 2021]. Therefore, we started to 
develop a method to facilitate a shared understanding of older adults’ everyday 
life in ideation phases. Because trust is a critical topic in HRI, and as older adults 
raised privacy concerns in other studies [Schwaninger et al. 2020], trust can be 
used as an icebreaker to facilitate conversations on opportunities for assistive 
technology to support older adults at home, along with other contextual elements 
and playful activities [Schwaninger et al. 2021].

4.3. Conducting long-term Studies with Robots

While learning from current technologies for robots and developing methods for 
cocreation with older adults are useful building blocks for bottom-up research, 
they do not involve any long-term experiences with actual robots. This can have 
advantages, e.g, in design [Schwaninger et al. 2021], as it allows ideation with 
fewer pre-assumptions of what actually constitutes a robot. It can further be use-
ful to focus on needs rather than technical readiness, especially in co-creation 
processes. Nevertheless, studies with actual robots are also essential in the de-
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sign and development process, revealing the opportunities that come with robots 
(i.e., the potential for different functionalities as described earlier), and providing 
new opportunities for supporting people. Further, technology, however it is de-
signed, could also change people’s practices3, and it is therefore important to 
investigate the use or non-use of robots in real life. Studies have also shown that 
the novelty effect can decrease after some time of usage, as people get used to a 
robot and as it can become repetitive and predictable [Portugal et al. 2019; Marti-
nez-Martin and del Pobil 2017]; and other work has provided valuable insights on 
the non-use of robots in homes and associated findings on motivation, as well as 
user types and needs [de Graaf et al. 2017]. The opportunity to conduct long-term 
studies with robots is an important building block of bottom-up research (i.e., to 
look beyond the use of off-the-shelf technologies).

Previous studies that have taken a long-term approach for aging at home ei-
ther focus on older adults living in private homes [Bajones et al. 2018; de Graaf 
et al. 2017] or on the residents living in care homes. For example, de Graaf et al. 
[de Graaf et al. 2015] have provided insights on people’s attitudes and relation-
ship-building with or toward robots in private homes. Several studies that have 
taken place in institutional care homes suggest that care workers facilitate the 
interaction between robots and residents. Further, robots can enhance the qual-
ity of care, providing care workers with an additional tool to work with residents 
[Carros et al. 2022].These and other studies are needed to gather insights about 
long-term effects on the work that is needed to actually put a robot to work in 
living spaces.

5 Conclusion

Several challenges for human-centered research of assistive technology in 
the context of the aging population in general and assistive robots specifically, 
must be addressed bottom-up rather than top-down. We therefore presented an 
overview of related work on assistive technology for the aging population, along 
with building blocks that are further relevant to understand some of the current 
challenges bottom-up. Following this discussion of related work as a relevant 
basis, a variety of qualitative and explorative approaches have been briefly pro-
posed based on our work [Schwaninger et al. 2020, 2021; Carros et al. 2022; 
Schwaninger et al. 2022], contributing to better understand people’s needs and 
impact factors of actual technology uptake. The characterization of our work in-
cludes the investigation of people’s practices [Schwaninger et al. 2019, 2020, 

3 It should be noted at this point that practice approaches as described above can also involve 
long- term studies with robots, as these studies provide opportunities to observe, change, un-
derstand and design for people’s practices.
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2021], the exploration of co-creation methods [Schwaninger et al. 2021], and 
long-term studies with robots after deployment in their intended context-of-use 
[Carros et al. 2022]. Detailed insights from these studies are provided in the re-
lated publications and in the PhD thesis of Isabel Schwaninger (forthcoming in 
2022). By exploring these bottom-up approaches, we aim for an understanding 
and design of HRI with assistive technologies that are considered as trustworthy 
by various stakeholders.
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Abstract

As artificial agents are introduced into diverse workplaces, basic configurations underlying the organization of work 
undergo a fundamental change. This implies that the work we do is subject to alteration along with who does the 
work that opens new social challenges. Questions regarding the extent of acceptance of these agents in work set-
tings as well as the consequences of collaborating with artificial agents on human agents indicate the need to better 
understand the mechanisms that underpin a collaborative sociotechnical system. This book chapter discusses how 
the interplay between humans and artificial agents enables human–robot collaboration as a new way of working. 
Thus, we first focused on the agents and their interactive processes in the system to analyze how agency is ascribed 
to nonhuman entities. Thereafter, the results of two experiments are presented to reflect on the impact of attributing 
agency to an artificial agent on humans. This study provides recommendations for the design of artificial agents 
and organizational strategies in terms of which social practices and changes in the working context are required to 
provide possibilities for successful collaborations.
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1 Agency in Sociotechnical Systems: How to Enact 
Human–robot Collaboration

Over the last decade, advances in the field of artificial intelligence (AI) have en-
abled passive objects to become active and agentic. Automation, which was 
principally focused on physical functions, has now begun to impact cognitive 
functions, such as complex motor coordination, perception processing, and de-
cision-making [Hollnagel 1995]. An increasing use of assistant systems such as 
social robots and cobots, which are a specific form of robots that can work closely 
with humans [Faccio et al. 2019], is an example of artificial agents penetrating 
our everyday lives. Although a lot of the technology that allows these agents to 
initiate or respond to a variety of interactions with humans already exists, the so-
cial implications of these interactions enter new potentialities that have not been 
fully addressed. 

Extensive research has shown that the subjective experience and willingness 
of humans to accept this integration is as relevant as the objective properties 
and functionalities of these technologies [De Graaf and Allouch 2013; Echterhoff 
et al. 2006]. Considering that humans are integral parts of these systems as 
sense-making actors and end-users, this book chapter analyzes the challenges 
associated with the integration of artificial agents into human social systems to 
facilitate collaboration. 
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Developments in the field of AI suggest an increase in the autonomy of ma-
chines. One important implication of such autonomy is the ascribed (social) qual-
ities, such as agency, which affects the perceptions and expectations of humans. 
The unpredictability of the actions undertaken by artificial agents may lead to 
situations where agency becomes an issue [Weber et al. 2013]. This unpredict-
ability is mainly due to the inadequate understanding of computational mecha-
nisms. Scholars have long debated the impact of attributing agency to machines 
on the diffusion of responsibility. For instance, Boos et al. [2013] argued that 
users can only be held accountable if they understand, predict, and influence 
work processes [Boos et al. 2013]. This approach emphasizes the fit of an actor’s 
accountability demands and their control capabilities while considering the ca-
pacities of robots. Although attributing responsibility is the social function of being 
in control (i.e., a sense of agency) [Frith 2014], current artificial agents cannot be 
held responsible. Furthermore, understanding the notion of agency is relevant for 
improving user acceptance in human–machine interactions [Kim 2016; Lee et al. 
2015], building trust in these relationships [Engen et al. 2016], and analyzing the 
ethical implications of smart technologies [Lin et al. 2012]. These arguments war-
rant a fresh look at artificial agents and their impact on human agents.

To analyze the challenges associated with collaboration with artificial agents, 
we focused on work settings and investigated how the interplay between humans 
and artificial agents enables collaboration. As the social is affected by material 
dimension but also affecting the material dimension [Leonardi 2012; Orlikowski 
2009; Zammuto et al. 2007], it is necessary to study how this integration changes 
the sociotechnical dynamics of organizations. However, establishing the societal 
consequences of emerging forms of interaction with technology is beyond the 
scope of this chapter. 

This chapter has been organized as follows. First, it defines the notion of agen-
cy and provides the framework for further analysis in sociotechnical systems, 
where humans are supported by technologies. Next, the results of two user ex-
periments are discussed to provide a detailed picture of how collaboration with 
artificial agents affects humans and their basic needs. Finally, the contributions 
are summarized, and the directions of future research are discussed.

2 Enacting Human–robot Collaboration

To obtain a balanced emphasis on the social and technical aspects of working 
conditions, we used the sociotechnical system (STS) approach. This theoretical 
framework suggests that within organizations, humans (social) and technology 
(material) continually constitute the features of others. The notion of STS was 
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developed by Trist and Bamforth in the mid-twentieth century to describe systems 
comprising a complex interaction between humans, machines, and the environ-
mental aspects of the work system. Previously, the material dimension of orga-
nizations was considered as an external discrete input to the study of the social 
dimensions of organizations. Thus, it undermined the role of the social context 
in shaping the designs and uses of new technologies over time. However, this 
framework follows a relational ontology perspective [Law 2004; Barad 2007] and 
stresses the reciprocal interrelationship and entanglement of humans and tech-
nologies that shape technical and social working conditions. Although the social 
subsystem comprises individuals as members of the organization, the relation-
ship among them, and their social attributes, the technical subsystem comprises 
the devices, techniques, and skills used by individuals to perform organizational 
tasks [Leonardi, 2012]. Thus, with a focus on the constitutive effect of the mate-
rial and social dimensions, the properties of technologies and humans should be 
considered to explain how new affordances for working are created [Orlikowski 
2009; Zammuto et al. 2007].

An underlying premise of this approach is that capacities for action are enacted 
in practice [Orlikowski and Scott 2008]. As machines become more sophisticated, 
understanding the agency attributed to these entities and its impact on humans 
and collaboration becomes even more critical. Agency is regarded as the capaci-
ty to act [Gray et al. 2007]. Two abstracted properties of agency are intentionality 
and autonomy [Bandura 1999; Banks 2019]. Intentionality is characterized by the 
capacity of an agent to process the contents of the mental state and justify ac-
tions or decisions. According to the theory of action [Davidson 1963], an action is 
intentional when it is caused by certain mental states. Thus, if no patterns of inter-
action and coordination based on expectations are identified, it is a coincidence 
and unintended. Autonomy is a combination of two Greek terms, auto (self) and 
nomos (governance) and is expressed in two dimensions: self-directedness (i.e., 
free will) and self-sufficiency (i.e., free act) [Bradshaw et al. 2013]. The former de-
scribes the agent’s capability to take care of itself and create its agenda, while the 
latter describes the extent to which an agent is independent of external control. 
Thus, if no contingency or deviation from the set course is involved, an action is 
determined and preprogrammed.

Focusing on the agency of representative entities in a sociotechnical system 
can facilitate the development of more robust theories of the interrelationship be-
tween humans and artificial agents within a workplace. Moreover, it can potential-
ly inform future strategic objectives for organizations that aim to integrate artificial 
agents. Therefore, this study analyzed how social and material entities and their 
agencies are continually coconstructed to enable a new way of working, namely 
human–robot collaboration. Human–robot collaboration refers to a collaborative 
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partnership between humans and robots in completing tasks and focuses on co-
ordinating joint activities between them [Ajoudani et al. 2018]. 

Collaboration can be differentiated from cooperation, where tasks for achiev-
ing a common goal are divided among participants, and each agent is responsi-
ble for only a part of the problem-solving. Collaboration is characterized by “the 
mutual engagement of participants in a coordinated effort to solve the problem 
together” [Roschelle and Teasley 1995, p. 70]. Therefore, collaborations require 
all agents to jointly engage in the entire task. That is, collaboration employs a 
complementarity approach and exceeds existing research that mostly substitutes 
humans with machines. 

Studies have shown that human–AI collaboration can outperform a group of 
humans and sophisticated AI-based systems [Wang et al. 2016; Siegel 2016]. The 
resulting team success can be attributed to the unique advantages that emerge 
from combining human and AI capabilities in a compatible manner [Krüger et al. 
2017]. Although the strengths of AI lie in analytical decision-making that involves 
the gathering and processing of large amounts of data, humans are well-versed 
in flexibility, creativity, and intuitive decision-making, particularly when heuristics 
are necessary for decision-making in uncertainty [Dragicevic et al. 2020; Jarrahi 
2018]. Thus, artificial agents can extend human capabilities in task performance 
and decision-making.

To build an effective system, one needs to examine how integrating artificial 
agents reconfigures the main domains of an organization, including the i) division 
of labor and ii) integration of efforts. The former focuses on how to distribute 
tasks and decision rights among agents (human or artificial), and the latter elab-
orates on how to ensure the alignment of the efforts of different agents with the 
organizational goals. Therefore, studying the agents within this system is the first 
step to developing a better sense of the sociotechnical development process. 
However, using a sociotechnical approach to analyze collaboration with artificial 
agents does not mean categorizing social and technical actors and their actions 
but rather, showing the conditions of possibilities for these assumed categories 
or actors to behave in certain ways. Accordingly, it focuses on the flow of social 
formulations that enact those actions and performances [Hultin 2019]. Thus, we 
explored how agents (human and artificial) and their properties and identities 
are continuously performed to enable collaborative work between humans and 
robots as a new way of working.

Each subsection refers to an original work of the authors conducted as part of 
the dissertation. First, we focused on the agents and their interactive processes 
in the system to analyze how agency is ascribed to nonhuman entities (subsec-
tion 2.1). Thereafter, the results of two experiments are presented to reflect on 
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the impact of attributing agency to an artificial agent on humans (subsections 2.2 
and 2.3)

2.1. Robots as Artificial Agents

Several theoretical models such as the Actor–Network Theory [Latour 1996] and 
Double Dance of Agency [Rose and Jones 2005] suggest that ascribing agency 
is not limited to humans but also nonhuman entities, such as technologies. We 
differentiated between the agency of humans and that of machines and studied 
how these types of agencies are interrelated. 

Recent developments in the field of AI suggest an increase in the agency of 
machines, as we assign them roles that were previously filled by humans. How-
ever, the unpredictability of the actions undertaken by artificial agents leads to 
situations where agency becomes an issue [Weber et al. 2013]. For instance, 
who would be responsible for the harm that is caused by a self-driving car? Con-
sidering that humans and machines do not possess the same capabilities [Engen 
et al. 2016; Rose and Jones 2005], we investigated the concept of agency and 
sought to comprehend the properties that humans seek when ascribing agency 
to nonhuman entities, such as robots.

Previous studies discovered different features related to our perception of 
machine agency, such as adaptability [Franklin and Graesser 1997], purpose-
ful-looking movement [Scholl and Tremoulet 2000], complementary personalities 
[Lee et al. 2006], and humanlike appearance [Itoh and Inagaki 2004; Lee et al. 
2015]. A seminal study in this area is the work of Rose and Turex [2000], which 
relates the perceived agency of machines to the human tendency toward anthro-
pomorphism and describes machine agency as the extent to which machines are 
perceived by humans as having autonomy [Rose and Turex 2000]. 

We incorporated variable dimensions to develop a typology of artificial agents 
from a theoretical perspective. Typology is a conceptual classification that is 
mostly used in social, rather than natural sciences [Baily 1994]. It is one of the 
common styles of theorizing that systematically categorizes specific dimensions 
and features to create distinct types and profiles [Cornelissen 2017]. Classifying 
the artificial agents enables a deep and extended analysis of theories in previous 
studies about (social) agency to reflect on the possible consequences of human 
interactions with artificial agents on human–human interaction.

Depending on how machines control the input–output cycle and pursue the 
goal, we conceptualized artificial agents in four types, i) Non-AI marginally au-
tonomous agents, ii) AI marginally autonomous agents, iii) AI semiautonomous 
agents, and iv) AI pseudoautonomous agents [Zafari and Koeszegi 2018]. A key 
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distinction among these artificial agents is the extent to which they independent-
ly perform tasks. The autonomous consideration of AI marginally autonomous 
agents lies in their ability to move without human intervention, while AI semiau-
tonomous agents adapt their goal settings because of their self-learning capaci-
ties. Responsibility implies autonomy; therefore, artificial agents are exempt from 
the usual responsibility practices and attribution. Thus, by finding such an artifi-
cial agent as the source of a failure or negative outcome, we need to understand 
how it determined the cause of failure to handle the issue and prevent a repeti-
tion. Thus, the responsibility for harm caused by artificial agents will always re-
main with human agents who initiate or manage the collaboration as the artificial 
agents are under the authority of the human agent in every step of the process.

The insights gained from this work [Zafari and Koeszegi 2018] may support the 
notion of collaborative agency [Kuziemsky and Cornett 2013]. Thus, agency does 
not belong to any actors and can be viewed as social affordance that emerges 
from the interaction between humans and artificial agents. This correlates with 
the relational ontology that argued that agency is constantly forming within the 
action [Law 2004; Barad 2007]. The agency attributed to an agent (human or ar-
tificial) may change in scale, over time and from one situation to another. There-
fore, emphasis needs to be placed on the large-scale “system” at the heart of the 
analysis rather than discussing single agents to better elucidate organizational 
challenges. 

2.2. Attitudes toward Artificial Agents

During collaboration, the activities of humans and robots occur in the same phys-
ical and social spaces [Dautenhahn and Sanders 2011]. This highlights the im-
portance of the social aspects of interaction between these agents. Furthermore, 
ascribing agency to another entity highly depends on the physical and behavioral 
features of the entity and the characteristics of the perceiver [Takayama 2011; 
Waytz et al. 2010]. Studies on human–robot interaction (HRI) have mostly fo-
cused on the former [e.g., Itoh and Inagaki 2004; Lee et al. 2015; Lee et al. 2006], 
and there is still an extremely limited understanding of the cognitive processes 
that occur during HRI. Several technological features in robotics (such as in-
creased sensitivity and safety) allow collaborative robots to support joint action 
in close contact with humans within a shared workspace [Bauer et al. 2008]. 
Inadequate effective management of social and cognitive features such as psy-
chological safety [Edmondson 1999] and situational awareness [Cramton 2001] 
burden the collaboration between humans and robots. To provide insight into the 
cognition and intentional stance of humans while interacting with artificial agents, 
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it is necessary to analyze the conditions that ensure the acceptance of the sup-
port of artificial agents without limiting human agency.

User studies about the Roomba robot showed that the owners exhibited differ-
ent behaviors from the same robot vacuum cleaner; some gave it a name while it 
emptied its way, and some treated it like any other home application and did not 
talk to it [Takayama 2011; Forlizzi and Disalvo 2006]. This implied that the status 
of an entity’s agency is not static, and the predefined and programmed functions 
of the entity and the perception of agency influence how we behave and inter-
act with an entity. Moreover, recent studies [Appel et al. 2020; Złotowski et al. 
2017] have shown that experience, as a dimension of mind perception, as well 
as agency, is related to an uncanny feeling toward humanlike robots and requires 
a better understanding of how ascribing agency elicits uncanniness or negative 
responses. 

Although there is minimal theoretical knowledge regarding the agency of ro-
bots, it is necessary to not only describe but conduct an empirical study to ex-
plain under which conditions attributed agency positively/negatively impacts the 
attitudes toward robots. Thus, we conducted a vignette study and investigated 
the mechanism of the attitudes toward artificial agents. Vignettes refer to text, im-
ages, or videos that shortly describe a specific situation to evoke the attitudes or 
beliefs of participants concerning the present situation [Hughes and Huby 2002]. 
The flexibility of vignettes allows the exploration of factors and elements of inter-
est by combining traditional survey and experimental design [Steiner et al. 2016]. 
Participants were asked to watch a video and respond to a postvideo question-
naire from the perspective of the vignette character as if they were that person in 
that situation. 

We created two videos in which a human and robot collaborate to assemble a 
product (Figure 1). The main difference between the conditions is that under the 
“low agency” condition, the robot’s behavior was relatively deterministic, while its 
behavior under the “high agency” condition was unpredictable. Thus, the actions 
of the cobot were not presuggested but were imperatively used to reflect the high 
level of autonomy.

The results showed that attributing high levels of agency to robots was associ-
ated with negative attitudes toward them only when individuals perceived low 
control during collaboration [Zafari and Koeszegi 2020]. Therefore, the lower the 
levels of decision control (inhibiting human autonomy), the lower the positive at-
titudes toward the robot with a high level of agency. Although preliminary, this 
finding highlights the role of the perception of control in promoting positive atti-
tudes toward artificial agents. It implied that people do not perceive the high level 
of agency for artificial agents as negative except when they feel a lack of control 
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during the work process. Furthermore, because perceived control is highly relat-
ed to the diffusion of responsibility [Bandura 1991], it is necessary to consider the 
nature of perceived control in the collaborative context and establish approaches 
to enhance the perceptions of control for individuals working alongside artificial 
agents. 

Figure 1 Screenshot of the video vignette that represents an artificial agent 
collaborating with a human agent

2.3. Interaction Style of Artificial Agents

A previous study on computers-are-social-actors established that social respons-
es to computers fall under natural reactions to social situations; therefore, the 
principles drawn from sociology and social psychology are relevant for user inter-
face design [Nass et al. 1994]. We interact with others according to our interpre-
tation of the stimulus we receive from them [Blumer 1969]. The interpretation is a 
flexible social construct, which depends on the context and party involved [Pinch 
and Bijker 1984]. It helps us to clarify what to expect from the other party and is 
the basis for our future interactions.

Research predicts that service robots will soon be used within the social sphere 
of human agents as “natural” interaction partners [Floridi 2008]. With an increase 
in the entanglement of HRI, questions regarding the needs concerning the design 
of service robot applications have arisen. The appropriate design and implemen-
tation of robots serving with humans have been confirmed to be more challenging 
than old-fashioned industrial robots serving for humans. Robots serving for hu-
mans need to be capable of operating more or less autonomously and learning 
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from errors, while robots serving with humans require the ability to communicate 
and interact with humans on a level involving understanding and responsiveness 
toward the human interaction partner [Kolbeinsson et al. 2019; Decker 2013]. 
This places a high demand on the quality of the interaction between humans and 
robots.

Considering that how a robot interacts with people can affect the efficiency of 
collaboration [Schulz et al. 2018], we focused on the interaction style of artificial 
agents and conducted a laboratory-based experiment with a Pepper robot de-
veloped by SoftBank Robotics using a built-in software. To design the interaction 
style of the robot, we referred to the “Big Two” dimensions of agency and com-
munion [Bakan 1966]. Although the external validity of laboratory experiments is 
relatively lower than that of field experiments, they are a common method for HRI 
studies. A possible explanation for this is that most service robots are not easily 
accessible for daily usage since they are still in the research and development 
phase [Von der Puetten et al. 2018]. Laboratory experiments benefit from the 
high control over the extraneous variables that facilitate the replication of the 
conditions [Tanner 2018]. Therefore, they are useful for testing predictions and 
providing implication for designers of future robots.

We created two conditions of “person-oriented” and “task-oriented” interac-
tion styles in which a service robot verbally assisted participants while they were 
building a house of cards. The robot under the person-oriented condition focused 
on socioemotional support and provided the participants with simple motivational 
phrases, while the robot’s focus under the task-oriented condition was on task 
performance and provided guidance concerning the goal and participant’s prog-
ress.

The experimental results showed that people interacting with a robot with a 
person-oriented interaction style reported higher self-efficacy in HRI, compared 
with that of a robot with a task-oriented interaction style. Moreover, we observed 
that several dimensions of the personality of a robot (specifically, extraversion, 
agreeableness, and emotional stability) can be simulated via robot verbal and 
speech interface design [Zafari et al. 2019]. These findings suggest the role of 
the interaction style of the robot in promoting perceived self-efficacy, which is 
crucial in developing trust in HRI. This implies that when a robot places emphasis 
on forming and maintaining a social relationship rather than pursuing goals and 
manifesting skills, an individual’s belief concerning their capabilities to perform in 
a particular situation heightens. 
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3 Discussion and Conclusion

Investigating the role of technology in organizations is a continuing concern with-
in organizational research. Although new technologies are embraced for their 
capacity to create new ways of working, their disruptive impacts should not be 
undermined. This calls for a social science and human factor perspective to an-
alyze the domains where these technologies potentially can and should be used 
and where they can but should not be used as their implementation may pose 
threats and challenges to organizations and society. 

This book chapter discusses human–robot collaboration as a representa-
tive form of sociotechnical systems. It contributes to a better understanding of 
the impact of artificial agents on the behavior of human agents by discussing 
how the successful integration of the emerging technologies of AI and robotics 
in organizations depends not only on overcoming technical limitations but also 
considering social challenges. We demonstrated how the integration of artificial 
agents into social systems is reshaping the organization of work as the engage-
ment with artificial agents creates the conditionality that makes certain practices 
enacted. Therefore, changes in work organization depend on assumed human 
agency, and the engagement with artificial agents creates a new arrangement of 
shared control in which agency is assigned and attributed to humans and artificial 
agents. This collaboration mindset helps to position human agents as the cocre-
ators of the outcomes rather than the passive receiver of services provided by 
artificial agents. Thus, to better elucidate organizational challenges, we need to 
emphasize the system rather than the analysis of single agents. 

The empirical findings reported in this chapter shed new light on social pro-
cesses and their contribution to how people collaborate with artificial agents. As 
the ascribed agency to robots increases, the use of social processes in HRI also 
increases [Breazeal 2004]. The artificial nature of these agents presents several 
implications for their social interactions with humans; therefore, we suggested a 
set of contextual factors that influence the enactment of human–robot collabo-
ration. We observed that the high perception of autonomy for an artificial agent 
leads to a lower acceptance and positive attitudes toward them when the level 
of perceived control for a human agent is low (inhibiting human autonomy). Fur-
thermore, we observed that a robot’s interaction style in providing feedback could 
be considered as a factor affecting self-efficacy in human collaborations. From a 
self-determination theory perspective, experiencing a sense of efficacy must be 
accompanied by a sense of autonomy [Deci and Ryan 2000] for intrinsic motiva-
tion to flourish, as the former resembles the need for competence, while the latter 
resembles the need for autonomy. Thus, the approach to the design of artificial 
agents requires the satisfaction of these human needs. 
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This emphasizes the importance of informal structure in enhancing the suc-
cess of technological integration. The impact of delegating decisions and assign-
ing roles to artificial agents in organizations is not limited to formal domains of 
organization (i.e., division of labor and integration processes) because the basic 
needs of individuals (i.e., needs for autonomy and competence), their work roles, 
and the social organizational structure are also affected. These findings suggest 
that for a successful integration of artificial agents into workspaces, a mindful 
consideration of the social components of interaction among humans and artifi-
cial agents is essential. 

In addition to its exploratory nature, this chapter offers insight into which prac-
tices and changes in work organization are required to provide possibilities for 
successful integration. In this process, the key constructs are defined, the rela-
tionship between them is elucidated, and findings are discussed to demonstrate 
the viability of theoretical methods that offer minimal empirical support. This con-
tribution can be classified as an intermediate theory [Edmondson and McManus 
2007] that identifies new relationships among phenomena by reconceptualizing 
explanatory frameworks.

The scope of this study was limited in terms of work organization and analyzed 
how advances in the field of AI and robotics are affecting collaboration. A natu-
ral progression of this study is to analyze the possibilities and consequences of 
integrating these technologies into the tasks and processes that cannot yet be 
assigned to artificial agents, such as those requiring creativity. Further research 
can go beyond dyadic interactions between a human and artificial agent and 
explore how the team characteristics (such as the diversity or composition of a 
team) affect work dynamics and collaboration. 

The collaboration process has a fundamental social component that robots 
working as the physical interaction partners of the human agent present a great 
risk on fundamental structures that are usually brought forth within human–human 
interaction, e.g., social norms. People expect artificial agents to apply the same 
norms that govern human–human interaction, and behavior that is not performed 
sufficiently similar to that of humans hinders the pragmatics of interaction [Sciutti 
et al. 2015]. Although humans will adapt to the capabilities of artificial agents 
[Hirschmanner et al. 2021] as well as the functionality of the sociotechnical sys-
tem [Zafari et al. 2021], the impacts of constant interaction with artificial agents on 
the development and changes in social norms remain unclear. As Goffman [1983] 
emphasizes, the social self and individual actor are created through interactions 
[Goffman 1983]. The societal consequences of artificial agents penetrating the 
social lives of humans are intriguing and can be explored for further research. 
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Abstract

Collaborative robots (referred to as cobots) can have a significant potential impact on manufacturing processes by 
enabling new task allocation possibilities, resulting in improved economic efficiency and human factors/ergonomics. 
In this chapter, a method for sharing tasks adaptively between humans and cobots is designed, developed, demon-
strated, and evaluated. State-of-the-art task allocation approaches and their shortcomings regarding flexibility and 
human factors/ergonomics are presented. The three parts of the proposed adaptive task sharing method, i.e., task 
analysis, assignment, and visualization, are specifically described. Also, case studies are demonstrated, and the 
obtained results are evaluated. A discussion, conclusion, and the research outlook on human–robot interaction in 
future manufacturing processes conclude this chapter.
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1 Introduction

Collaborative robotic arms, referred to as cobots, entered the market more than 
20 years ago. Their design differs from that of conventional industrial robots be-
cause the objective is to ensure a safe interaction between cobots and human 
workers [Albu-Schäffer et al. 2007]. Specifically, these robots are equipped with 
inherent safety measures and intuitive user interfaces. Therefore, after a short 
period of training, even nonprofessionals can program and control cobots. Co-
bots have raised high expectations of achieving flexible and resilient manufactur-
ing processes, increasing the productivity, and assisting human workers [Makris 
2021; Wang et al. 2019]. However, these expectations have not yet been met, 
resulting in a productivity gap [Schmidbauer et al. 2020b]. Weiss et al. [2021] 
provided an overview of the main research areas on human–robot interaction 
(HRI), work and organizational psychology, and sociology of work in the context 
of Industry 4.0. These are listed as follows:

 - Safety and situation awareness (for example, safety certifications for cobot ap-
plications are costly and time-consuming [Rathmair and Brandstötter 2021]).

 - Cobot programming and teaching (for example, cobot control and implementa-
tion expertise are still limited [Schmidbauer et al. 2020a]).

 - Task dynamics, referring (for example) to the ironies of automation, stating that 
humans can no longer understand automated systems and the associated risks 
(for example, the fact that humans can no longer intervene when unforeseen 
errors occur [Bainbridge 1983]).
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 - Trust and acceptance to analyze (for example, factors facilitating or hindering 
trust and acceptance in HRI [Nordqvist and Lindblom 2018]).

 - Skills, training, and workload such as the democratization of cobot technology 
[Hader et al. 2022].

One fundamental challenge when implementing a cobot on the shop floor is 
the HRI production planning; among others, the identification of suitable tasks 
and the determination of the best task allocation [Ranz et al. 2017] are con-
sidered. These issues must be overcome to unwrap the potential of HRI in a 
manufacturing environment. One approach to allocate tasks is the adaptive task 
sharing (ATS) between humans and cobots in a manufacturing environment 
[Schmidbauer 2022].

The main difference between ATS and conventional, static task allocation is 
that not only one best solution for a specific task allocation exists; a variety of 
options from which a human worker can choose is also available. An example of 
static task allocation is the optimization of a fitness function with respect to one 
criterion, usually time (minimum makespan) or (minimum) cost. In ATS, the work-
ers are free to make their decisions. Other criteria, such as learning opportuni-
ties, task preferences, and physical and cognitive ergonomics can be considered. 
Therefore, this approach is not only suitable in terms of process flexibility but also 
focuses on a worker’s well-being in a manufacturing environment.

In this chapter, state-of-the-art task allocation approaches and a main research 
gap in this area are presented. A new method for sharing tasks adaptively be-
tween humans and cobots in a manufacturing environment is proposed as a fea-
sible solution. ATS is presented along with its three main pillars; a task analysis 
to identify suitable tasks for humans, cobots, and both (referred to as shareable 
tasks), a task assignment to preassign tasks to the agents or the shareable task 
set, and a task visualization for human workers to enable them to assign tasks 
from the shareable task set adaptively during the manufacturing process. The 
main benefits and the implications of this approach are presented and discussed.

2 Task Allocation Approaches

Task allocation between humans and machines is a massively discussed topic in 
manufacturing planning research. State-of-the-art scheduling algorithms capable 
of calculating the sequence and allocation of tasks to different agents, such as 
human workers, machines, and robots, have been proposed. A comprehensive 
elaboration of the state-of-the-art human–robot task allocation methods was re-
ported by Schmidbauer [2022]. In this section, different approaches are exempli-
fied.
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2.1. Capability Indicator Evaluation

A compensatory approach to allocating tasks to humans or robots is to use ca-
pability or function indicators. The capabilities of the agents and the required 
capabilities of the tasks are described using quantitative or qualitative methods. 
This evaluation leads to a matching between the most suitable agent and a spe-
cific task.

An example procedure for capability-based task allocation was reported 
by Ranz et al. [2017]. Initially, the processes are categorized according to the 
process plan, and the process attributes are matched to the capabilities of the 
agents and the tasks. Subsequently, the invariable tasks are identified using a 
knock-out list and allocated to one of the agents. Next, the capability indicators 
for variable tasks are determined and described for both humans and robots. 
Then, the agents are comparatively evaluated using a pair-by-pair process. Apart 
from capability indicators, suitability indicators, such as ergonomic indicators, can 
be used [Mateus et al. 2019; Gualtieri et al. 2020]. Although this assignment ap-
pears to be static, in practice, it is not. The capabilities of humans can change 
by training, whereas their deskilling and physiological performance may change 
due to aging [Ranz et al. 2017]. The capabilities of robots can also change due to 
technological advances, wear and tear, and associated increased inaccuracies.

2.2. Fitness Functions

Based on a capability indicator evaluation or simply on the assumption that all 
tasks can be executed by both agents, a common task allocation approach is 
to set up a fitness or optimization function to maximize or minimize a target val-
ue. Target values are, for example, the operation time (makespan), cost, and 
throughput. An example was reported by Tsarouchi et al. [2017], where initially, 
the resources were evaluated in terms of their suitability and availability. Then, 
the resources with the lowest operation time that resulted in the minimum time 
were selected. In some approaches, several goals are also combined in one fit-
ness function. For example, Pearce et al. [2018] focused on improving both the 
time and ergonomics and formulated them as a mixed-integer linear program.

2.3. Heuristics and Machine Learning

Heuristic approaches are used to provide a task allocation solution more effi-
ciently than other approaches. The decision trees are presented, for example, 
by AND/OR [Darvish et al. 2018] or by Precedence [Riedelbauch and Henrich 
2019] Graphs. If the decision trees are available, genetic algorithms can be used 
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to identify the best task allocation solution. Example deployments of genetic al-
gorithms can be found in Beumelburg [2005]; Howard [2006]; Chen et al. [2014]; 
Weckenborg et al. [2020]. In those environments where not all decision cases 
are known, machine learning approaches can be employed. One example is the 
use of the Markov decision process framework, which is used to model a robot’s 
actions [Roncone et al. 2017].

3 Research Gap

In this section, the task allocation research gap between humans and robots is 
examined. In operational research, capability indicator evaluations and optimiza-
tion algorithms are employed to make the task sharing as effective or efficient as 
possible. In contrast, in the human factors/ergonomics (HF/E) research, a more 
decision-making authority for a human worker is proposed. Hacker and Sachse 
[2014] proposed higher decision authority and task diversity for workers to en-
able job enrichment and enlargement. Both forms of work organization aim at 
reduced monotony and less negative effects on humans. Additionally, in Ansari 
et al. [2018], more learning opportunities and less deskilling potential by employ-
ing higher task diversity were proposed.

Recent research work indicated that the workers’ satisfaction can be increased 
through “ad hoc” task allocation [Tausch et al. 2020]. An online experiment 
(n = 151) indicated a higher level of satisfaction with the allocation process, the 
solution, and the result of the work process in the “ad hoc” scenario, where par-
ticipants were able to allocate the tasks themselves. Therefore, the inclusion of 
workers in the task allocation process is crucial in exploiting the acceptance of 
human–robot interaction and in designing human-centered workplaces [Tausch 
and Kluge 2020].

Usually, the task allocation is implemented in the work-design-process phase 
(in industrial engineering) and is completed before the work begins. The reallo-
cation of the so-called shareable tasks is enabled by monitoring workers and the 
work-system environment. Algorithms are being developed to make the robot 
adaptable to all situations. The active integration of human workers in the deci-
sion-making process was recommended by HF/E and engineering researchers 
[Buxbaum et al. 2020]; however, it was not implemented. The interests of both 
engineering and HF/E must be considered. These include, on the one hand, the 
economic efficiency of a process and, on the other hand, the improvement of 
human workers’ ergonomics. For this purpose, the ATS method is developed as 
a method to share tasks adaptively between a human and a cobot in a manu-
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facturing environment. The objective is to increase the economic efficiency and 
improve HF/E.

4 Adaptive Task Sharing

In this section, the ATS method is presented. The method was developed using 
an iterative design science research process based on Nunamaker Jr. et al. 
[1990]. The results of the five-stage research process contributed to the body of 
knowledge and vice versa [Schmidbauer 2022]. The proposed method consists 
of three parts with eight steps in total. In Figure 1, an overview of the ATS proce-
dure is illustrated to show its different parts and steps. In the following subsec-
tions, the three parts of the proposed method are elaborated in more detail.

Figure 1 Adaptive Task-Sharing Method Procedure [Schmidbauer 2022].

4.1. Task Analysis

The task analysis of the proposed ATS method includes four steps. Initially, a task 
level process description is conducted. Therefore, a method based on several 
standards, such as DIN 8580, DIN 8593, and VDI 2860 is employed [Lotter 2012]. 
Then, the described tasks are evaluated regarding the automation feasibility us-
ing a cobot. The proposed method is based on a previous work [Gualtieri et al. 
2020] and is further being developed. Five decision criteria are defined to identify 
if a task is feasible to be performed by a cobot. These criteria are spatial reach-
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ability, payload, graspability, critical issues, and safety. It is assumed that a hu-
man worker can also execute all tasks. Therefore, no feasibility evaluation is re-
quired for a human worker. However, the tasks are evaluated for their suitability to 
a human worker. An ergonomics assessment using rapid upper-limb assessment 
(RULA) was reported in [McAtamney and Corlett 1993]. Finally, an economic 
efficiency evaluation of the proposed method is presented. Execution times and 
costs are assigned to each task and agent. The execution times are calculated by 
employing time stopping and the methods-time measurement (MTM). Then, the 
optimal time- and cost-efficient task allocations along with the optimal repetition 
rates are calculated.

4.2. Task Assignment

The key idea of ATS is to assign as many tasks to the shareable task set as pos-
sible. Therefore, only tasks that cannot be executed by the robot are permanently 
assigned to a human worker, and only tasks that are harmful (in terms of ergo-
nomics) to the human worker are permanently assigned to the robot. This allows 
a high level of flexibility during the process. In the context of HF/E, three criteria 
for assignment, which are considered in ATS, are defined.

First, learning and training are important for a human worker. When workers 
are introduced to a new process, it is recommended that they take over the task, 
until they reach the tasks-pecific acceptance level of the learning curve [Jeske 
et al. 2014]. Second, task diversity affects a worker’s satisfaction by reducing 
monotony [Hacker and Sachse 2014]. The perception of task diversity is not 
mathematically described because it is different for each individual. Therefore, 
ATS only incorporates the question “Does the task variety of the current task 
assignment correspond to my desired way of working?” in the user interface (UI). 
This question is a reminder to the workers that they can change the task assign-
ment if they want. Third, the worker’s preferences are considered to achieve job 
satisfaction. Research results on workers’ preferences regarding tasks and allo-
cations showed that workers tend to assign manual tasks to the robot and take 
over cognitive tasks such as checking tasks themselves [Schmidbauer 2022]. 
However, this is an individual study, and more data is needed to integrate work-
ers’ preferences into the ATS method. For this reason, preferences should not 
be suggested or calculated. However, if desired, they could be obtained from 
personal experience data. Considering the privacy of the workers, assignments 
could be collected, and later profiles of these workers could be created to suggest 
preferred task assignments they would probably like. At the moment, however, 
this is left solely to the worker to decide spontaneously and without applying any 
bias.
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4.3. Task Visualization

To apply ATS, the visualization of tasks in a digital worker assistance system is 
necessary. An important requirement for visualization is that it can be easily un-
derstood by workers. To ensure high usability, a business process model and 
notation (BPMN)-based UI was selected. For each agent, i.e., human, robot, and 
shareables (human or robot), tasks can be modeled in lanes. The shareables 
tasks must be assigned to one of the execution agents, before the process starts. 
The interface features a start/stop button. Additionally, user instructions can be 
displayed on the interface. During the process, the current task is highlighted, so 
the user knows which task the cobot is executing and which tasks the user should 
execute. When the user finishes a task, they must confirm this by clicking on the 
task on the UI. The developed UI is depicted in Figure. 2.

Figure 2 User interface visualizing the human, robot, and shareable (human 
or robot) tasks [Schmidbauer 2022].

The task visualization was realized using the BPMN-based Camunda1 engine. 
The engine was connected with a Franka Emika Panda cobot to ensure effi-
cient collaboration. The system architecture was introduced by Hader [2021] and 
Schmidbauer et al. [2021] and is available to the public on Github2.

1 https://camunda.com/

2 https://github.com/berndhader/BPMN-Extension-Franka-Emika-Desk
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5 Demonstration and Evaluation

In the following subsections, the demonstration and evaluation of the proposed 
ATS method are described.

5.1. Demonstration

The ATS method is demonstrated using two different case studies from the elec-
tronics industry (Figure 3). The first case study refers to the assembly of a heat 
sink, and the second study refers to the assembly of a timing relay. Both case 
studies are manual processes performed by electronics manufacturers in Vienna, 
but they differ in their number of tasks (case study I: 9 tasks; case study II: 18 
tasks) and their task variety. In case study I, handling and joining assembly func-
tions are mainly performed, whereas in case study II, some checking and special 
tasks (i.e.,., pressing a button or marking the order list) are performed. Both case 
studies were set up as hybrid workstations in the Pilot Factory for Industry 4.03 at 
TU Wien. A Franka Emika Panda cobot with a standard two-jaw gripper was used 
to execute the robot tasks.

Figure 3 Case study I: “Assembly of a heat sink” demonstration experiment 
in Pilot Factory for Industry 4.0 at TU Wien (adapted from Schmidbauer et al. 
[2020b]) and case study II: “Assembly of a timing relay” demonstration experi-
ment at TELE Haase Steuergeräte Ges.m.b.H in Vienna, Austria (adapted from 
Schmidbauer [2022]).

Initially, the processes were defined at the task level, and a cobot feasibility 
evaluation was conducted to identify tasks that could not be assigned to a co-
bot because of issues related to spatial reachability, payload, graspability, safety, 
and other critical issues. Specifically, all tasks were evaluated according to these 
criteria and implemented on the cobot when possible. A human suitability evalua-
tion was also conducted using RULA, where a simulation tool (Process Simulate 

3 https://www.pilotfabrik.at/
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Tecnomatix 15.0) was used to evaluate case study I. In case study II, RULA was 
applied using pen and paper.

Additionally, an economic efficiency evaluation was conducted using MTM-
UAS for the manual tasks and by recording the execution times of the robot tasks. 
The optimal repetition rate and time- and cost-efficient task assignment variations 
were calculated. Detailed results of the task analysis have been presented in 
Schmidbauer [2022].

During task assignment, it was decided which tasks should be preassigned to 
an agent because not all tasks could be executed by both agents; for example, 
the RULA evaluation indicated that some tasks should be assigned to the cobot. 
An example task in case study I is “moving screws to transistors and putting to-
gether screws and transistors.” This task leads to a hand position, which is not 
ergonomic, and, therefore, it should always be taken over by the robot or an au-
tomated screwdriving machine. Both these processes were then modeled using 
BPMN.

5.2. Evaluation

5.2.1. Verification and Validation of the ATS Concept

The case studies were presented both for demonstrating the feasibility of the ATS 
method and for conducting different evaluations. Using the first demonstration 
experiment, economic efficiency calculations were performed, and the feasibil-
ity of the method was verified. Case study I was compared to other HRI cases 
related to manufacturing (i.e., the cyber-physical production system (CPPS) Cell 
and the Potentiometer) regarding different design aspects such as participatory 
design, scaling on demand, dynamic division of tasks, loose task coupling, reus-
able robot tasks, participatory robot programming, and overall development costs 
[Schmidbauer et al. 2020b]. The comparison showed that the ATS demonstration 
experiment scored well in participatory design, scaling on demand, dynamic di-
vision of tasks, and participatory robot programming. The overall development 
costs were relatively low. However, a specific laboratory setup was not ready to 
be directly integrated into the industry; the reason was that the loose task cou-
pling and the reusable tasks had not been elaborated on time, since no UI for 
task reuse was implemented at the time. A comparison of different applications is 
presented in Figure 4.  
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Figure 4 Comparison of different applications regarding the design aspects 
and overall development costs [Schmidbauer et al. 2020b].

5.2.2. Verification and Validation of the ATS User Interface

The first UI prototype was a mockup, which was used for a video vignette study 
[Zafari and Koeszegi 2020]. The mockup was used to design and develop the UI, 
which was evaluated within an online user study (n=51). During this study, the 
participants were introduced to the UI, and they modeled a human–robot process 
themselves. The usability, task load, task duration, and quality of the modeled 
tasks of the UI were evaluated. The usability was rated as excellent (System 
Usability Scale SUS: Ø = 86, SD = 12). A task load evaluation using the NASA 
raw-task load index also showed a very positive picture. The average results 
regarding the six task load variables were all below 1.6 on a 5-point Likert scale, 
where 1 indicates a very low and 5 indicates a very high demand, stress, effort, or 
frustration. The average perceived success was rated as 4.4. The average time 
spent by the participants accomplishing the BPMN modeling was 7:44 minutes 
(SD = 6:11). However, almost 16% of participants were not able to model the task 
without mistakes. This result indicates that at least a short period of training is 
necessary. The results showed that the BPMN processes could be understood by 
the participants, who were also able to model the tasks themselves. The UI can 
therefore be used by nonprofessionals with only a small period of training. The 
evaluation methodology and all results have been presented in Schmidbauer et 
al. [2021].
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5.2.3. Final Validation of Concept and Verification of Requirements

The final evaluation of the method was performed for a user study (n=25) for case 
study II. This study was conducted in a factory, where, usually shop floor partici-
pants execute case study II. The main objective of this study was to validate the 
ATS concept in comparison to a static leftover task allocation and to explore a 
worker’s preferences regarding task allocation and its effect on human factors. 
First, the participants attended a briefing and filled in an initial questionnaire. They 
were also introduced to 18 tasks and had to rank them according to their prefer-
ence, i.e., whether a robot should take over the task or the participants wanted to 
execute the task themselves. Next, the participants went through two scenarios. 
In the ATS scenario, they were able to assign all shareable tasks to either the 
robot or them, whereas, in the other scenario, the tasks were already assigned 
to the robot, following a maximum automation approach. In each scenario, the 
participants also worked directly with the robot in the corresponding case study. 
After each scenario was completed, they filled in another questionnaire.

Most of the participants answered that they preferred the ATS scenario in com-
parison to the static task allocation (18/25, 72%). Additionally, the task allocation 
satisfaction was higher in the ATS scenario, and the participants reported that, in 
the production process, the task allocation should be assigned by humans and 
not by the robot or the “system”. The participants’ satisfaction with the task exe-
cution and the result was not significantly higher in the ATS scenario than in the 
static task allocation. The perceived competence and control were higher in the 
ATS scenario. The perceived (mental) task load was not higher in the ATS sce-
nario, although the participants had additional decision tasks to do. These results 
show the positive impact of ATS on HF/E.

The ranking and assignment were analyzed regarding any pattern. The rank-
ing exhibited no significance. The assignment showed that the participants as-
signed manual tasks more often to the robot than checking tasks. Significance in 
the assignment was found in four of the five handling tasks and in two of the eight 
other tasks (only 13 of the 18 tasks could be assigned by the participants). More 
results and information about the empirical user study have been presented in 
Schmidbauer [2022].

6 Discussion and Limitations

The results of the final evaluation of the method and the worker assistance sys-
tem showed that participants prefer having the decision-making authority over 
task allocation. This result is in contrast to previous study results reported by 
Gombolay et al. [2015]. The outcome of the perceived satisfaction with the task 
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allocation conforms with the assumptions made by Tausch et al. [2020]. However, 
the results have not shown significant positive effects on the perceived satisfac-
tion regarding task execution and results. The reasons for the difference in the 
results between the two studies can be attributed to the selection of participants 
or the performance of the robot during the experiment. The ATS evaluation re-
sults also showed that participants tend to assign tasks to the robot if they think 
that the robot is capable of performing these tasks. Wiese et al. [2021] obtained 
similar results. A common finding in all studies is that participants tend to assign 
more tasks to the robot than to them [Gombolay et al. 2015; Wiese et al. 2021; 
Tausch and Kluge 2020]. Another aspect is the increased perceived competence 
and control, which has implications for the intrinsic motivation and effectiveness 
of humans at work [Deci and Ryan 2000].

The practical implementation of ATS also exhibits some limitations. First, the 
additional engineering effort upfront must be mentioned. To implement ATS, the 
shareable tasks must be designed and implemented to be executable by both the 
robot and the human. This requires additional efforts in the design and implemen-
tation of workplaces and processes. If, for example, the task “screwing” is to be 
performed by both the cobot and the human worker, a manual screwdriver for the 
human and a screwdriving device for the cobot must be available [Schmidbauer 
et al. 2022].

Second, a safe interaction between the human worker and the cobot must be 
ensured. Cobots are considered as partly completed machinery, according to ma-
chinery directives (Directive 2006/42/EC of the European Parliament and of the 
Council of May 17, 2006 on machinery; amending Directive 95/16/EC (recast)). 
Therefore, standards regarding safety, such as the technical specification ISO/
TS 15066:2016 on robots and robotic devices (specifically, collaborative robots) 
should be followed, and a risk assessment must be conducted. During a risk 
assessment, the entire workplace (including the cobot, the specific case study 
with its workpieces and fixtures, the robot program, and the required tools) must 
be considered. To date, these standards and risk assessments have considered 
workplaces that are set up once, and then, remain unchanged. Considering ATS, 
this means that all task sharing variants should be subjected to a separate risk 
assessment. Some approaches that could be integrated into a simulation have 
been reported [Vicentini et al. 2020]. Thus, the possibilities can already be evalu-
ated in the digital twin [Bilberg and Malik 2019]. However, these possibilities are 
still immature for series production. Thus, they are considered as limitations in 
the ATS implementation.
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7 Conclusion and Research Outlook

7.1. Conclusion

In this chapter, the design, development, demonstration, and evaluation of the 
proposed ATS method were described. ATS was proved to be an efficient meth-
od for adaptively sharing tasks between a human and a collaborative robot in a 
manufacturing environment. This method is capable of increasing the economic 
efficiency and improving human factors/ergonomics. The main differences be-
tween ATS and the static task allocation method are the postponement of the task 
allocation decision from the design phase to the shop floor and the ability of ATS 
to enable workers to have decision-making authority over task assignments. This 
is achieved via a digital worker assistance system, which visualizes the human–
robot processes and serves as a UI to control the robot. The main benefits of this 
method are the following:

 - Higher flexibility on the shop floor, which increases the economic efficiency, due 
to its higher potential to cope with mass customization requirements than the 
potential of other methods

 - Cost savings via hybrid assembly, thus, increasing the economic efficiency

 - Potential to reduce workers’ physical stress through a task analysis, which im-
proves human factors/ergonomics

 - Increasing workers’ satisfaction with “ad hoc” task allocation, which improves 
human factors/ergonomics.

7.2. Research Outlook

Adaptive task sharing between humans and collaborative robots enables dy-
namic and even individualizeable work organization in hybrid human–machine 
production systems. The implementation of ATS provides complementary task 
allocation to industrial practice and extends the possibilities for a flexible use of 
cobots in a manufacturing environment. ATS may be regarded as a further step 
toward democratization in terms of non-discriminating access for end users to 
the design, development, and use of cobot technology. To achieve this objective, 
complementary concepts, such as multimodal human–machine interfaces [Iones-
cu and Schlund 2021], intuitive teaching and programming concepts [El Zaatari et 
al. 2019], and dynamic simulations of adaptive work organization of human–robot 
teams [Pellegrinelli and Pedrocchi 2018] are needed. Furthermore, advances in 
(semi-)automated safety certification of reconfigurable human–cobot work sys-
tems as well as integrated safety and security concepts are required [Hollerer et 
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al. 2021]. Finally, the importance of workplace-based learning [Komenda et al. 
2021] is crucial to maintain end users’ competences and especially problem-solv-
ing skills within a more automated work environment, even in times when cobots 
will be widely-used as flexible and multipurpose manufacturing tools.
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Building trust in robots: A narrative approach

Jesse de Pagter

Abstract 

This contribution proposes a narrative approach to trust-building with regards to robots. This should serve as a com-
plementary interpretation in order to find new ways of theorizing and studying the trust-building process. The first 
aim of the paper is to distinguish between already existing notions of trust-building in relation to robots. I provide an 
overview arguing that with respect to building trust, robots are currently conceptualized as agentic interaction part-
ners, as artifacts in sociotechnical systems that can be altered based on novel engineering and design processes, 
and finally as a type of technology that can potentially disrupt existing normative and legal conventions. From this 
overview, this paper proposes the complementary approach based on a narrative conceptualization of robots. This 
conceptualization focuses on the way that robots capture the imagination of many, arguing that this is fruitful to take 
into account when theorizing and studying the process of building trust in robots. The paper then discusses how this 
conceptualization can be developed in interdisciplinary research in the social sciences by evaluating and analyzing 
future imaginaries, developing anticipatory concepts, and facilitating access to sociotechnical potential.

Keywords

Anticipatory ethics, Robot ethics, Sociotechnical potential, Technological imaginaries, Technology narratives, Trust 
in robots 

1 Introduction

Arguments that emphasize the need to build people’s trust in robots have become 
increasingly prominent in recent years [European Commission 2019; Glikson and 
Woolley 2020; Ryan 2020]. A main reason for this perceived need to build trust 
is the expected increase in the use of robotic technologies across a wide array 
of domains. Examples of this range from the application of robots for personal 
assistance to self-driving cars and new types of robots in the workplace. Rapid 
advances are being made in technologies pivotal to this development, such as 
sensing technologies, machine vision, and machine learning. These technologies 
have granted robotic artifacts with increasing abilities to act autonomously and 
safely in real-world environments and expectations are that this trend will contin-
ue in the near future. This means that people’s encounters with robots are likely 
to increase, as is public attention to the question of robots’ impact on people’s 
lives [Yang et al. 2018]. Given this context, it is not a surprise that the question 
of building trust in robots has attracted increased attention: lack of trust in an 
emerging technology like robots can have disruptive effects both on technological 
development itself and also on general trust in society [Frewer 1999]. 

The question of building trust in robots has become prominent in a wide vari-
ety of contexts. For instance, the need to build public trust in robotic technology 
has become more prominent due to the lessons learned regarding the societal 
impact of different emerging technologies in recent decades [Bunde et al. 2022; 
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Edelman 2020; Ethics Advisory Group 2018]. Further impetus can be found in the 
expected increase in interactions with robots, raising questions regarding how 
trust can be built in these interactions [Lewis et al. 2018; Naneva et al. 2020]. 
Furthermore, the growth of the use of robots and other forms of automation in 
the workplace may be a source of much fear of replacement and other forms of 
distrust toward robots [McClure 2018].

These examples indicate the importance of paying attention to the processes 
behind trust-building, but they also demonstrate that these processes can be in-
terpreted and applied in different ways. Therefore, in the section that follows, this 
paper broadly distinguishes between different interpretations of the process of 
building trust in robots. Furthermore I also explain what this means in terms of the 
way robots themselves are conceptualized under these different interpretations. 
Building on this overview, Section 3 proposes a complementary notion that pro-
poses a complementary approach that draws attention to the role of narratives. 
This approach considers robots to be a prominent example of a technology that is 
surrounded by many different narratives that often have imaginative and specu-
lative content. I argue that this should be taken into account when theorizing 
and researching the process of building trust in robots. On this basis, Section 4 
explains how such an approach can be developed in the social sciences. Finally, 
a short conclusion is presented to discuss how this notion of a trust-building pro-
cess can be of use in the further development of interdisciplinary research.

2 Building trust in robots: Different interpretations

As noted, it is challenging to define the process of trust-building in a straightfor-
ward manner, amid the various interpretations of how it can be theorized and 
studied. To develop proper insight into the particularities of trust-building with 
regards to robots, a distinction among three interpretations of the trust-building 
process are developed below. It should be kept in mind that other ways of dis-
tinguishing these interpretations are possible; moreover, they often complement 
each other in actual research practice. Each of the following subsections indi-
cates how a given interpretation theorizes the trust-building process and how the 
interpretation can be of use in research on trust in robots. In this way, the subsec-
tions provide the central ideas that define the different interpretations. Further-
more, this is accompanied by a description of the ways that robots themselves 
are defined and portrayed by this interpretation. As a consequence, this section 
does not stick to one single definition of the robot, but rather presents definitions 
of robots in relation to the respective approaches. Finally, the subsections inves-
tigate the research contexts and the domains in which these concepts and ideas 
are developed and deployed.
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2.1. Behavior, appearance, and interaction

First, a set of prominent interpretations in this domain incorporate the idea of 
trust-building in relation to adjustments and refinements to the appearance and 
behavior of robots. Due to the emphasis on appearance and behavior, this per-
spective on trust usually aims to analyze human perceptions and experiences 
that are produced in interactions with robots [Hancock et al. 2011b; Li et al. 2010; 
Van den Brule et al. 2014]. For that reason, such research keeps a strong fo-
cus on gathering empirical insight from human-robot interaction experiments to 
identify and explain the mechanisms that support people’s trust in robots during 
such interactions. Notions associated with this understanding of trust-building are 
often based on adjustments to the concept of interpersonal trust [Billings et al. 
2012]. This concept involves the development of trust by one person (the trus-
tor) in another (the trustee). Interpersonal trust has been studied extensively in 
fields like psychology and sociology, and it has been deployed in many different 
contexts. As such, the concept plays an important role in many theories of trust 
[Bachmann and Zaheer 2006; Simpson 2007]. Regarding the application of this 
notion of trust in relation to robots: in case one perceives technological artifacts 
as displaying forms of intelligence, they can also potentially enter into agentic re-
lationships with humans [Elofson 2001; Nyholm 2018]. Hence, if artificial agency 
or intentionality emerges in interactive situations involving robots, notions derived 
from interpersonal trust can begin to play a role [De Graaf and Malle 2017].

Under this interpretation, robots are often defined as autonomous agents: (per-
ceived) autonomous behavior and trust are thus seen as connected phenome-
na, as trust is generally considered to be an important element in relationships 
between humans as autonomous social beings. It is necessary to adjust this 
concept of trust to make it applicable to robots. In this setup, the robot takes on 
the role of the trustee in the interaction or relationship [Lewis et al. 2018]. In other 
words, although social agents are normally considered to be human, scholars in 
robotics-related research fields have argued that robots, when they are experi-
enced and/or perceived by the trustor as an (intelligent) autonomous agent, can 
also be conceptualized as a trustee [Coeckelbergh 2012; Hancock et al. 2011a]. 
As such, robots fit into a wider discussion about trust in artificial agents—a dis-
cussion that also includes other types of agents, such as virtual bots, software 
programs, and so on [Andras et al. 2018; Glikson and Woolley 2020; Rossi 2018]. 
Nevertheless, it is crucial in this context that robots are embodied agents. The 
embodied character of robots opens up specific research areas that identify how 
trust can be built, based on the attitudes that this embodied appearance evokes 
in interactions [Nomura 2006]. For instance, the idea that robots have an embod-
ied humanoid appearance is often considered to have a significant effect on the 
experience of trust [Alesich and Rigby 2017; van Pinxteren et al. 2019]. Thus, this 
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element of (anthropomorphic) embodiment makes appearance a very important 
feature and extends it to a wide variety of aspects that concern human beings’ life 
and work with robots [Dumouchel 2022; Jones 2021].

It should come as no surprise that many of the concepts and methods that 
are based on this interpretation originate in psychological research. Approaches 
based on the notions of interpersonal trust and associated research into mental 
models have long been a topic of inquiry in several fields of psychology [Simpson 
2007]. Human-robot interaction (HRI) is a prominent area of academic research 
that has successfully incorporated such concepts and methods to apply them to 
the study of trust in robots [Ullman and Malle 2018]. The interdisciplinary methods 
and approaches adopted in HRI generally focus on the development of experi-
ments to measure trust-related attitudes. These experiments are often based on 
Wizard of Oz techniques, in which robots imitate agentic behavior [Riek 2012]. In 
this context, it is common to use validated questionnaires to gain insight into the 
experiences and attitudes of the human participants related to trust, while also 
providing directions on how trust can be built. Many outcomes of such research 
are then incorporated into the development of new robots, and robotics engineers 
often collaborate with HRI researchers in this context. Finally, several notions and 
theories developed in the context of interdisciplinary ethics research have also 
revolved around this interpretation of trust-building [Bartneck et al. 2021]. These 
notions and theories have been deployed to establish the field of robot ethics 
itself, but ethical concepts have also been implemented and tested as part of 
robots’ behavioral cues [Malle 2016; Malle et al. 2019].

2.2. Research, development, and implementation

Another interpretation, focusing on the idea of human dependence on and vul-
nerability toward sociotechnical systems, describes the process of building trust 
in robots as an outcome of changes in design and engineering practices [Coeck-
elbergh 2013, 2015]. Taking technology to be constitutive of the environment in 
which humans operate and focusing on their vulnerability exposes trust as part 
of the entanglement that defines the relationship between humans and techno-
logical systems [Kiran and Verbeek 2010]. The implementation of this notion of 
trust-building draws attention to the ways in which research and innovation sys-
tems are set up, as well as the question of how they can be transformed in the 
direction of more open innovation in general [Geels 2004]. A good example of a 
framework often used in this context is the responsible research and innovation 
(RRI) framework [Asveld et al. 2017; van den Hoven et al. 2015]. When attention 
is drawn to the practices and norms that constitute sociotechnical systems, trans-
parency and responsibility can become explicit components of (implicit) value 
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systems in research and engineering [Kiran et al. 2015]. For that reason, such 
approaches to trust-building focus on making innovation processes more open, 
responsible, and inclusive [Cheon and Su 2016]. Then, trust can emerge as an 
outcome of how characteristics such as reliance, transparency, and privacy are 
best managed in sociotechnical systems [Lee and See 2004; Wortham et al. 
2016].

This interpretation of the trust-building process is not primarily focused on the 
appearance of the robotic artifact as such but rather emphasizes the notion of 
robotic technologies as important components of larger sociotechnical systems 
that (co-)define the conditions under which humans live and work [Sabanovic 
2010]. Crucially, because humans construct these sociotechnical systems, they 
can also influence their development. Thus, it is important to consider how a tech-
nology like robotics establishes new forms of dependence and vulnerability, as 
well as the ways in which such issues are represented in terms of the norms and 
values of roboticists [Dignum et al. 2018]. Within the field of robotics itself, this 
perspective on the trust-building process has resulted in many calls to include 
norms and values that allow the needs of minorities to be recognized [Howard 
and Kennedy III 2020]. If design and engineering processes fail to consider and 
incorporate the values of different societal groups, attitudes of mistrust can arise 
with respect to technological systems [Howard and Borenstein 2018]. This, in 
turn, directly relates to overarching topics such as human rights and the mainte-
nance of democratic values in technological design and engineering, emphasiz-
ing their importance for the way trust in robots develops in societies that have the 
need to mitigate the impacts of new types of robots [Torresen 2018]. An explicit 
openness to the deliberation on and implementation of values is in such a con-
text considered to help ensure that societal and ethical issues are incorporated 
in the development processes behind robotic artifacts [Stahl and Coeckelbergh 
2016]. Furthermore, the idea that robotic sociotechnical systems can establish 
new environments in which humans operate draws attention to the perspective of 
trust-building through the entanglements that constitute the relationship between 
humans and robotic systems [Richardson 2015]. As a central component of these 
sociotechnical systems, robotic artifacts can thus become more trustworthy by 
making their design and engineering to become more focused on issues like 
transparency and responsibility [Dignum 2017; Wortham et al. 2017; Wortham 
and Theodorou 2017].

Implicit in this idea of trust-building is the concept that existing practices in 
such fields can be altered to increase the general trustworthiness of robotic tech-
nologies. For instance, this can be achieved by implementing design require-
ments that would include the values discussed here and new types of aware-
ness in robotics engineering and design processes [Siau and Wang 2018]. It is 
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important to note that many of these ideas are the subject of current discussions 
in the fields of robotics and HRI [Liu and Zawieska 2020; Winfield et al. 2021]. 
This is a crucial development, as their openness to such topics will likely have 
a strong effect on future developments in these pivotal fields. Critical analysis 
of and constructive engagement in new approaches to design and engineering 
practices are a prominent topic in many other academic areas as well. In philos-
ophy, in particular, this entails the development of theories that reflect on tech-
nological design and engineering practices [Van de Poel and Royakkers 2011]. 
Several approaches from science and technology studies (STS) have also been 
crucial for drawing attention to the entanglements that constitute the (mundane) 
relationships between humans and technological artifacts [Maibaum et al. 2021; 
Rommetveit et al. 2020]. A range of topics and concepts from philosophy and the 
social sciences have likewise been used for interdisciplinary collaborations with 
roboticists, such as by creating approaches based on Participatory Design (PD) 
or Value Sensitive Design (VSD) [Azenkot et al. 2016; Umbrello and De Bellis 
2018; Van Wynsberghe 2013].

2.3. Disruptions, rules, and regulations

The final interpretation regarding the process of building trust in robots is based 
on the idea that trust can be fostered with the help of rules and regulations [Nel-
son and Gorichanaz 2019]. Such discussions are increasingly prominent in recent 
years, as many proposals for rules and regulations to govern robotic and artificial 
intelligence (AI) technologies are currently in development [DG IPOL et al. 2016]. 
In close connection with this, the potential implications of the increasing preva-
lence of robots are a growing topic of inquiry in fields like ethics, legal studies, 
and governance studies [Boden et al. 2017; Leenes and Lucivero 2014; Nagen-
borg et al. 2008]. Beyond this, these types of interpretations of the trust-building 
process are generally important for the development of procedures that can help 
to mitigate the effects of emerging technologies on society. Ethical, legal, and 
regulatory schemes based on such analyses can help establish social trust in 
robots [Pagallo 2010]. Rules and regulations of this type can therefore function 
as part of a system of checks and balances that guide and govern technologi-
cal developments and the implementation and use of robotics and AI, especially 
during a time characterized by socially disruptive technological advancements. In 
this context, philosophical deliberations are often concerned with new ontologies 
and ethical systems, while legal considerations are mostly about new rules and 
regulations. Both can be considered instrumental for creating a framework for fur-
ther development and can help provide additional clarity for the current and future 
roles of robots in society [Gunkel 2012; Fosch-Villaronga and Heldeweg 2018].
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In this context, robotic technologies (and AI) are largely understood and de-
fined as a group of technologies set to disrupt existing conventions and therefore 
need to be guided and regulated via newly established rules and frameworks. 
Based on this idea, such approaches are often emphasizing the need for antic-
ipating the potential social impact of future developments in robots’ intelligence 
and agency. The emergence of intelligence and agency in machines is under-
stood as a development that would potentially lead to large shifts in the issues of 
responsibility, liability, accountability and so on [Holder et al. 2016; Petit 2017]. If 
such issues are not dealt with properly, general trust in robots is likely to be com-
promised, which is why commitment to these issues can help to create rules and 
regulations to anticipate potential problems [Winfield and Jirotka 2018]. Thus, 
much of the work formulating ethical and/or legal arguments regarding the de-
velopment of robots also takes on the current challenges and lacunae as well as 
those that future robots could bring about [Koops et al. 2013; Leenes et al. 2017]. 
In particular, with reference to concerns regarding the (im)possibilities of human 
control over the development and implementation of robotic technologies, ethical 
and legal scholars can help provide clarity to the discussion [Lin et al. 2012; Na-
genborg et al. 2008].

When it comes to academic fields where trust-building of this type is a promi-
nent topic, robot and AI ethics is a key area of research. The ethics of technology 
have been a topic of inquiry for many years, but it has gained importance in re-
cent decades due to growing concerns over the social impact of other emerging 
technologies, such as nanotechnology or (big) data technologies [Brey 2017; Van 
de Poel 2008; Zwitter 2014]. In recent years, increasing interest has been seen 
in applying ethics to robots, and this has also become an important topic in fields 
investigating the governance of robotics. Hence, the meaning of the term ethics 
and its application have widened: according to some, ethics has even become 
“big business” [Richardson 2019; Sætra et al. 2021]. On a broader level, ethical 
considerations have repeatedly been shown to be instrumental for the explo-
ration of potential legal and social ontologies and their consequences [Turner 
2019]. In this regard, (social) robots are also becoming a subject of increasing 
concern in legal theory [Avila Negri 2021; Bertolini and Aiello 2018]. Furthermore, 
the regulation of robots and AI is now an important subject for concrete regulatory 
proposals, such as, for instance, in the European Union [European Parliament 
2017].

3 Complementary interpretation: Robot narratives

In the previous section, different interpretations of the trust-building process were 
provided, accompanied by different definitions of robots: robots and robotic tech-
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nologies were described as agentic interaction partners, as central artifacts in 
sociotechnical systems that are subject to alteration based on responsible en-
gineering and design processes, and finally as a type of technology that (po-
tentially) has the ability to disrupt existing ethical and legal conventions. I argue 
here for a complementary interpretation, describing a trust-building process that 
establishes the robot as the subject of narratives that may (and often do) contain 
speculative and imaginative content. 

To explain this narrative perspective, it is useful to first discuss the notion of the 
narrative as found in social research, where it is used to analyze social life and 
has played that role for a long time [Nash 1994]. In social research, narratives 
are understood as carriers of meaning and assumptions, organized into plot-
like structures [Deuten and Rip 2000]. Narratives constitute a crucial element 
of human social life: we think and communicate with the help of stories, which 
determine the limits of what we consider imaginable, knowable, and doable [Felt 
2017]. In other words, narratives are instrumental for establishing meaning and 
structure [Czarniawska 2004]. As such, narratives can be analyzed in many dif-
ferent contexts, from policy documents to patient testimonies [Kirkpatrick 2008; 
McBeth and Lybecker 2018]. With regard to robots, the analysis of narratives can 
help clarify how robots become situated within shared meanings and assump-
tions. Thus, narratives are not simply stories: they can play a constitutive role 
in the development of concepts and ideas concerning the way our future with 
robots is to be configured. They point in certain directions, and the values implicit 
in them facilitate current and future development into a meaningful whole. Based 
on this, I argue that narratives can provide useful perspectives on the way we 
understand the role of robots, both in interactions with humans as well as in their 
larger societal context. Therefore, this paper argues for a more explicit inclusion 
of a narrative focus to come to grips with the way that the notion of trust-building 
can be further developed.

To ground the argument of the paper more securely, it will be useful to draw 
attention to narratives regarding robots and their imaginative and speculative el-
ements. Why do narratives play such a crucial role for trust-building in robotics 
technology in particular? To provide a first answer to this question, it may be 
useful to provide insight into certain prominent elements from the history of ro-
botics, as they demonstrate how the technological artifacts we call robots are 
surrounded by a host of speculative and imaginative narratives. The very term 
“robot” comes from a science fiction play, Rossum’s Universal Robots (R.U.R.), 
published in 1921 by the Czech writer Karel Čapek [Čapek 2004]. In this play, 
robots are created to work for humans, but they eventually rebel and cause the 
human race to go extinct. Even before this introduction of the word, autonomous 
non-human entities were a source of fear and fascination [Gasparetto 2016]. 
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Depictions of and experiments with inanimate autonomous beings were part of 
larger (sometimes mesmerist and occultist) fascinations with automata. Such 
fascinations were rather widely expressed during the earlier phases of modern 
science and engineering [Coeckelbergh 2017; Liu 2010; Willis 2006]. The period 
of the Enlightenment for instance, exhibited an increasing engagement of clock-
makers, mechanics at princely courts as well as other artisans with the creation 
of automata [Voskuhl 2013]. Furthermore, the history of fictional writing includes 
many examples of fascination with non-human forms of intelligence, such as 
the monster in Mary Shelley’s Frankenstein, Henri Maillardet’s Automaton, Na-
thanael (Nate) in E.T.A. Hoffmann’s The Sandman, and many others [Cave and 
Dihal 2018; Selisker 2016]. 

In the context described above, as actual artifacts automata were mostly cre-
ated in the domain of artisans, not that of engineers. With reference to the later 
establishment of robotics as a field of research and engineering, it is interesting 
to note that famous roboticists, such as Hans Moravec and Marvin Minsky, de-
liberately engaged in arguments that extrapolated research trends in their field 
toward futurist narratives. They claimed that science fiction futures that feature 
high levels of robot autonomy and intelligence could become a reality within a 
relatively short time. They explicitly referred to narratives that contained a strong 
fascination with the autonomy of robots. In that way, they were well aware that 
pop science efforts could help raise the political and cultural power of robotics as 
a field, which could in turn help increase their research funding [Geraci 2010].

In hindsight, it could be concluded that these early roboticists were quite suc-
cessful in establishing robotics as a professional field. In this context, it is import-
ant to realize that the speculative dimension of the narratives around robots go 
well beyond the fictional realm. In recent decades, narratives about the further 
implementation of robots have continued to capture society’s imagination [Hef-
fernan 2019]. In the current moment in particular, there is a strong focus on the 
narrative that robots are an emerging technology that could, combined with AI 
technology, considerably alter the way we live and work while thoroughly chang-
ing society and the economy [Suchman 2019]. In this context, we have seen a 
general increase in concerns regarding the potential socially disruptive effects 
of the increasing implementation of autonomous systems, including robots, and 
their rapid technological progress. Important players like the European Union, Or-
ganization for Economic Co-operation and Development (OECD), and the Unit-
ed Nations have expressed the intention to maintain a strong emphasis on the 
need for anticipation of the future development of robotics in combination with AI 
technologies [European Commission 2020; OECD 2019; UNESCO 2021]. In this 
way, robots continue to be connected to the development of efforts to assess and 
predict future social and economic impact [Ford 2015; Nourbakhsh 2013]. There-
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fore, due to its framing as an emerging technology, the future of robots is covered 
extensively in general public discourse, as well as in governance, which projects 
many different expectations onto its possible future development.

The speculative and anticipatory rhetoric that surrounds robotics is typical for 
emerging technologies, which are often characterized by high levels of ambi-
guity regarding their future [Asquer and Krachkovskaya 2021; Schaper-Rinkel 
2013]. I argue here that the anticipation placed on (future) robots can usefully 
be understood and analyzed with the help of a narrative approach. As such, re-
search and theory can treat narrative as a specific and distinct factor in the overall 
process of trust-building in robots. That is to say, robots’ imagery and cultural 
status influence the way that they are portrayed and understood in the context of 
trust-building, in which individual robotic artifacts themselves, as well as robot-
ics in general (as a field of research, design and implementation), play a crucial 
role in the emergence of narratives. Furthermore, I draw an explicit contrast to 
conceptions that disregard imaginative and speculative narratives about robotics 
as future-grasping hubris. Certainly, many solid and insightful studies exist that 
expose technological hubris and its distorting effects, but I argue that in relation to 
the process of building trust in robots, it can be insightful to explore how such nar-
ratives influence technological development and the culture that emerges around 
it. Expectation, imagination, and the anticipated/speculative future connected to 
them are thus considered major narratives that are constitutive of the ways that a 
culture thinks and acts with respect to robots.

4 Materializing a narrative approach: Studying trust

With a focus on narratives firmly established, it remains to describe how a narra-
tive approach can be materialized. Here the interpretations from Section 2 are to 
be complemented by developing an understanding of how trust can be theorized 
and studied with the help of narratives. In other words, research that uses such 
an interpretation should be based on concepts of trust that explicitly, critically, 
and constructively engage with the narratives around robots. A particular focus is 
placed on three main components that are constitutive for a narrative approach 
to trust-building in robotic technologies: (1) scrutinizing existing imaginaries in 
the narratives about robots, (2) configuring anticipatory concepts regarding the 
narratives about robot futures, and (3) facilitating the emergence of new narra-
tives around the sociotechnical potential of robots, mostly by increasing access 
to robots and robotics.
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4.1. Scrutinizing technological imaginaries

To understand trust-building in robots using a narrative approach, it is crucial to 
draw attention to the technological imaginaries that are inherent to robot nar-
ratives. The concept of technological imaginaries or sociotechnical imaginaries 
emphasizes the entanglement of technologies in their social and cultural contexts 
[Jasanoff and Kim 2015]. The main idea being that these contexts define the de-
velopment and implementation of technologies, as well as the norms and social 
and cultural practices around them. The analysis of technological imaginaries fit 
easily into a narrative approach, as these imaginaries can be found through the 
analysis of narratives. The main rationale here is that technological imaginaries 
drive cultural understandings and the perceptions of robots by defining and influ-
encing arguments and concepts regarding robots’ roles in our (future) societies. 
Thus, the imagined futures of robots should be understood as shaping the ways 
that societies deal with the contingencies connected to these futures through the 
visions and expectations that they represent. These imaginaries also shape the 
development of technologies connected to such visions [Jasanoff and Kim 2009]. 
As such, the technological imaginary should also play a constitutive role in the 
critical analysis of anticipatory notions surrounding robots in relation to the con-
struction of novel social realities based on the futures of emerging technologies 
[Vallès-Peris and Doménech 2020]. For instance, Lucy Suchman has convincing-
ly argued that the robot imaginary confronted at present is largely based on Eu-
ro-American notions of embodiment, emotion, and sociality. From this argument, 
she demonstrates that narratives of social order are reproduced in the specific 
technological designs of robots [Suchman 2006]. Another example is the book 
The Robotic Imaginary by Jennifer Rhee, which analyzes the conceptualizations 
and visions of humanness and dehumanization as seen in discourses on robotics 
[Rhee 2018].

The analysis of imaginaries is particularly useful when one wants to study and 
analyze different interpretations and controversies in narratives that are con-
cerned with the (future) role of robots in our societies. Many other technologies 
and their particular imaginaries have already undergone scrutiny using analysis 
of this type [Jasanoff and Kim 2015; Sismondo 2020]. These studies have repeat-
edly demonstrated that perceptions of technologies and their futures are a cru-
cial factor in the decision-making of governments and corporations. Furthermore, 
they are instrumental to the development and negotiation of novel and already 
present social arrangements in terms of new technologies, for instance in the 
context of governance [Grunwald 2018]. In relation to the process of building trust 
in robots in light of promises, expectations, and fears regarding robots and their 
futures, trust-building can be conceptually connected to the ways in which robots 
are presented in (speculative) narratives [Rommetveit and Wynne 2017]. In other 
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words, such narratives must be interpreted as drivers of debates regarding the 
possibilities, dangers, and challenges of robotization and automation.

Thus, narratives and their imaginaries are drivers of the establishment of so-
cial and public trust with respect to robots [Kearnes et al. 2006]. Furthermore, 
when used in conjunction with concepts of trust that are derived from interper-
sonal trust, they can help provide a deeper understanding of people’s attitudes 
in human-robot interaction [Fortunati et al. 2015; Weiss and Spiel 2021]. In this 
way, concepts of trust in robots can be further refined through careful investment 
in inclusive and responsible imaginaries with respect to our future with robots. 
Thus, analyzing narratives that establish certain social imaginaries, the heavily 
anticipated roles of robots in society can be assessed, discussed, and criticized. 
Finally, the analysis of imaginaries of robotics in different domains (e.g., robot 
engineering, robot governance, and industrial contexts) can help establish new 
understandings of social and collective life with robots while recognizing the so-
cial character of such technological futures.

4.2. Configuring anticipatory concepts

In addition to the critical analysis of robot imaginaries, a second component in-
volves actively taking part in the development and configuration of concepts that 
can support narratives that are engaged with the anticipation of robots the soci-
otechnical systems that emerge around them [Floridi 2014]. Here, philosophers 
and social scientists themselves can become involved in the anticipation of po-
tential scenarios in order to develop the arguments and concepts that can be 
of use in the responsible implementation of robotic technologies [Brey 2012]. 
In comparison to the subsection above, this component also requires a critical 
stance toward robot futures, but simultaneously it is more strongly focused on 
constructive and sometimes speculative engagement with the futures of emerg-
ing robotics. The different ways in which the technological potential of robots is 
imagined can be assessed and refined to shape the sociotechnical systems that 
surround robots [Plas et al. 2010]. Although many types of robots that are antic-
ipated are not yet in widespread use, speculative engagement with their future 
incarnations can be an important part of concepts of trust-building that are based 
on a narrative approach. The provision of new directions and concepts to guide 
the construction of narratives about our futures with robots can allow new roles 
to be allotted to them, ones that can already be anticipated [Gunkel 2022; Selkirk 
et al. 2018].

In general, the advancement of such anticipatory concepts can encourage re-
flection on notions of trust to address current challenges surrounding automation 
and robotics. The main emphasis should fall on creating concepts to help soci-



277

Building trust in robots: A narrative approach

eties adjust in times of transformative change, times in which technological de-
velopments challenge and redefine societal norms and practices [Bratton 2017; 
Sardar 2010]. As such, the configuration of anticipatory concepts involves the 
production of a thorough overview of the meanings and interpretations that devel-
op in the anticipated trajectories of robotic development, including its speculative 
elements. The aim is thus to create new concepts that can help anticipate and 
modify the sociotechnical ramifications of those developments [Castañeda and 
Suchman 2014]. Apart from analyzing technological products and innovations in 
their social context, the goal should be to engage in the development of new nar-
ratives that can help steer the development of future products and innovations.

I argue here for explicit commitment to the continuous (re)configuration of an-
ticipatory concepts related to robots. This is largely an exploratory endeavor, in 
which it is crucial to invest in concepts that support more inclusive narratives of 
robots as a widely implemented technology [Grunwald 2010; Selin 2008]. Inter-
disciplinary work is crucial for such efforts and for developing concepts that are 
on the one hand speculative, but rooted in engineering reality on the other. More-
over, it is a significant platform for implementing concepts and ideas that mobilize 
the technoscientific imagination toward emancipatory sociotechnical systems. 
Thus, by facilitating novel definitions of robots and their roles in social contexts, 
anticipation based on speculative concepts would be instrumental to fostering 
novel engagement types with robots. In this way, robots can help change well-es-
tablished social ontologies [Coeckelbergh 2010; Gunkel 2018].

4.3. Facilitating sociotechnical potential

Finally, within a narrative approach that is focused on trust-building, it is import-
ant to provide insights and pathways that can actively facilitate the emergence 
of new narratives about robots’ sociotechnical potential. These narratives may 
be instrumental for developing ideas for the use of robots, founded on the imag-
inative capacity of the general public or of specific future users regarding how 
they conceptualize and imagine life and work with robots. Facilitating narratives 
around robotics’ potential is therefore mostly about deliberately providing access 
to robots in order to allow new narratives to emerge [Chun 2019; Fischer et al. 
2020]. Furthermore, this calls for critical but constructive engagements with peo-
ple’s concrete imaginings with respect to their use of and work with robots. An 
important idea in this approach is that technological artifacts such as robots are 
(re)defined in terms of how their use is imagined and practiced [Soljacic et al. 
2022]. Thus, the identification of new forms of sociotechnical potential can enable 
the development of a way to allow for new understandings of the roles that robots 
can play in society.
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Here, an important question is how the different uses of technology can be 
facilitated and analyzed [Cressman 2019]. The researcher’s role in this process 
is to work to provide access to robots and connect the narrative understanding 
of technology to people’s experiences while using and interacting with robots. 
Thus, it is helpful to facilitate the emergence of new narratives around the pos-
sible uses of robots for building social trust in robots in a democratic society. To 
create trust and implement technology in accordance with democratic values, the 
general public as well as individual users must be prompted to form new narra-
tives around robots’ future potential [Bijker 2010; Ionescu and Schlund 2019]. In 
line with this, constructive engagement with narratives that involve robots’ soci-
otechnical potential can be developed by increasing interactions with robots and 
robotics. The goal of this activity is not necessarily to see how different groups 
and guidelines can be included in the design but rather to inquire into the ways in 
which people use and understand technologies in novel ways that are previously 
unimagined.

It is crucial to recall that this approach must be explicitly neutral to any nar-
rative trajectory, even with respect to those trajectories that could be classified 
as irrationally utopian or dystopian. The goal is rather to facilitate the way that 
associations of this or other types lead to unanticipated mundane uses of robots. 
Pioneering studies in the social construction of technology have been undertak-
en in relation to the user as an agent of technological change [Kline and Pinch 
1996]. These studies indicate the way that a certain technological artifact and its 
social environment evolve over time, based on actual use. Therefore, in relation 
to robots and building trust in them, research activities should not only critically 
analyze and anticipate robot futures but also focus on providing the possibilities 
for emancipation and democratization through imagination in narratives regard-
ing the use of and work with robotics. In this way, the development and imple-
mentation trajectories of robots can become increasingly democratized through 
the emphasis on possibilities for choosing and designing different technologies 
[Feenberg 2002].

5 Conclusion

This paper presented an approach to the process of building trust in robots that 
focuses on the role that narratives can play. I have demonstrated that robotics is 
necessarily embedded in narratives about its own future. I argue that this neces-
sitates a complementary view on building trust in robots, which I presented in this 
paper. The goal of this approach is to deploy already existing discourse on trust 
to generate new ideas for bringing robots into our societies in ways that, without 
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profoundly disturbing our economic, social, and political lives, might empower us 
to achieve more equal, sustainable, and desirable futures with robots.

Implicitly, this focus on narratives involves the addition of perspectives from 
history, the arts, literature, and philosophy to the already rapidly growing body 
of research on the implications of emerging technologies such as robots. This 
development is far from finished and certainly is not limited to roboticists adapting 
or being open to these kinds of perspectives. It also means that significant efforts 
must still be made to bring the above-mentioned fields and disciplines closer to 
the field of robotics and identify ways in which the interpretations and ideas of 
each can be of use for the other. This is and will continue to be very challenging, 
not least because interdisciplinary work often necessarily encounters and must 
deal with long-standing preconceptions and conflicting epistemologies between 
disciplines [Weszkalnys and Barry 2013]. Therefore, it is crucial to continue in-
vesting in efforts to produce a deeper integration of these inter- and transdisci-
plinary perspectives.
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