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Chapter 1

Introduction

1.1 Welcome to R
Welcome to the wonderful world of R!

R is not like other statistical software packages. It is free, versatile, fast, and mod-
ern. It has a large and friendly community of users that help answer questions and
develop new R tools. With more than 17,000 add-on packages available, R offers
more functions for data analysis than any other statistical software. This includes
specialised tools for disciplines as varied as political science, environmental chem-
istry, and astronomy, and new methods come to R long before they come to other
programs. R makes it easy to construct reproducible analyses and workflows that
allow you to easily repeat the same analysis more than once.

R is not like other programming languages. It was developed by statisticians as a
tool for data analysis and not by software engineers as a tool for other programming
tasks. It is designed from the ground up to handle data, and that shows. But it is
also flexible enough to be used to create interactive web pages, automated reports,
and APIs.

R is, simply put, currently the best tool there is for data analysis.

1.2 About this book
This book was born out of lecture notes and materials that I created for courses at
the University of Edinburgh, Uppsala University, Dalarna University, the Swedish
University of Agricultural Sciences, and Karolinska Institutet. It can be used as a
textbook, for self-study, or as a reference manual for R. No background in program-
ming is assumed.

17
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This is not a book that has been written with the intention that you should read it
back-to-back. Rather, it is intended to serve as a guide to what to do next as you
explore R. Think of it as a conversation, where you and I discuss different topics
related to data analysis and data wrangling. At times I’ll do the talking, introduce
concepts and pose questions. At times you’ll do the talking, working with exercises
and discovering all that R has to offer. The best way to learn R is to use R. You
should strive for active learning, meaning that you should spend more time with
R and less time stuck with your nose in a book. Together we will strive for an
exploratory approach, where the text guides you to discoveries and the exercises
challenge you to go further. This is how I’ve been teaching R since 2008, and I hope
that it’s a way that you will find works well for you.

The book contains more than 200 exercises. Apart from a number of open-ended
questions about ethical issues, all exercises involve R code. These exercises all have
worked solutions. It is highly recommended that you actually work with all the
exercises, as they are central to the approach to learning that this book seeks to
support: using R to solve problems is a much better way to learn the language than
to just read about how to use R to solve problems. Once you have finished an exercise
(or attempted but failed to finish it) read the proposed solution - it may differ from
what you came up with and will sometimes contain comments that you may find
interesting. Treat the proposed solutions as a part of our conversation. As you work
with the exercises and compare your solutions to those in the back of the book, you
will gain more and more experience working with R and build your own library of
examples of how problems can be solved.

Some books on R focus entirely on data science - data wrangling and exploratory
data analysis - ignoring the many great tools R has to offer for deeper data analyses.
Others focus on predictive modelling or classical statistics but ignore data-handling,
which is a vital part of modern statistical work. Many introductory books on statis-
tical methods put too little focus on recent advances in computational statistics and
advocate methods that have become obsolete. Far too few books contain discussions
of ethical issues in statistical practice. This book aims to cover all of these topics
and show you the state-of-the-art tools for all these tasks. It covers data science and
(modern!) classical statistics as well as predictive modelling and machine learning,
and deals with important topics that rarely appear in other introductory texts, such
as simulation. It is written for R 4.0 or later and will teach you powerful add-on
packages like data.table, dplyr, ggplot2, and caret.

The book is organised as follows:

Chapter 2 covers basic concepts and shows how to use R to compute descriptive
statistics and create nice-looking plots.

Chapter 3 is concerned with how to import and handle data in R, and how to perform
routine statistical analyses.

Chapter 4 covers exploratory data analysis using statistical graphics, as well as un-
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supervised learning techniques like principal components analysis and clustering. It
also contains an introduction to R Markdown, a powerful markup language that can
be used e.g. to create reports.

Chapter 5 describes how to deal with messy data - including filtering, rearranging
and merging datasets - and different data types.

Chapter 6 deals with programming in R, and covers concepts such as iteration, con-
ditional statements and functions.

Chapters 4-6 can be read in any order.

Chapter 7 is concerned with classical statistical topics like estimation, confidence
intervals, hypothesis tests, and sample size computations. Frequentist methods are
presented alongside Bayesian methods utilising weakly informative priors. It also
covers simulation and important topics in computational statistics, such as the boot-
strap and permutation tests.

Chapter 8 deals with various regression models, including linear, generalised linear
and mixed models. Survival models and methods for analysing different kinds of
censored data are also included, along with methods for creating matched samples.

Chapter 9 covers predictive modelling, including regularised regression, machine
learning techniques, and an introduction to forecasting using time series models.
Much focus is given to cross-validation and ways to evaluate the performance of
predictive models.

Chapter 10 gives an overview of more advanced topics, including parallel computing,
matrix computations, and integration with other programming languages.

Chapter 11 covers debugging, i.e. how to spot and fix errors in your code. It includes
a list of more than 25 common error and warning messages, and advice on how to
resolve them.

Chapter 12 covers some mathematical aspects of methods used in Chapters 7-9.

Finally, Chapter 13 contains fully worked solutions to all exercises in the book.

The datasets that are used for the examples and exercises can be downloaded from

http://www.modernstatisticswithr.com/data.zip

I have opted not to put the datasets in an R package, because I want you to practice
loading data from files, as this is what you’ll be doing whenever you use R for real
work.

This book is available both in print and as an open access online book. The digital
version of the book is offered under the Creative Commons CC BY-NC-SA 4.0.
license, meaning that you are free to redistribute and build upon the material for non-
commercial purposes, as long as appropriate credit is given to the author. The source

http://www.modernstatisticswithr.com/data.zip
https://creativecommons.org/licenses/by-nc-sa/4.0/
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for the book is available at it’s GitHub page (https://github.com/mthulin/mswr-
book).

I am indebted to the numerous readers who have provided feedback on drafts of
this book. My sincerest thanks go out to all of you. Any remaining misprints are,
obviously, entirely my own fault.

Finally, there are countless packages and statistical methods that deserve a mention
but aren’t included in the book. Like any author, I’ve had to draw the line somewhere.
If you feel that something is missing, feel free to post an issue on the book’s GitHub
page, and I’ll gladly consider it for future revisions.

https://github.com/mthulin/mswr-book
https://github.com/mthulin/mswr-book


Chapter 2

The basics

Let’s start from the very beginning. This chapter acts as an introduction to R. It
will show you how to install and work with R and RStudio.

After working with the material in this chapter, you will be able to:

• Create reusable R scripts,
• Store data in R,
• Use functions in R to analyse data,
• Install add-on packages adding additional features to R,
• Compute descriptive statistics like the mean and the median,
• Do mathematical calculations,
• Create nice-looking plots, including scatterplots, boxplots, histograms and bar

charts,
• Find errors in your code.

2.1 Installing R and RStudio
To download R, go to the R Project website

https://cran.r-project.org/mirrors.html

Choose a download mirror, i.e. a server to download the software from. I recommend
choosing a mirror close to you. You can then choose to download R for either Linux1,
Mac or Windows by following the corresponding links (Figure 2.1).

The version of R that you should download is called the (base) binary. Download
and run it to install R. You may see mentions of 64-bit and 32-bit versions of R; if

1For many Linux distributions, R is also available from the package management system.

21
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Figure 2.1: A screenshot from the R download page at https://ftp.acc.umu.se/mir
ror/CRAN/

you have a modern computer (which in this case means a computer from 2010 or
later), you should go with the 64-bit version.

You have now installed the R programming language. Working with it is easier with
an integrated development environment, or IDE for short, which allows you to easily
write, run and debug your code. This book is written for use with the RStudio IDE,
but 99.9 % of it will work equally well with other IDE’s, like Emacs with ESS or
Jupyter notebooks.

To download RStudio, go to the RStudio download page

https://rstudio.com/products/rstudio/download/#download

Click on the link to download the installer for your operating system, and then run
it.

2.2 A first look at RStudio
When you launch RStudio, you will see three or four panels:

1. The Environment panel, where a list of the data you have imported and created
can be found.

2. The Files, Plots and Help panel, where you can see a list of available files, will
be able to view graphs that you produce, and can find help documents for
different parts of R.

3. The Console panel, used for running code. This is where we’ll start with the
first few examples.

https://ftp.acc.umu.se/mirror/CRAN/
https://ftp.acc.umu.se/mirror/CRAN/
https://rstudio.com/products/rstudio/download/#download
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Figure 2.2: The four RStudio panels.

4. The Script panel, used for writing code. This is where you’ll spend most of
your time working.

If you launch RStudio by opening a file with R code, the Script panel will appear,
otherwise it won’t. Don’t worry if you don’t see it at this point - you’ll learn how to
open it soon enough.

The Console panel will contain R’s startup message, which shows information about
which version of R you’re running2:
R version 4.1.0 (2021-05-18) -- "Camp Pontanezen"
Copyright (C) 2021 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

2In addition to the version number, each relase of R has a nickname referencing a Peanuts comic
by Charles Schulz. The “Camp Pontanezen” nickname of R 4.1.0 is a reference to the Peanuts comic
from February 12, 1986.
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Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

You can resize the panels as you like, either by clicking and dragging their borders
or using the minimise/maximise buttons in the upper right corner of each panel.

When you exit RStudio, you will be asked if you wish to save your workspace, meaning
that the data that you’ve worked with will be stored so that it is available the next
time you run R. That might sound like a good idea, but in general, I recommend that
you don’t save your workspace, as that often turns out to cause problems down the
line. It is almost invariably a much better idea to simply rerun the code you worked
with in your next R session.

2.3 Running R code
Everything that we do in R revolves around code. The code will contain instructions
for how the computer should treat, analyse and manipulate3 data. Thus each line of
code tells R to do something: compute a mean value, create a plot, sort a dataset,
or something else.

Throughout the text, there will be code chunks that you can paste into the Console
panel. Here is the first example of such a code chunk. Type or copy the code into
the Console and press Enter on your keyboard:
1+1

Code chunks will frequently contain multiple lines. You can select and copy both
lines from the digital version of this book and simultaneously paste them directly
into the Console:
2*2
1+2*3-5

As you can see, when you type the code into the Console panel and press Enter,
R runs (or executes) the code and returns an answer. To get you started, the first
exercise will have you write a line of code to perform a computation. You can find a
solution to this and other exercises at the end of the book, in Chapter 13.

∼
3The word manipulate has different meanings. Just to be perfectly clear: whenever I speak of

manipulating data in this book, I will mean handling and transforming the data, not tampering
with it.
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Exercise 2.1. Use R to compute the product of the first ten integers: 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 ⋅
6 ⋅ 7 ⋅ 8 ⋅ 9 ⋅ 10.

2.3.1 R scripts
When working in the Console panel4, you can use the up arrow ↑ on your keyboard
to retrieve lines of code that you’ve previously used. There is however a much better
way of working with R code: to put it in script files. These are files containing R
code, that you can save and then run again whenever you like.

To create a new script file in RStudio, press Ctrl+Shift+N on your keyboard, or
select File > New File > R Script in the menu. This will open a new Script panel
(or a new tab in the Script panel, in case it was already open). You can then start
writing your code in the Script panel. For instance, try the following:
1+1
2*2
1+2*3-5
(1+2)*3-5

In the Script panel, when you press Enter, you insert a new line instead of running the
code. That’s because the Script panel is used for writing code rather than running
it. To actually run the code, you must send it to the Console panel. This can be
done in several ways. Let’s give them a try to see which you prefer.

To run the entire script do one of the following:

• Press the Source button in the upper right corner of the Script panel.
• Press Ctrl+Shift+Enter on your keyboard.
• Press Ctrl+Alt+Enter on your keyboard to run the code without printing the

code and its output in the Console.

To run a part of the script, first select the lines you wish to run, e.g. by highlighting
them using your mouse. Then do one of the following:

• Press the Run button at the upper right corner of the Script panel.
• Press Ctrl+Enter on your keyboard (this is how I usually do it!).

To save your script, click the Save icon, choose File > Save in the menu or press
Ctrl+S. R script files should have the file extension .R, e.g. My first R script.R.
Remember to save your work often, and to save your code for all the examples and
exercises in this book - you will likely want to revisit old examples in the future, to
see how something was done.

4I.e. when the Console panel is active and you see a blinking text cursor in it.



26 CHAPTER 2. THE BASICS

2.4 Variables and functions
Of course, R is so much more than just a fancy calculator. To unlock its full potential,
we need to discuss two key concepts: variables (used for storing data) and functions
(used for doing things with the data).

2.4.1 Storing data
Without data, no data analytics. So how can we store and read data in R? The
answer is that we use variables. A variable is a name used to store data, so that we
can refer to a dataset when we write code. As the name variable implies, what is
stored can change over time5.

The code
x <- 4

is used to assign the value 4 to the variable x. It is read as “assign 4 to x”. The <-
part is made by writing a less than sign (<) and a hyphen (-) with no space between
them6.

If we now type x in the Console, R will return the answer 4. Well, almost. In fact,
R returns the following rather cryptic output:

[1] 4

The meaning of the 4 is clear - it’s a 4. We’ll return to what the [1] part means
soon.

Now that we’ve created a variable, called x, and assigned a value (4) to it, x will have
the value 4 whenever we use it again. This works just like a mathematical formula,
where we for instance can insert the value 𝑥 = 4 into the formula 𝑥+1. The following
two lines of code will compute 𝑥 + 1 = 4 + 1 = 5 and 𝑥 + 𝑥 = 4 + 4 = 8:
x + 1
x + x

Once we have assigned a value to x, it will appear in the Environment panel in
RStudio, where you can see both the variable’s name and its value.

The left-hand side of the assignment x <- 4 is always the name of a variable, but the
right-hand side can be any piece of code that creates some sort of object to be stored
in the variable. For instance, we could perform a computation on the right-hand side
and then store the result in the variable:

5If you are used to programming languages like C or Java, you should note that R is dynamically
typed, meaning that the data type of an R variable also can change over time. This also means that
there is no need to declare variable types in R (which is either liberating or terrifying, depending
on what type of programmer you are).

6In RStudio, you can also create the assignment operator <- by using the keyboard shortcut
Alt+- (i.e. press Alt and the - button at the same time).



2.4. VARIABLES AND FUNCTIONS 27

x <- 1 + 2 + 3 + 4

R first evaluates the entire right-hand side, which in this case amounts to computing
1+2+3+4, and then assigns the result (10) to x. Note that the value previously
assigned to x (i.e. 4) now has been replaced by 10. After a piece of code has been
run, the values of the variables affected by it will have changed. There is no way to
revert the run and get that 4 back, save to rerun the code that generated it in the
first place.

You’ll notice that in the code above, I’ve added some spaces, for instance between
the numbers and the plus signs. This is simply to improve readability. The code
works just as well without spaces:
x<-1+2+3+4

or with spaces in some places but not in others:
x<- 1+2+3 + 4

However, you can not place a space in the middle of the <- arrow. The following will
not assign a value to x:
x < - 1 + 2 + 3 + 4

Running that piece of code rendered the output FALSE. This is because < - with a
space has a different meaning than <- in R, one that we shall return to in the next
chapter.

In rare cases, you may want to switch the direction of the arrow, so that the variable
names is on the right-hand side. This is called right-assignment and works just fine
too:
2 + 2 -> y

Later on, we’ll see plenty of examples where right-assignment comes in handy.

∼

Exercise 2.2. Do the following using R:

1. Compute the sum 924 + 124 and assign the result to a variable named a.

2. Compute 𝑎 ⋅ 𝑎.

2.4.2 What’s in a name?
You now know how to assign values to variables. But what should you call your
variables? Of course, you can follow the examples in the previous section and give
your variables names like x, y, a and b. However, you don’t have to use single-letter
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names, and for the sake of readability, it is often preferable to give your variables
more informative names. Compare the following two code chunks:
y <- 100
z <- 20
x <- y - z

and
income <- 100
taxes <- 20
net_income <- income - taxes

Both chunks will run without any errors and yield the same results, and yet there is
a huge difference between them. The first chunk is opaque - in no way does the code
help us conceive what it actually computes. On the other hand, it is perfectly clear
that the second chunk is used to compute a net income by subtracting taxes from
income. You don’t want to be a chunk-one type R user, who produces impenetrable
code with no clear purpose. You want to be a chunk-two type R user, who writes clear
and readable code where the intent of each line is clear. Take it from me - for years
I was a chunk-one guy. I managed to write a lot of useful code, but whenever I had
to return to my old code to reuse it or fix some bug, I had difficulties understanding
what each line was supposed to do. My new life as a chunk-two guy is better in every
way.

So, what’s in a name? Shakespeare’s balcony-bound Juliet would have us believe
that that which we call a rose by any other name would smell as sweet. Translated
to R practice, this means that your code will run just fine no matter what names
you choose for your variables. But when you or somebody else reads your code, it
will help greatly if you call a rose a rose and not x or my_new_variable_5.

You should note that R is case-sensitive, meaning that my_variable, MY_VARIABLE,
My_Variable, and mY_VariABle are treated as different variables. To access the data
stored in a variable, you must use its exact name - including lower- and uppercase
letters in the right places. Writing the wrong variable name is one of the most
common errors in R programming.

You’ll frequently find yourself wanting to compose variable names out of multiple
words, as we did with net_income. However, R does not allow spaces in variable
names, and so net income would not be a valid variable name. There are a few
different naming conventions that can be used to name your variables:

• snake_case, where words are separated by an underscore (_). Example:
househould_net_income.

• camelCase or CamelCase, where each new word starts with a capital letter.
Example: househouldNetIncome or HousehouldNetIncome.

• period.case, where each word is separated by a period (.). You’ll find this
used a lot in R, but I’d advise that you don’t use it for naming variables, as a
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period in the middle of a name can have a different meaning in more advanced
cases7. Example: household.net.income.

• concatenatedwordscase, where the words are concatenated using only low-
ercase letters. Adownsidetothisconventionisthatitcanmakevariablenamesveryd-
ifficultoreadsousethisatyourownrisk. Example: householdnetincome

• SCREAMING_SNAKE_CASE, which mainly is used in Unix shell scripts these days.
You can use it in R if you like, although you will run the risk of making others
think that you are either angry, super excited or stark staring mad8. Example:
HOUSEHOULD_NET_INCOME.

Some characters, including spaces, -, +, *, :, =, ! and $ are not allowed in variable
names, as these all have other uses in R. The plus sign +, for instance, is used for
addition (as you would expect), and allowing it to be used in variable names would
therefore cause all sorts of confusion. In addition, variable names can’t start with
numbers. Other than that, it is up to you how you name your variables and which
convention you use. Remember, your variable will smell as sweet regardless of what
name you give it, but using a good naming convention will improve readability9.

Another great way to improve the readability of your code is to use comments. A
comment is a piece of text, marked by #, that is ignored by R. As such, it can be used
to explain what is going on to people who read your code (including future you) and
to add instructions for how to use the code. Comments can be placed on separate
lines or at the end of a line of code. Here is an example:
#############################################################
# This lovely little code snippet can be used to compute #
# your net income. #
#############################################################

# Set income and taxes:
income <- 100 # Replace 100 with your income
taxes <- 20 # Replace 20 with how much taxes you pay

# Compute your net income:
net_income <- income - taxes
# Voilà!

In the Script panel in RStudio, you can comment and uncomment (i.e. remove the
# symbol) a row by pressing Ctrl+Shift+C on your keyboard. This is particularly
useful if you wish to comment or uncomment several lines - simply select the lines
and press Ctrl+Shift+C.

7Specifically, the period is used to separate methods and classes in object-oriented programming,
which is hugely important in R (although you can use R for several years without realising this).

8I find myself using screaming snake case on occasion. Make of that what you will.
9I recommend snake_case or camelCase, just in case that wasn’t already clear.
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∼

Exercise 2.3. Answer the following questions:

1. What happens if you use an invalid character in a variable name? Try e.g. the
following:

net income <- income - taxes
net-income <- income - taxes
ca$h <- income - taxes

2. What happens if you put R code as a comment? E.g.:
income <- 100
taxes <- 20
net_income <- income - taxes
# gross_income <- net_income + taxes

3. What happens if you remove a line break and replace it by a semicolon ;? E.g.:
income <- 200; taxes <- 30

4. What happens if you do two assignments on the same line? E.g.:
income2 <- taxes2 <- 100

2.4.3 Vectors and data frames
Almost invariably, you’ll deal with more than one figure at a time in your analyses.
For instance, we may have a list of the ages of customers at a bookstore:

28, 48, 47, 71, 22, 80, 48, 30, 31
Of course, we could store each observation in a separate variable:
age_person_1 <- 28
age_person_2 <- 48
age_person_3 <- 47
# ...and so on

…but this quickly becomes awkward. A much better solution is to store the entire
list in just one variable. In R, such a list is called a vector. We can create a vector
using the following code, where c stands for combine:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)

The numbers in the vector are called elements. We can treat the vector variable age
just as we treated variables containing a single number. The difference is that the
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operations will apply to all elements in the list. So for instance, if we wish to express
the ages in months rather than years, we can convert all ages to months using:
age_months <- age * 12

Most of the time, data will contain measurements of more than one quantity. In
the case of our bookstore customers, we also have information about the amount of
money they spent on their last purchase:

20, 59, 2, 12, 22, 160, 34, 34, 29

First, let’s store this data in a vector:
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)

It would be nice to combine these two vectors into a table, like we would do in a
spreadsheet software such as Excel. That would allow us to look at relationships
between the two vectors - perhaps we could find some interesting patterns? In R,
tables of vectors are called data frames. We can combine the two vectors into a data
frame as follows:
bookstore <- data.frame(age, purchase)

If you type bookstore into the Console, it will show a simply formatted table with
the values of the two vectors (and row numbers):
> bookstore
age purchase

1 28 20
2 48 59
3 47 2
4 71 12
5 22 22
6 80 160
7 48 34
8 30 34
9 31 29

A better way to look at the table may be to click on the variable name bookstore
in the Environment panel, which will open the data frame in a spreadsheet format.

You will have noticed that R tends to print a [1] at the beginning of the line when
we ask it to print the value of a variable:
> age
[1] 28 48 47 71 22 80 48 30 31

Why? Well, let’s see what happens if we print a longer vector:
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# When we enter data into a vector, we can put line breaks between
# the commas:
distances <- c(687, 5076, 7270, 967, 6364, 1683, 9394, 5712, 5206,

4317, 9411, 5625, 9725, 4977, 2730, 5648, 3818, 8241,
5547, 1637, 4428, 8584, 2962, 5729, 5325, 4370, 5989,
9030, 5532, 9623)

distances

Depending on the size of your Console panel, R will require a different number of
rows to display the data in distances. The output will look something like this:
> distances
[1] 687 5076 7270 967 6364 1683 9394 5712 5206 4317 9411 5625 9725
[14] 4977 2730 5648 3818 8241 5547 1637 4428 8584 2962 5729 5325 4370
[27] 5989 9030 5532 9623

or, if you have a narrower panel,
> distances
[1] 687 5076 7270 967 6364 1683 9394
[8] 5712 5206 4317 9411 5625 9725 4977
[15] 2730 5648 3818 8241 5547 1637 4428
[22] 8584 2962 5729 5325 4370 5989 9030
[29] 5532 9623

The numbers within the square brackets - [1], [8], [15], and so on - tell us which
elements of the vector that are printed first on each row. So in the latter example,
the first element in the vector is 687, the 8th element is 5712, the 15th element is
2730, and so forth. Those numbers, called the indices of the elements, aren’t exactly
part of your data, but as we’ll see later they are useful for keeping track of it.

This also tells you something about the inner workings of R. The fact that
x <- 4
x

renders the output
> x
[1] 4

tells us that x in fact is a vector, albeit with a single element. Almost everything in
R is a vector, in one way or another.

Being able to put data on multiple lines when creating vectors is hugely useful, but
can also cause problems if you forget to include the closing bracket ). Try running
the following code, where the final bracket is missing, in your Console panel:
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distances <- c(687, 5076, 7270, 967, 6364, 1683, 9394, 5712, 5206,
4317, 9411, 5625, 9725, 4977, 2730, 5648, 3818, 8241,
5547, 1637, 4428, 8584, 2962, 5729, 5325, 4370, 5989,
9030, 5532, 9623

When you hit Enter, a new line starting with a + sign appears. This indicates that
R doesn’t think that your statement has finished. To finish it, type ) in the Console
and then press Enter.

Vectors and data frames are hugely important when working with data in R.
Chapters 3 and 5 are devoted to how to work with these objects.

∼

Exercise 2.4. Do the following:

1. Create two vectors, height and weight, containing the heights and weights of
five fictional people (i.e. just make up some numbers!).

2. Combine your two vectors into a data frame.

You will use these vectors in Exercise 2.6.

Exercise 2.5. Try creating a vector using x <- 1:5. What happens? What hap-
pens if you use 5:1 instead? How can you use this notation to create the vector
(1, 2, 3, 4, 5, 4, 3, 2, 1)?

2.4.4 Functions
You have some data. Great. But simply having data is not enough - you want to
do something with it. Perhaps you want to draw a graph, compute a mean value or
apply some advanced statistical model to it. To do so, you will use a function.

A function is a ready-made set of instructions - code - that tells R to do something.
There are thousands of functions in R. Typically, you insert a variable into the
function, and it returns an answer. The code for doing this follows the pattern
function_name(variable_name). As a first example, consider the function mean,
which computes the mean of a variable:
# Compute the mean age of bookstore customers
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
mean(age)

Note that the code follows the pattern function_name(variable_name): the func-
tion’s name is mean and the variable’s name is age.
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Some functions take more than one variable as input, and may also have additional
arguments (or parameters) that you can use to control the behaviour of the function.
One such example is cor, which computes the correlation between two variables:
# Compute the correlation between the variables age and purchase
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
cor(age, purchase)

The answer, 0.59 means that there appears to be a fairly strong positive correlation
between age and the purchase size, which implies that older customers tend to spend
more. On the other hand, just by looking at the data we can see that the oldest
customer - aged 80 - spent much more than anybody else - 160 monetary units. It
can happen that such outliers strongly influence the computation of the correlation.
By default, cor uses the Pearson correlation formula, which is known to be sensitive
to outliers. It is therefore of interest to also perform the computation using a formula
that is more robust to outliers, such as the Spearman correlation. This can be done
by passing an additional argument to cor, telling it which method to use for the
computation:
cor(age, purchase, method = "spearman")

The resulting correlation, 0.35 is substantially lower than the previous result. Perhaps
the correlation isn’t all that strong after all.

So, how can we know what arguments to pass to a function? Luckily, we don’t
have to memorise all possible arguments for all functions. Instead, we can look at
the documentation, i.e. help file, for a function that we are interested in. This is
done by typing ?function_name in the Console panel, or doing a web search for R
function_name. To view the documentation for the cor function, type:
?cor

The documentation for R functions all follow the same pattern:

• Description: a short (and sometimes quite technical) description of what the
function does.

• Usage: an abstract example of how the function is used in R code.
• Arguments: a list and description of the input arguments for the function.
• Details: further details about how the function works.
• Value: information about the output from the function.
• Note: additional comments from the function’s author (not always included).
• References: references to papers or books related to the function (not always

included).
• See Also: a list of related functions.
• Examples: practical (and sometimes less practical) examples of how to use the

function.
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The first time that you look at the documentation for an R function, all this infor-
mation can be a bit overwhelming. Perhaps even more so for cor, which is a bit
unusual in that it shares its documentation page with three other (heavily related)
functions: var, cov and cov2cor. Let the section headlines guide you when you look
at the documentation. What information are you looking for? If you’re just looking
for an example of how the function is used, scroll down to Examples. If you want to
know what arguments are available, have a look at Usage and Arguments.

Finally, there are a few functions that don’t require any input at all, because they
don’t do anything with your variables. One such example is Sys.time() which prints
the current time on your system:
Sys.time()

Note that even though Sys.time doesn’t require any input, you still have to write
the parentheses (), which tells R that you want to run a function.

∼

Exercise 2.6. Using the data you created in Exercise 2.4, do the following:

1. Compute the mean height of the people.

2. Compute the correlation between height and weight.

Exercise 2.7. Do the following:

1. Read the documentation for the function length. What does it do? Apply it
to your height vector.

2. Read the documentation for the function sort. What does it do? What does
the argument decreasing (the values of which can be either FALSE or TRUE)
do? Apply the function to your weight vector.

2.4.5 Mathematical operations
To perform addition, subtraction, multiplication and division in R, we can use the
standard symbols +, -, *, /. As in mathematics, expressions within parentheses are
evaluated first, and multiplication is performed before addition. So 1 + 2*(8/2) is
1 + 2 ⋅ (8/2) = 1 + 2 ⋅ 4 = 1 + 8 = 9.
In addition to these basic arithmetic operators, R has a number of mathematical
functions that you can apply to your variables, including square roots, logarithms
and trigonometric functions. Below is an incomplete list, showing the syntax for
using the functions on a variable x. Throughout, a is supposed to be a number.

• abs(x): computes the absolute value |𝑥|.
• sqrt(x): computes

√𝑥.
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• log(x): computes the logarithm of 𝑥 with the natural number 𝑒 as the base.
• log(x, base = a): computes the logarithm of 𝑥 with the number 𝑎 as the

base.
• a^x: computes 𝑎𝑥.
• exp(x): computes 𝑒𝑥.
• sin(x): computes sin(𝑥).
• sum(x): when x is a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), computes the sum of the

elements of x: ∑𝑛
𝑖=1 𝑥𝑖.

• prod(x): when x is a vector 𝑥 = (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛), computes the product of
the elements of x: ∏𝑛

𝑖=1 𝑥𝑖.
• pi: a built-in variable with value 𝜋, the ratio of the circumference of a circle

to its diameter.
• x %% a: computes 𝑥 modulo 𝑎.
• factorial(x): computes 𝑥!.
• choose(n,k): computes (𝑛

𝑘).

∼

Exercise 2.8. Compute the following:

1.
√𝜋

2. 𝑒2 ⋅ 𝑙𝑜𝑔(4)

Exercise 2.9. R will return non-numerical answers if you try to perform computa-
tions where the answer is infinite or undefined. Try the following to see some possible
results:

1. Compute 1/0.
2. Compute 0/0.
3. Compute

√
−1.

2.5 Packages
R comes with a ton of functions, but of course these cannot cover all possible things
that you may want to do with your data. That’s where packages come in. Packages
are collections of functions and datasets that add new features to R. Do you want
to apply some obscure statistical test to your data? Plot your data on a map? Run
C++ code in R? Speed up some part of your data handling process? There are R
packages for that. In fact, with more than 17,000 packages and counting, there are
R packages for just about anything that you could possibly want to do. All packages
have been contributed by the R community - that is, by users like you and me.
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Most R packages are available from CRAN, the official R repository - a network of
servers (so-called mirrors) around the world. Packages on CRAN are checked before
they are published, to make sure that they do what they are supposed to do and
don’t contain malicious components. Downloading packages from CRAN is therefore
generally considered to be safe.

In the rest of this chapter, we’ll make use of a package called ggplot2, which adds
additional graphical features to R. To install the package from CRAN, you can either
select Tools > Install packages in the RStudio menu and then write ggplot2 in the
text box in the pop-up window that appears, or use the following line of code:
install.packages("ggplot2")

A menu may appear where you are asked to select the location of the CRAN mirror
to download from. Pick the one the closest to you, or just use the default option
- your choice can affect the download speed, but will in most cases not make much
difference. There may also be a message asking whether to create a folder for your
packages, which you should agree to do.

As R downloads and installs the packages, a number of technical messages are printed
in the Console panel (an example of what these messages can look like during a
successful installation is found in Section 11.4). ggplot2 depends on a number of
packages that R will install for you, so expect this to take a few minutes. If the
installation finishes successfully, it will finish with a message saying:
* DONE (ggplot2)

Or, on some systems,
package ‘ggplot2’ successfully unpacked and MD5 sums checked

If the installation fails for some reason, there will usually be a (sometimes cryptic)
error message. You can read more about troubleshooting errors in Section 2.10.
There is also a list of common problems when installing packages available on the
RStudio support page at https://support.rstudio.com/hc/en-us/articles/200554786-
Problem-Installing-Packages.

After you’ve installed the package, you’re still not finished quite yet. The package
may have been installed, but its functions and datasets won’t be available until you
load it. This is something that you need to do each time that you start a new
R session. Luckily, it is done with a single short line of code using the library
function10, that I recommend putting at the top of your script file:
library(ggplot2)

10The use of library causes people to erroneously refer to R packages as libraries. Think of the
library as the place where you store your packages, and calling library means that you go to your
library to fetch the package.

https://support.rstudio.com/hc/en-us/articles/200554786-Problem-Installing-Packages
https://support.rstudio.com/hc/en-us/articles/200554786-Problem-Installing-Packages
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We’ll discuss more details about installing and updating R packages in Section 10.1.

2.6 Descriptive statistics
In the remainder of this chapter, we will study two datasets that are shipped with
the ggplot2 package:

• diamonds: describing the prices of more than 50,000 cut diamonds.
• msleep: describing the sleep times of 83 mammals.

These, as well as some other datasets, are automatically loaded as data frames when
you load ggplot2:
library(ggplot2)

To begin with, let’s explore the msleep dataset. To have a first look at it, type the
following in the Console panel:
msleep

That shows you the first 10 rows of the data, and some of its columns. It also gives
another important piece of information: 83 x 11, meaning that the dataset has 83
rows (i.e. 83 observations) and 11 columns (with each column corresponding to a
variable in the dataset).

There are however better methods for looking at the data. To view all 83 rows and
all 11 variables, use:
View(msleep)

You’ll notice that some cells have the value NA instead of a proper value. NA stands
for Not Available, and is a placeholder used by R to point out missing data. In this
case, it means that the value is unknown for the animal.

To find information about the data frame containing the data, some useful functions
are:
head(msleep)
tail(msleep)
dim(msleep)
str(msleep)
names(msleep)

dim returns the numbers of rows and columns of the data frame, whereas str returns
information about the 11 variables. Of particular importance are the data types of
the variables (chr and num, in this instance), which tells us what kind of data we are
dealing with (numerical, categorical, dates, or something else). We’ll delve deeper
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into data types in Chapter 3. Finally, names returns a vector containing the names
of the variables.

Like functions, datasets that come with packages have documentation describing
them. The documentation for msleep gives a short description of the data and its
variables. Read it to learn a bit more about the variables:
?msleep

Finally, you’ll notice that msleep isn’t listed among the variables in the Environment
panel in RStudio. To include it there, you can run:
data(msleep)

2.6.1 Numerical data
Now that we know what each variable represents, it’s time to compute some statistics.
A convenient way to get some descriptive statistics giving a summary of each variable
is to use the summary function:
summary(msleep)

For the text variables, this doesn’t provide any information at the moment. But
for the numerical variables, it provides a lot of useful information. For the variable
sleep_rem, for instance, we have the following:
sleep_rem

Min. :0.100
1st Qu.:0.900
Median :1.500
Mean :1.875
3rd Qu.:2.400
Max. :6.600
NA's :22

This tells us that the mean of sleep_rem is 1.875, that smallest value is 0.100 and
that the largest is 6.600. The 1st quartile11 is 0.900, the median is 1.500 and the
third quartile is 2.400. Finally, there are 22 animals for which there are no values
(missing data - represented by NA).

Sometimes we want to compute just one of these, and other times we may want
to compute summary statistics not included in summary. Let’s say that we want
to compute some descriptive statistics for the sleep_total variable. To access a
vector inside a data frame, we use a dollar sign: data_frame_name$vector_name. So
to access the sleep_total vector in the msleep data frame, we write:

11The first quartile is a value such that 25 % of the observations are smaller than it; the 3rd
quartile is a value such that 25 % of the observations are larger than it.
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msleep$sleep_total

Some examples of functions that can be used to compute descriptive statistics for
this vector are:
mean(msleep$sleep_total) # Mean
median(msleep$sleep_total) # Median
max(msleep$sleep_total) # Max
min(msleep$sleep_total) # Min
sd(msleep$sleep_total) # Standard deviation
var(msleep$sleep_total) # Variance
quantile(msleep$sleep_total) # Various quantiles

To see how many animals sleep for more than 8 hours a day, we can use the following:
sum(msleep$sleep_total > 8) # Frequency (count)
mean(msleep$sleep_total > 8) # Relative frequency (proportion)

msleep$sleep_total > 8 checks whether the total sleep time of each animal is
greater than 8. We’ll return to expressions like this in Section 3.2.

Now, let’s try to compute the mean value for the length of REM sleep for the animals:
mean(msleep$sleep_rem)

The above call returns the answer NA. The reason is that there are NA values in the
sleep_rem vector (22 of them, as we saw before). What we actually wanted was the
mean value among the animals for which we know the REM sleep. We can have a
look at the documentation for mean to see if there is some way we can get this:
?mean

The argument na.rm looks promising - it is “a logical value indicating whether NA
values should be stripped before the computation proceeds”. In other words, it tells
R whether or not to ignore the NA values when computing the mean. In order to
ignore NA:s in the computation, we set na.rm = TRUE in the function call:
mean(msleep$sleep_rem, na.rm = TRUE)

Note that the NA values have not been removed from msleep. Setting na.rm = TRUE
simply tells R to ignore them in a particular computation, not to delete them.

We run into the same problem if we try to compute the correlation between
sleep_total and sleep_rem:
cor(msleep$sleep_total, msleep$sleep_rem)

A quick look at the documentation (?cor), tells us that the argument used to ignore
NA values has a different name for cor - it’s not na.rm but use. The reason will
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become evident later on, when we study more than two variables at a time. For now,
we set use = "complete.obs" to compute the correlation using only observations
with complete data (i.e. no missing values):
cor(msleep$sleep_total, msleep$sleep_rem, use = "complete.obs")

2.6.2 Categorical data
Some of the variables, like vore (feeding behaviour) and conservation (conservation
status) are categorical rather than numerical. It therefore makes no sense to compute
means or largest values. For categorical variables (often called factors in R), we can
instead create a table showing the frequencies of different categories using table:
table(msleep$vore)

To instead show the proportion of different categories, we can apply proportions to
the table that we just created:
proportions(table(msleep$vore))

The table function can also be used to construct a cross table that shows the counts
for different combinations of two categorical variables:
# Counts:
table(msleep$vore, msleep$conservation)

# Proportions, per row:
proportions(table(msleep$vore, msleep$conservation),

margin = 1)

# Proportions, per column:
proportions(table(msleep$vore, msleep$conservation),

margin = 2)

∼

Exercise 2.10. Load ggplot2 using library(ggplot2) if you have not already
done so. Then do the following:

1. View the documentation for the diamonds data and read about different the
variables.

2. Check the data structures: how many observations and variables are there and
what type of variables (numeric, categorical, etc.) are there?

3. Compute summary statistics (means, median, min, max, counts for categorical
variables). Are there any missing values?
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2.7 Plotting numerical data
There are several different approaches to creating plots with R. In this book, we
will mainly focus on creating plots using the ggplot2 package, which allows us to
create good-looking plots using the so-called grammar of graphics. The grammar of
graphics is a set of structural rules that helps us establish a language for graphics.
The beauty of this is that (almost) all plots will be created with functions that all
follow the same logic, or grammar. That way, we don’t have to learn new arguments
for each new plot. You can compare this to the problems we encountered when we
wanted to ignore NA values when computing descriptive statistics - mean required
the argument na.rm whereas cor required the argument use. By using a common
grammar for all plots, we reduce the number of arguments that we need to learn.

The three key components to grammar of graphics plots are:

• Data: the observations in your dataset,
• Aesthetics: mappings from the data to visual properties (like axes and sizes

of geometric objects), and
• Geoms: geometric objects, e.g. lines, representing what you see in the plot.

When we create plots using ggplot2, we must define what data, aesthetics and geoms
to use. If that sounds a bit strange, it will hopefully become a lot clearer once we
have a look at some examples. To begin with, we will illustrate how this works by
visualising some continuous variables in the msleep data.

2.7.1 Our first plot
As a first example, let’s make a scatterplot by plotting the total sleep time of an
animal against the REM sleep time of an animal.

Using base R, we simply do a call to the plot function in a way that is analogous to
how we’d use e.g. cor:
plot(msleep$sleep_total, msleep$sleep_rem)

The code for doing this using ggplot2 is more verbose:
library(ggplot2)
ggplot(msleep, aes(x = sleep_total, y = sleep_rem)) + geom_point()

The code consists of three parts:

• Data: given by the first argument in the call to ggplot: msleep
• Aesthetics: given by the second argument in the ggplot call: aes, where we

map sleep_total to the x-axis and sleep_rem to the y-axis.
• Geoms: given by geom_point, meaning that the observations will be repre-

sented by points.
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Figure 2.3: A scatterplot of mammal sleeping times.
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At this point you may ask why on earth anyone would ever want to use ggplot2
code for creating plots. It’s a valid question. The base R code looks simpler, and is
consistent with other functions that we’ve seen. The ggplot2 code looks… different.
This is because it uses the grammar of graphics, which in many ways is a language
of its own, different from how we otherwise work with R.

But, the plot created using ggplot2 also looked different. It used filled circles instead
of empty circles for plotting the points, and had a grid in the background. In both
base R graphics and ggplot2 we can changes these settings, and many others. We
can create something similar to the ggplot2 plot using base R as follows, using the
pch argument and the grid function:
plot(msleep$sleep_total, msleep$sleep_rem, pch = 16)
grid()

Some people prefer the look and syntax of base R plots, while others argue that
ggplot2 graphics has a prettier default look. I can sympathise with both groups.
Some types of plots are easier to create using base R, and some are easier to create
using ggplot2. I like base R graphics for their simplicity, and prefer them for quick-
and-dirty visualisations as well as for more elaborate graphs where I want to combine
many different components. For everything in between, including exploratory data
analysis where graphics are used to explore and understand datasets, I prefer ggplot2.
In this book, we’ll use base graphics for some quick-and-dirty plots, but put more
emphasis on ggplot2 and how it can be used to explore data.

The syntax used to create the ggplot2 scatterplot was in essence ggplot(data, aes)
+ geom. All plots created using ggplot2 follow this pattern, regardless of whether
they are scatterplots, bar charts or something else. The plus sign in ggplot(data,
aes) + geom is important, as it implies that we can add more geoms to the plot,
for instance a trend line, and perhaps other things as well. We will return to that
shortly.

Unless the user specifies otherwise, the first two arguments to aes will always be
mapped to the x and y axes, meaning that we can simplify the code above by removing
the x = and y = bits (at the cost of a slight reduction in readability). Moreover, it
is considered good style to insert a line break after the + sign. The resulting code is:
ggplot(msleep, aes(sleep_total, sleep_rem)) +

geom_point()

Note that this does not change the plot in any way - the difference is merely in the
style of the code.

∼
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Exercise 2.11. Create a scatterplot with total sleeping time along the x-axis and
time awake along the y-axis (using the msleep data). What pattern do you see? Can
you explain it?

2.7.2 Colours, shapes and axis labels
You now know how to make scatterplots, but if you plan to show your plot to some-
one else, there are probably a few changes that you’d like to make. For instance,
it’s usually a good idea to change the label for the x-axis from the variable name
“sleep_total” to something like “Total sleep time (h)”. This is done by using the +
sign again, adding a call to xlab to the plot:
ggplot(msleep, aes(sleep_total, sleep_rem)) +

geom_point() +
xlab("Total sleep time (h)")

Note that the plus signs must be placed at the end of a row rather than at the
beginning. To change the y-axis label, add ylab instead.

To change the colour of the points, you can set the colour in geom_point:
ggplot(msleep, aes(sleep_total, sleep_rem)) +

geom_point(colour = "red") +
xlab("Total sleep time (h)")

In addition to "red", there are a few more colours that you can choose from. You
can run colors() in the Console to see a list of the 657 colours that have names in R
(examples of which include "papayawhip", "blanchedalmond", and "cornsilk4"),
or use colour hex codes like "#FF5733".

Alternatively, you may want to use the colours of the point to separate different
categories. This is done by adding a colour argument to aes, since you are now
mapping a data variable to a visual property. For instance, we can use the variable
vore to show differences between herbivores, carnivores and omnivores:
ggplot(msleep, aes(sleep_total, sleep_rem, colour = vore)) +

geom_point() +
xlab("Total sleep time (h)")

What happens if we use a continuous variable, such as the sleep cycle length
sleep_cycle to set the colour?
ggplot(msleep, aes(sleep_total, sleep_rem, colour = sleep_cycle)) +

geom_point() +
xlab("Total sleep time (h)")

You’ll learn more about customising colours (and other parts) of your plots in Section
4.2.
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∼

Exercise 2.12. Using the diamonds data, do the following:

1. Create a scatterplot with carat along the x-axis and price along the y-axis.
Change the x-axis label to read “Weight of the diamond (carat)” and the y-
axis label to “Price (USD)”. Use cut to set the colour of the points.

2. Try adding the argument alpha = 1 to geom_point, i.e. geom_point(alpha =
1). Does anything happen? Try changing the 1 to 0.5 and 0.25 and see how
that affects the plot.

Exercise 2.13. Similar to how you changed the colour of the points, you can also
change their size and shape. The arguments for this are called size and shape.

1. Change the scatterplot from Exercise 2.12 so that diamonds with different cut
qualities are represented by different shapes.

2. Then change it so that the size of each point is determined by the diamond’s
length, i.e. the variable x.

2.7.3 Axis limits and scales
Next, assume that we wish to study the relationship between animals’ brain sizes
and their total sleep time. We create a scatterplot using:
ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +

geom_point() +
xlab("Brain weight") +
ylab("Total sleep time")

There are two animals with brains that are much heavier than the rest (African
elephant and Asian elephant). These outliers distort the plot, making it difficult to
spot any patterns. We can try changing the x-axis to only go from 0 to 1.5 by adding
xlim to the plot, to see if that improves it:
ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +

geom_point() +
xlab("Brain weight") +
ylab("Total sleep time") +
xlim(0, 1.5)

This is slightly better, but we still have a lot of points clustered near the y-axis, and
some animals are now missing from the plot. If instead we wished to change the
limits of the y-axis, we would have used ylim in the same fashion.
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Another option is to resacle the x-axis by applying a log transform to the brain
weights, which we can do directly in aes:
ggplot(msleep, aes(log(brainwt), sleep_total, colour = vore)) +

geom_point() +
xlab("log(Brain weight)") +
ylab("Total sleep time")

This is a better-looking scatterplot, with a weak declining trend. We didn’t have to
remove the outliers (the elephants) to create it, which is good. The downside is that
the x-axis now has become difficult to interpret. A third option that mitigates this
is to add scale_x_log10 to the plot, which changes the scale of the x-axis to a log10
scale (which increases interpretability because the values shown at the ticks still are
on the original x-scale).
ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +

geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

∼

Exercise 2.14. Using the msleep data, create a plot of log-transformed body weight
versus log-transformed brain weight. Use total sleep time to set the colours of the
points. Change the text on the axes to something informative.

2.7.4 Comparing groups
We frequently wish to make visual comparison of different groups. One way to
display differences between groups in plots is to use facetting, i.e. to create a grid
of plots corresponding to the different groups. For instance, in our plot of animal
brain weight versus total sleep time, we may wish to separate the different feeding
behaviours (omnivores, carnivores, etc.) in the msleep data using facetting instead
of different coloured points. In ggplot2 we do this by adding a call to facet_wrap
to the plot:
ggplot(msleep, aes(brainwt, sleep_total)) +

geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10() +
facet_wrap(~ vore)

Note that the x-axes and y-axes of the different plots in the grid all have the same
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scale and limits.

∼

Exercise 2.15. Using the diamonds data, do the following:

1. Create a scatterplot with carat along the x-axis and price along the y-axis,
facetted by cut.

2. Read the documentation for facet_wrap (?facet_wrap). How can you change
the number of rows in the plot grid? Create the same plot as in part 1, but
with 5 rows.

2.7.5 Boxplots
Another option for comparing groups is boxplots (also called box-and-whiskers plots).
Using ggplot2, we create boxplots for animal sleep times, grouped by feeding be-
haviour, with geom_boxplot. Using base R, we use the boxplot function instead:
# Base R:
boxplot(sleep_total ~ vore, data = msleep)

# ggplot2:
ggplot(msleep, aes(vore, sleep_total)) +

geom_boxplot()

The boxes visualise important descriptive statistics for the different groups, similar
to what we got using summary:

• Median: the thick black line inside the box.
• First quartile: the bottom of the box.
• Third quartile: the top of the box.
• Minimum: the end of the line (“whisker”) that extends from the bottom of the

box.
• Maximum: the end of the line that extends from the top of the box.
• Outliers: observations that deviate too much12 from the rest are shown as

separate points. These outliers are not included in the computation of the
median, quartiles and the extremes.

Note that just as for a scatterplot, the code consists of three parts:

• Data: given by the first argument in the call to ggplot: msleep

12In this case, too much means that they are more than 1.5 times the height of the box away from
the edges of the box.
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Figure 2.4: Boxplots showing mammal sleeping times.
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• Aesthetics: given by the second argument in the ggplot call: aes, where
we map the group variable vore to the x-axis and the numerical variable
sleep_total to the y-axis.

• Geoms: given by geom_boxplot, meaning that the data will be visualised
with boxplots.

∼

Exercise 2.16. Using the diamonds data, do the following:

1. Create boxplots of diamond prices, grouped by cut.

2. Read the documentation for geom_boxplot. How can you change the colours
of the boxes and their outlines?

3. Replace cut by reorder(cut, price, median) in the plot’s aestethics. What
does reorder do? What is the result?

4. Add geom_jitter(size = 0.1, alpha = 0.2) to the plot. What happens?

2.7.6 Histograms
To show the distribution of a continuous variable, we can use a histogram, in which
the data is split into a number of bins and the number of observations in each bin is
shown by a bar. The ggplot2 code for histograms follows the same pattern as other
plots, while the base R code uses the hist function:
# Base R:
hist(msleep$sleep_total)

# ggplot2:
ggplot(msleep, aes(sleep_total)) +

geom_histogram()

As before, the three parts in the ggplot2 code are:

• Data: given by the first argument in the call to ggplot: msleep
• Aesthetics: given by the second argument in the ggplot call: aes, where we

map sleep_total to the x-axis.
• Geoms: given by geom_histogram, meaning that the data will be visualised

by a histogram.

∼

Exercise 2.17. Using the diamonds data, do the following:
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Figure 2.5: A histogram for mammal sleeping times.
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1. Create a histogram of diamond prices.

2. Create histograms of diamond prices for different cuts, using facetting.

3. Add a suitable argument to geom_histogram to add black outlines around the
bars13.

2.8 Plotting categorical data
When visualising categorical data, we typically try to show the counts, i.e. the number
of observations, for each category. The most common plot for this type of data is
the bar chart.

2.8.1 Bar charts
Bar charts are discrete analogues to histograms, where the category counts are rep-
resented by bars. The code for creating them is:
# Base R
barplot(table(msleep$vore))

# ggplot2
ggplot(msleep, aes(vore)) +

geom_bar()

As always, the three parts in the ggplot2 code are:

• Data: given by the first argument in the call to ggplot: msleep
• Aesthetics: given by the second argument in the ggplot call: aes, where we

map vore to the x-axis.
• Geoms: given by geom_bar, meaning that the data will be visualised by a bar

chart.

To create a stacked bar chart using ggplot2, we use map all groups to the same
value on the x-axis and then map the different groups to different colours. This can
be done as follows:
ggplot(msleep, aes(factor(1), fill = vore)) +

geom_bar()

∼

Exercise 2.18. Using the diamonds data, do the following:
13Personally, I don’t understand why anyone would ever plot histograms without outlines!
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Figure 2.6: A bar chart for the mammal sleep data.
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1. Create a bar chart of diamond cuts.

2. Add different colours to the bars by adding a fill argument to geom_bar.

3. Check the documentation for geom_bar. How can you decrease the width of
the bars?

4. Return to the code you used for part 1. Add fill = clarity to the aes. What
happens?

5. Next, add position = "dodge" to geom_bar. What happens?

6. Return to the code you used for part 1. Add coord_flip() to the plot. What
happens?

2.9 Saving your plot
When you create a ggplot2 plot, you can save it as a plot object in R:
library(ggplot2)
myPlot <- ggplot(msleep, aes(sleep_total, sleep_rem)) +

geom_point()

To plot a saved plot object, just write its name:
myPlot

If you like, you can add things to the plot, just as before:
myPlot + xlab("I forgot to add a label!")

To save your plot object as an image file, use ggsave. The width and height
arguments allows us to control the size of the figure (in inches, unless you specify
otherwise using the units argument).
ggsave("filename.pdf", myPlot, width = 5, height = 5)

If you don’t supply the name of a plot object, ggsave will save the last ggplot2 plot
you created.

In addition to pdf, you can save images e.g. as jpg, tif, eps, svg, and png files, simply
by changing the file extension in the filename. Alternatively, graphics from both
base R and ggplot2 can be saved using the pdf and png functions, using dev.off
to mark the end of the file:
pdf("filename.pdf", width = 5, height = 5)
myPlot
dev.off()

png("filename.png", width = 500, height = 500)
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plot(msleep$sleep_total, msleep$sleep_rem)
dev.off()

Note that you also can save graphics by clicking on the Export button in the Plots
panel in RStudio. Using code to save your plot is usually a better idea, because
of reproducibility. At some point you’ll want to go back and make changes to an
old figure, and that will be much easier if you already have the code to export the
graphic.

∼

Exercise 2.19. Do the following:

1. Create a plot object and save it as a 4 by 4 inch png file.

2. When preparing images for print, you may want to increase their resolution.
Check the documentation for ggsave. How can you increase the resolution of
your png file to 600 dpi?

You’ve now had a first taste of graphics using R. We have however only scratched
the surface, and will return to the many uses of statistical graphics in Chapter 4.

2.10 Troubleshooting
Every now and then R will throw an error message at you. Sometimes these will be
informative and useful, as in this case:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
means(age)

where R prints:
> means(age)
Error in means(age) : could not find function "means"

This tells us that the function that we are trying to use, means does not exist. There
are two possible reasons for this: either we haven’t loaded the package in which the
function exists, or we have misspelt the function name. In our example the latter is
true, the function that we really wanted to use was of course mean and not means.

At other times interpreting the error message seems insurmountable, like in these
examples:
Error in if (str_count(string = f[[j]], pattern = \"\\\\S+\") == 1) { :
\n argument is of length zero
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and
Error in if (requir[y] &gt; supply[x]) { : \nmissing value where
TRUE/FALSE needed

When you encounter an error message, I recommend following these steps:

1. Read the error message carefully and try to decipher it. Have you seen it
before? Does it point to a particular variable or function? Check Section 11.2
of this book, which deals with common error messages in R.

2. Check your code. Have you misspelt any variable or function names? Are there
missing brackets, strange commas or invalid characters?

3. Copy the error message and do a web search using the message as your search
term. It is more than likely that somebody else has encountered the same
problem, and that you can find a solution to it online. This is a great shortcut
for finding solutions to your problem. In fact, this may well be the single
most important tip in this entire book.

4. Read the documentation for the function causing the error message, and look at
some examples of how to use it (both in the documentation and online, e.g. in
blog posts). Have you used it correctly?

5. Use the debugging tools presented in Chapter 11, or try to simplify the example
that you are working with (e.g. removing parts of the analysis or the data) and
see if that removes the problem.

6. If you still can’t find a solution, post a question at a site like Stack Overflow
or the RStudio community forums. Make sure to post your code and describe
the context in which the error message appears. If at all possible, post a
reproducible example, i.e. a piece of code that others can run, that causes the
error message. This will make it a lot easier for others to help you.

https://stackoverflow.com/
https://community.rstudio.com/


Chapter 3

Transforming, summarising,
and analysing data

Most datasets are stored as tables, with rows and columns. In this chapter we’ll
see how you can import and export such data, and how it is stored in R. We’ll also
discuss how you can transform, summarise, and analyse your data.

After working with the material in this chapter, you will be able to use R to:

• Distinguish between different data types,
• Import data from Excel spreadsheets and csv text files,
• Compute descriptive statistics for subgroups in your data,
• Find interesting points in your data,
• Add new variables to your data,
• Modify variables in your data,
• Remove variables from your data,
• Save and export your data,
• Work with RStudio projects,
• Run t-tests and fit linear models,
• Use %>% pipes to chain functions together.

The chapter ends with a discussion of ethical guidelines for statistical work.

3.1 Data frames and data types
3.1.1 Types and structures
We have already seen that different kinds of data require different kinds of statistical
methods. For numeric data we create boxplots and compute means, but for categor-
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ical data we don’t. Instead we produce bar charts and display the data in tables. It
is no surprise then, that what R also treats different kinds of data differently.

In programming, a variable’s_data type_ describes what kind of object is assigned
to it. We can assign many different types of objects to the variable a: it could
for instance contain a number, text, or a data frame. In order to treat a correctly,
R needs to know what data type its assigned object has. In some programming
languages, you have to explicitly state what data type a variable has, but not in R.
This makes programming R simpler and faster, but can cause problems if a variable
turns out to have a different data type than what you thought1.

R has six basic data types. For most people, it suffices to know about the first three
in the list below:

• numeric: numbers like 1 and 16.823 (sometimes also called double).
• logical: true/false values (boolean): either TRUE or FALSE.
• character: text, e.g. "a", "Hello! I'm Ada." and "name@domain.com".
• integer: integer numbers, denoted in R by the letter L: 1L, 55L.
• complex: complex numbers, like 2+3i. Rarely used in statistical work.
• raw: used to hold raw bytes. Don’t fret if you don’t know what that means.

You can have a long and meaningful career in statistics, data science, or pretty
much any other field without ever having to worry about raw bytes. We won’t
discuss raw objects again in this book.

In addition, these can be combined into special data types sometimes called data
structures, examples of which include vectors and data frames. Important data struc-
tures include factor, which is used to store categorical data, and the awkwardly
named POSIXct which is used to store date and time data.

To check what type of object a variable is, you can use the class function:
x <- 6
y <- "Scotland"
z <- TRUE

class(x)
class(y)
class(z)

What happens if we use class on a vector?
numbers <- c(6, 9, 12)
class(numbers)

class returns the data type of the elements of the vector. So what happens if we
put objects of different type together in a vector?

1And the subsequent troubleshooting makes programming R more difficult and slower.
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all_together <- c(x, y, z)
all_together
class(all_together)

In this case, R has coerced the objects in the vector to all be of the same type.
Sometimes that is desirable, and sometimes it is not. The lesson here is to be careful
when you create a vector from different objects. We’ll learn more about coercion and
how to change data types in Section 5.1.

3.1.2 Types of tables
The basis for most data analyses in R are data frames: spreadsheet-like tables with
rows and columns containing data. You encountered some data frames in the previous
chapter. Have a quick look at them to remind yourself of what they look like:
# Bookstore example
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
View(bookstore)

# Animal sleep data
library(ggplot2)
View(msleep)

# Diamonds data
View(diamonds)

Notice that all three data frames follow the same format: each column represents a
variable (e.g. age) and each row represents an observation (e.g. an individual). This
is the standard way to store data in R (as well as the standard format in statistics in
general). In what follows, we will use the terms column and variable interchangeably,
to describe the columns/variables in a data frame.

This kind of table can be stored in R as different types of objects - that is, in several
different ways. As you’d expect, the different types of objects have different properties
and can be used with different functions. Here’s the run-down of four common types:

• matrix: a table where all columns must contain objects of the same type
(e.g. all numeric or all character). Uses less memory than other types and
allows for much faster computations, but is difficult to use for certain types of
data manipulation, plotting and analyses.

• data.frame: the most common type, where different columns can contain dif-
ferent types (e.g. one numeric column, one character column).

• data.table: an enhanced version of data.frame.
• tbl_df (“tibble”): another enhanced version of data.frame.
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First of all, in most cases it doesn’t matter which of these four that you use to store
your data. In fact, they all look similar to the user. Have a look at the following
datasets (WorldPhones and airquality come with base R):
# First, an example of data stored in a matrix:
?WorldPhones
class(WorldPhones)
View(WorldPhones)

# Next, an example of data stored in a data frame:
?airquality
class(airquality)
View(airquality)

# Finally, an example of data stored in a tibble:
library(ggplot2)
?msleep
class(msleep)
View(msleep)

That being said, in some cases it really matters which one you use. Some functions
require that you input a matrix, while others may break or work differently from
what was intended if you input a tibble instead of an ordinary data frame. Luckily,
you can convert objects into other types:
WorldPhonesDF <- as.data.frame(WorldPhones)
class(WorldPhonesDF)

airqualityMatrix <- as.matrix(airquality)
class(airqualityMatrix)

∼

Exercise 3.1. The following tasks are all related to data types and data structures:

1. Create a text variable using e.g. a <- "A rainy day in Edinburgh". Check
that it gets the correct type. What happens if you use single quotes marks
instead of double quotes when you create the variable?

2. What data types are the sums 1 + 2, 1L + 2 and 1L + 2L?

3. What happens if you add a numeric to a character, e.g. "Hello" + 1?

4. What happens if you perform mathematical operations involving a numeric
and a logical, e.g. FALSE * 2 or TRUE + 1?
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Exercise 3.2. What do the functions ncol, nrow, dim, names, and row.names return
when applied to a data frame?

Exercise 3.3. matrix tables can be created from vectors using the function of the
same name. Using the vector x <- 1:6 use matrix to create the following matrices:

(1 2 3
4 5 6)

and

⎛⎜
⎝

1 4
2 5
3 6

⎞⎟
⎠

.

Remember to check ?matrix to find out how to set the dimensions of the matrix,
and how it is filled with the numbers from the vector!

3.2 Vectors in data frames
In the next few sections, we will explore the airquality dataset. It contains daily
air quality measurements from New York during a period of five months:

• Ozone: mean ozone concentration (ppb),
• Solar.R: solar radiation (Langley),
• Wind: average wind speed (mph),
• Temp: maximum daily temperature in degrees Fahrenheit,
• Month: numeric month (May=5, June=6, and so on),
• Day: numeric day of the month (1-31).

There are lots of things that would be interesting to look at in this dataset. What was
the mean temperature during the period? Which day was the hottest? Which was
the windiest? What days were the temperature more than 90 degrees Fahrenheit?
To answer these questions, we need to be able to access the vectors inside the data
frame. We also need to be able to quickly and automatically screen the data in order
to find interesting observations (e.g. the hottest day)

3.2.1 Accessing vectors and elements
In Section 2.6, we learned how to compute the mean of a vector. We also learned
that to compute the mean of a vector that is stored inside a data frame2 we could
use a dollar sign: data_frame_name$vector_name. Here is an example with the
airquality data:

2This works regardless of whether this is a regular data.frame, a data.table or a tibble.
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# Extract the Temp vector:
airquality$Temp

# Compute the mean temperature:
mean(airquality$Temp)

If we want to grab a particular element from a vector, we must use its index within
square brackets: [index]. The first element in the vector has index 1, the second
has index 2, the third index 3, and so on. To access the fifth element in the Temp
vector in the airquality data frame, we can use:
airquality$Temp[5]

The square brackets can also be applied directly to the data frame. The syntax
for this follows that used for matrices in mathematics: airquality[i, j] means
the element at the i:th row and j:th column of airquality. We can also leave out
either i or j to extract an entire row or column from the data frame. Here are some
examples:
# First, we check the order of the columns:
names(airquality)
# We see that Temp is the 4th column.

airquality[5, 4] # The 5th element from the 4th column,
# i.e. the same as airquality$Temp[5]

airquality[5,] # The 5th row of the data
airquality[, 4] # The 4th column of the data, like airquality$Temp
airquality[[4]] # The 4th column of the data, like airquality$Temp
airquality[, c(2, 4, 6)] # The 2nd, 4th and 6th columns of the data
airquality[, -2] # All columns except the 2nd one
airquality[, c("Temp", "Wind")] # The Temp and Wind columns

∼

Exercise 3.4. The following tasks all involve using the the [i, j] notation for
extracting data from data frames:

1. Why does airquality[, 3] not return the third row of airquality?

2. Extract the first five rows from airquality. Hint: a fast way of creating the
vector c(1, 2, 3, 4, 5) is to write 1:5.

3. Compute the correlation between the Temp and Wind vectors of airquality
without refering to them using $.

4. Extract all columns from airquality except Temp and Wind.
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3.2.2 Use your dollars
The $ operator can be used not just to extract data from a data frame, but also to
manipulate it. Let’s return to our bookstore data frame, and see how we can make
changes to it using the dollar sign.
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)

Perhaps there was a data entry error - the second customer was actually 18 years old
and not 48. We can assign a new value to that element by referring to it in either of
two ways:
bookstore$age[2] <- 18
# or
bookstore[2, 1] <- 18

We could also change an entire column if we like. For instance, if we wish to change
the age vector to months instead of years, we could use
bookstore$age <- bookstore$age * 12

What if we want to add another variable to the data, for instance the length of the
customers’ visits in minutes? There are several ways to accomplish this, one of which
involves the dollar sign:
bookstore$visit_length <- c(5, 2, 20, 22, 12, 31, 9, 10, 11)
bookstore

As you see, the new data has now been added to a new column in the data frame.

∼

Exercise 3.5. Use the bookstore data frame to do the following:

1. Add a new variable rev_per_minute which is the ratio between purchase and
the visit length.

2. Oh no, there’s been an error in the data entry! Replace the purchase amount
for the 80-year old customer with 16.

3.2.3 Using conditions
A few paragraphs ago, we were asking which was the hottest day in the airquality
data. Let’s find out! We already know how to find the maximum value in the Temp
vector:
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max(airquality$Temp)

But can we find out which day this corresponds to? We could of course manually go
through all 153 days e.g. by using View(airquality), but that seems tiresome and
wouldn’t even be possible in the first place if we’d had more observations. A better
option is therefore to use the function which.max:
which.max(airquality$Temp)

which.max returns the index of the observation with the maximum value. If there is
more than one observation attaining this value, it only returns the first of these.

We’ve just used which.max to find out that day 120 was the hottest during the period.
If we want to have a look at the entire row for that day, we can use
airquality[120,]

Alternatively, we could place the call to which.max inside the brackets. Because
which.max(airquality$Temp) returns the number 120, this yields the same result
as the previous line:
airquality[which.max(airquality$Temp),]

Were we looking for the day with the lowest temperature, we’d use which.min anal-
ogously. In fact, we could use any function or computation that returns an index in
the same way, placing it inside the brackets to get the corresponding rows or columns.
This is extremely useful if we want to extract observations with certain properties,
for instance all days where the temperature was above 90 degrees. We do this using
conditions, i.e. by giving statements that we wish to be fulfilled.

As a first example of a condition, we use the following, which checks if the temperature
exceeds 90 degrees:
airquality$Temp > 90

For each element in airquality$Temp this returns either TRUE (if the condition is
fulfilled, i.e. when the temperature is greater than 90) or FALSE (if the conditions
isn’t fulfilled, i.e. when the temperature is 90 or lower). If we place the condition
inside brackets following the name of the data frame, we will extract only the rows
corresponding to those elements which were marked with TRUE:
airquality[airquality$Temp > 90, ]

If you prefer, you can also store the TRUE or FALSE values in a new variable:
airquality$Hot <- airquality$Temp > 90

There are several logical operators and functions which are useful when stating con-
ditions in R. Here are some examples:
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a <- 3
b <- 8

a == b # Check if a equals b
a > b # Check if a is greater than b
a < b # Check if a is less than b
a >= b # Check if a is equal to or greater than b
a <= b # Check if a is equal to or less than b
a != b # Check if a is not equal to b
is.na(a) # Check if a is NA
a %in% c(1, 4, 9) # Check if a equals at least one of 1, 4, 9

When checking a conditions for all elements in a vector, we can use which to get the
indices of the elements that fulfill the condition:
which(airquality$Temp > 90)

If we want to know if all elements in a vector fulfill the condition, we can use all:
all(airquality$Temp > 90)

In this case, it returns FALSE, meaning that not all days had a temperature above 90
(phew!). Similarly, if we wish to know whether at least one day had a temperature
above 90, we can use any:
any(airquality$Temp > 90)

To find how many elements that fulfill a condition, we can use sum:
sum(airquality$Temp > 90)

Why does this work? Remember that sum computes the sum of the elements in a
vector, and that when logical values are used in computations, they are treated
as 0 (FALSE) or 1 (TRUE). Because the condition returns a vector of logical values,
the sum of them becomes the number of 1’s - the number of TRUE values - i.e. the
number of elements that fulfill the condition.

To find the proportion of elements that fulfill a condition, we can count how many
elements fulfill it and then divide by how many elements are in the vector. This is
exactly what happens if we use mean:
mean(airquality$Temp > 90)

Finally, we can combine conditions by using the logical operators & (AND), | (OR),
and, less frequently, xor (exclusive or, XOR). Here are some examples:
a <- 3
b <- 8
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# Is a less than b and greater than 1?
a < b & a > 1

# Is a less than b and equal to 4?
a < b & a == 4

# Is a less than b and/or equal to 4?
a < b | a == 4

# Is a equal to 4 and/or equal to 5?
a == 4 | a == 5

# Is a less than b XOR equal to 4?
# I.e. is one and only one of these satisfied?
xor(a < b, a == 4)

∼

Exercise 3.6. The following tasks all involve checking conditions for the airquality
data:

1. Which was the coldest day during the period?

2. How many days was the wind speed greater than 17 mph?

3. How many missing values are there in the Ozone vector?

4. How many days are there for which the temperature was below 70 and the wind
speed was above 10?

Exercise 3.7. The function cut can be used to create a categorical variable from
a numerical variable, by dividing it into categories corresponding to different inter-
vals. Reads its documentation and then create a new categorical variable in the
airquality data, TempCat, which divides Temp into the three intervals (50, 70],
(70, 90], (90, 110]3.

3.3 Importing data
So far, we’ve looked at examples of data they either came shipped with base R or
ggplot2, or simple toy examples that we created ourselves, like bookstore. While
you can do all your data entry work in R, bookstore style, it is much more common

3In interval notation, (50, 70] means that the interval contains all values between 50 and 70,
excluding 50 but including 70; the intervals is open on the left but closed to the right.
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to load data from other sources. Two important types of files are comma-separated
value files, .csv, and Excel spreadsheets, .xlsx. .csv files are spreadsheets stored as
text files - basically Excel files stripped down to the bare minimum - no formatting,
no formulas, no macros. You can open and edit them in spreadsheet software like
LibreOffice Calc, Google Sheets or Microsoft Excel. Many devices and databases can
export data in .csv format, making it a commonly used file format that you are
likely to encounter sooner rather than later.

3.3.1 Importing csv files
In order to load data from a file into R, you need its path - that is, you need to tell R
where to find the file. Unless you specify otherwise, R will look for files in its current
working directory. To see what your current working directory is, run the following
code in the Console panel:
getwd()

In RStudio, your working directory will usually be shown in the Files panel. If
you have opened RStudio by opening a .R file, the working directory will be the
directory in which the file is stored. You can change the working directory by using
the function setwd or selecting Session > Set Working Directory > Choose Directory
in the RStudio menu.

Before we discuss paths further, let’s look at how you can import data from a file
that is in your working directory. The data files that we’ll use in examples in this
book can be downloaded from the book’s web page. They are stored in a zip file
(data.zip) - open it an copy/extract the files to the folder that is your current
working directory. Open philosophers.csv with a spreadsheet software to have a
quick look at it. Then open it in a text editor (for instance Notepad for Windows,
TextEdit for Mac or Gedit for Linux). Note how commas are used to separate the
columns of the data:
"Name","Description","Born","Deceased","Rating"
"Aristotle","Pretty influential, as philosophers go.",-384,"322 BC",
"4.8"
"Basilides","Denied the existence of incorporeal entities.",-175,
"125 BC",4
"Cercops","An Orphic poet",,,"3.2"
"Dexippus","Neoplatonic!",235,"375 AD","2.7"
"Epictetus","A stoic philosopher",50,"135 AD",5
"Favorinus","Sceptic",80,"160 AD","4.7"

Then run the following code to import the data using the read.csv function and
store it in a variable named imported_data:

http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
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imported_data <- read.csv("philosophers.csv")

If you get an error message that says:
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
cannot open file 'philosophers.csv': No such file or directory

…it means that philosophers.csv is not in your working directory. Either move
the file to the right directory (remember, you can use run getwd() to see what your
working directory is) or change your working directory, as described above.

Now, let’s have a look at imported_data:
View(imported_data)
str(imported_data)

The columns Name and Description both contain text, and have been imported as
character vectors4. The Rating column contains numbers with decimals and has
been imported as a numeric vector. The column Born only contain integer values,
and has been imported as an integer vector. The missing value is represented
by an NA. The Deceased column contains years formatted like 125 BC and 135 AD.
These have been imported into a character vector - because numbers and letters
are mixed in this column, R treats is as a text string (in Chapter 5 we will see how
we can convert it to numbers or proper dates). In this case, the missing value is
represented by an empty string, "", rather than by NA.

So, what can you do in case you need to import data from a file that is not in
your working directory? This is a common problem, as many of us store script files
and data files in separate folders (or even on separate drives). One option is to use
file.choose, which opens a pop-up window that lets you choose which file to open
using a graphical interface:
imported_data2 <- read.csv(file.choose())

A third option is not to write any code at all. Instead, you can import the data using
RStudio’s graphical interface by choosing File > Import dataset > From Text (base)
and then choosing philosophers.csv. This will generate the code needed to import
the data (using read.csv) and run it in the Console window.

The latter two solutions work just fine if you just want to open a single file once. But
if you want to reuse your code or run it multiple times, you probably don’t want to

4If you are running an older version of R (specifically, a version older than the 4.0.0 version
released in April 2020), the character vectors will have been imported as factor vectors instead.
You can change that behaviour by adding a stringsAsFactors = FALSE argument to read.csv.
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have to click and select your file each time. Instead, you can specify the path to your
file in the call to read.csv.

3.3.2 File paths
File paths look different in different operating systems. If the user Mans has a file
named philosophers.csv stored in a folder called MyData on his desktop, its path
on an English-language Windows system would be:
C:\Users\Mans\Desktop\MyData\philosophers.csv

On a Mac it would be:
/Users/Mans/Desktop/MyData/philosophers.csv

And on Linux:
/home/Mans/Desktop/MyData/philosophers.csv

You can copy the path of the file from your file browser: Explorer5 (Windows),
Finder6 (Mac) or Nautilus/similar7 (Linux). Once you have copied the path, you
can store it in R as a character string.

Here’s how to do this on Mac and Linux:
file_path <- "/Users/Mans/Desktop/MyData/philosophers.csv" # Mac
file_path <- "/home/Mans/Desktop/MyData/philosophers.csv" # Linux

If you’re working on a Windows system, file paths are written using backslashes, \,
like so:
C:\Users\Mans\Desktop\MyData\file.csv

You have to be careful when using backslashes in character strings in R, because
they are used to create special characters (see Section 5.5). If we place the above
path in a string, R won’t recognise it as a path. Instead we have to reformat it into
one of the following two formats:
# Windows example 1:
file_path <- "C:/Users/Mans/Desktop/MyData/philosophers.csv"
# Windows example 2:
file_path <- "C:\\Users\\Mans\\Desktop\\MyData\\philosophers.csv"

5To copy the path, navigate to the file in Explorer. Hold down the Shift key and right-click the
file, selecting Copy as path.

6To copy the path, navigate to the file in Finder and right-click/Control+click/two-finger click
on the file. Hold down the Option key, and then select Copy “file name” as Pathname.

7To copy the path from Nautilus, navigate to the file and press Ctrl+L to show the path, then
copy it. If you are using some other file browser or the terminal, my guess is that you’re tech-savvy
enough that you don’t need me to tell you how to find the path of a file.
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If you’ve copied the path to your clipboard, you can also get the path in the second
of the formats above by using
file_path <- readClipboard() # Windows example 3

Once the path is stored in file_path, you can then make a call to read.csv to
import the data:
imported_data <- read.csv(file_path)

Try this with your philosophers.csv file, to make sure that you know how it works.

Finally, you can read a file directly from a URL, by giving the URL as the file path.
Here is an example with data from the WHO Global Tuberculosis Report:
# Download WHO tuberculosis burden data:
tb_data <- read.csv("https://tinyurl.com/whotbdata")

.csv files can differ slightly in how they are formatted - for instance, different symbols
can be used to delimit the columns. You will learn how to handle this in the exercises
below.

A downside to read.csv is that it is very slow when reading large (50 MB or more)
csv files. Faster functions are available in add-on packages; see Section 5.7.1. In
addition, it is also possible to import data from other statistical software packages
such as SAS and SPSS, from other file formats like JSON, and from databases. We’ll
discuss most of these in Section 5.14

3.3.3 Importing Excel files
One common file format we will discuss right away though - .xlsx - Excel spreadsheet
files. There are several packages that can be used to import Excel files to R. I like
the openxlsx package, so let’s install that:
install.packages("openxlsx")

Now, download the philosophers.xlsx file from the book’s web page and save it in
a folder of your choice. Then set file_path to the path of the file, just as you did
for the .csv file. To import data from the Excel file, you can then use:
library(openxlsx)
imported_from_Excel <- read.xlsx(file_path)

View(imported_from_Excel)
str(imported_from_Excel)

As with read.csv, you can replace the file path with file.choose() in order to
select the file manually.

https://www.who.int/tb/country/data/download/en/
http://www.modernstatisticswithr.com/data.zip
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∼

Exercise 3.8. The abbreviation CSV stands for Comma Separated Values, i.e. that
commas , are used to separate the data columns. Unfortunately, the .csv format is
not standardised, and .csv files can use different characters to delimit the columns.
Examples include semicolons (;) and tabs (multiple spaces, denoted \t in strings in
R). Moreover, decimal points can be given either as points (.) or as commas (,).
Download the vas.csv file from the book’s web page. In this dataset, a number of
patients with chronic pain have recorded how much pain they experience each day
during a period, using the Visual Analogue Scale (VAS, ranging from 0 - no pain -
to 10 - worst imaginable pain). Inspect the file in a spreadsheet software and a text
editor - check which symbol is used to separate the columns and whether a decimal
point or a decimal comma is used. Then set file_path to its path and import the
data from it using the code below:

vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)

View(vas)
str(vas)

1. Why are there two variables named X and X.1 in the data frame?

2. What happens if you remove the sep = ";" argument?

3. What happens if you instead remove the dec = "," argument?

4. What happens if you instead remove the skip = 4 argument?

5. What happens if you change skip = 4 to skip = 5?

Exercise 3.9. Download the projects-email.xlsx file from the book’s web page
and have a look at it in a spreadsheet software. Note that it has three sheet: Projects,
Email, and Contact.

1. Read the documentation for read.xlsx. How can you import the data from
the second sheet, Email?

2. Some email addresses are repeated more than once. Read the documentation for
unique. How can you use it to obtain a vector containing the email addresses
without any duplicates?

Exercise 3.10. Download the vas-transposed.csv file from the book’s web page
and have a look at it in a spreadsheet software. It is a transposed version of vas.csv,
where rows represent variables and columns represent observations (instead of the
other way around, as is the case in data frames in R). How can we import this data
into R?

http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
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1. Import the data using read.csv. What does the resulting data frame look
like?

2. Read the documentation for read.csv. How can you make it read the row
names that can be found in the first column of the .csv file?

3. The function t can be applied to transpose (i.e. rotate) your data frame. Try
it out on your imported data. Is the resulting object what you were looking
for? What happens if you make a call to as.data.frame with your data after
transposing it?

3.4 Saving and exporting your data
In many a case, data manipulation is a huge part of statistical work, and of course
you want to be able to save a data frame after manipulating it. There are two options
for doing this in R - you can either export the data as e.g. a .csv or a .xlsx file, or
save it in R format as an .RData file.

3.4.1 Exporting data
Just as we used the functions read.csv and read.xlsx to import data, we
can use write.csv and write.xlsx to export it. The code below saves
the bookstore data frame as a .csv file and an .xlsx file. Both files will
be created in the current working directory. If you wish to store them
somewhere else, you can replace the "bookstore.csv" bit with a full path,
e.g. "/home/mans/my-business/bookstore.csv".
# Bookstore example
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)

# Export to .csv:
write.csv(bookstore, "bookstore.csv")

# Export to .xlsx (Excel):
library(openxlsx)
write.xlsx(bookstore, "bookstore.xlsx")

3.4.2 Saving and loading R data
Being able to export to different spreadsheet formats is very useful, but sometimes
you want to save an object that can’t be saved in a spreadsheet format. For instance,
you may wish to save a machine learning model that you’ve created. .RData files
can be used to store one or more R objects.
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To save the objects bookstore and age in a .Rdata file, we can use the save function:
save(bookstore, age, file = "myData.RData")

To save all objects in your environment, you can use save.image:
save.image(file = "allMyData.RData")

When we wish to load the stored objects, we use the load function:
load(file = "myData.RData")

3.5 RStudio projects
It is good practice to create a new folder for each new data analysis project that you
are working on, where you store code, data and the output from the analysis. In
RStudio you can associate a folder with a Project, which lets you start RStudio with
that folder as your working directory. Moreover, by opening another Project you
can have several RStudio sessions, each with their separate variables and working
directories, running simultaneously.

To create a new Project, click File > New Project in the RStudio menu. You then get
to choose whether to create a Project associated with a folder that already exists, or
to create a Project in a new folder. After you’ve created the Project, it will be saved
as an .Rproj file. You can launch RStudio with the Project folder as the working
directory by double-clicking the .Rproj file. If you already have an active RStudio
session, this will open another session in a separate window.

When working in a Project, I recommend that you store your data in a subfolder of
the Project folder. You can the use relative paths to access your data files, i.e. paths
that are relative to you working directory. For instance, if the file bookstore.csv is
in a folder in your working directory called Data, it’s relative path is:
file_path <- "Data/bookstore.csv"

Much simpler that having to write the entire path, isn’t it?

If instead your working directory is contained inside the folder where bookstore.csv
is stored, its relative path would be
file_path <- "../bookstore.csv"

The beauty of using relative paths is that they are simpler to write, and if you transfer
the entire project folder to another computer, your code will still run, because the
relative paths will stay the same.
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3.6 Running a t-test
R has thousands of functions for running different statistical hypothesis tests. We’ll
delve deeper into that in Chapter 7, but we’ll have a look at one of them right away:
t.test, which (yes, you guessed it!) can be used to run Student’s t-test, which can
be used to test whether the mean of two populations are equal.

Let’s say that we want to compare the mean sleeping times of carnivores and herbi-
vores, using the msleep data. t.test takes two vectors as input, corresponding to
the measurements from the two groups:
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
t.test(carnivores$sleep_total, herbivores$sleep_total)

The output contains a lot of useful information, including the p-value (0.53) and a
95 % confidence interval. t.test contains a number of useful arguments that we
can use to tailor the test to our taste. For instance, we can change the confidence
level of the confidence interval (to 90 %, say), use a one-sided alternative hypothesis
(“carnivores sleep more than herbivores”, i.e. the mean of the first group is greater
than that of the second group) and perform the test under the assumption of equal
variances in the two samples:
t.test(carnivores$sleep_total, herbivores$sleep_total,

conf.level = 0.90,
alternative = "greater",
var.equal = TRUE)

We’ll explore t.test and related functions further in Section 7.2.

3.7 Fitting a linear regression model
The mtcars data from Henderson and Velleman (1981) has become one of the classic
datasets in R, and a part of the initiation rite for new R users is to use the mtcars
data to fit a linear regression model. The data describes fuel consumption, number
of cylinders and other information about cars from the 1970’s:
?mtcars
View(mtcars)

Let’s have a look at the relationship between gross horsepower (hp) and fuel con-
sumption (mpg):
library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) +

geom_point()
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The relationship doesn’t appear to be perfectly linear, but nevertheless, we can try
fitting a linear regression model to the data. This can be done using lm. We fit a
model with mpg as the response variable and hp as the explanatory variable:
m <- lm(mpg ~ hp, data = mtcars)

The first argument is a formula, saying that mpg is a function of hp, i.e.

𝑚𝑝𝑔 = 𝛽0 + 𝛽1 ⋅ ℎ𝑝.

A summary of the model is obtained using summary. Among other things, it includes
the estimated parameters, p-values and the coefficient of determination 𝑅2.
summary(m)

We can add the fitted line to the scatterplot by using geom_abline, which lets us add
a straight line with a given intercept and slope - we take these to be the coefficients
from the fitted model, given by coef:
# Check model coefficients:
coef(m)

# Add regression line to plot:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),

colour = "red")

Diagnostic plots for the residuals are obtained using plot:
plot(m)

If we wish to add further variables to the model, we simply add them to the right-
hand-side of the formula in the function call:
m2 <- lm(mpg ~ hp + wt, data = mtcars)
summary(m2)

In this case, the model becomes

𝑚𝑝𝑔 = 𝛽0 + 𝛽1 ⋅ ℎ𝑝 + 𝛽2 ⋅ 𝑤𝑡.

There is much more to be said about linear models in R. We’ll return to them in
Section 8.1.

∼
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Exercise 3.11. Fit a linear regression model to the mtcars data, using mpg as the
response variable and hp, wt, cyl, and am as explanatory variables. Are all four
explanatory variables significant?

3.8 Grouped summaries
Being able to compute the mean temperature for the airquality data during the
entire period is great, but it would be even better if we also had a way to compute it
for each month. The aggregate function can be used to create that kind of grouped
summary.

To begin with, let’s compute the mean temperature for each month. Using
aggregate, we do this as follows:
aggregate(Temp ~ Month, data = airquality, FUN = mean)

The first argument is a formula, similar to what we used for lm, saying that we want
a summary of Temp grouped by Month. Similar formulas are used also in other R
functions, for instance when building regression models. In the second argument,
data, we specify in which data frame the variables are found, and in the third, FUN,
we specify which function should be used to compute the summary.

By default, mean returns NA if there are missing values. In airquality, Ozone
contains missing values, but when we compute the grouped means the results are not
NA:
aggregate(Ozone ~ Month, data = airquality, FUN = mean)

By default, aggregate removes NA values before computing the grouped summaries.

It is also possible to compute summaries for multiple variables at the same time.
For instance, we can compute the standard deviations (using sd) of Temp and Wind,
grouped by Month:
aggregate(cbind(Temp, Wind) ~ Month, data = airquality, FUN = sd)

aggregate can also be used to count the number of observations in the groups. For
instance, we can count the number of days in each month. In order to do so, we put
a variable with no NA values on the left-hand side in the formula, and use length,
which returns the length of a vector:
aggregate(Temp ~ Month, data = airquality, FUN = length)

Another function that can be used to compute grouped summaries is by. The results
are the same, but the output is not as nicely formatted. Here’s how to use it to
compute the mean temperature grouped by month:
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by(airquality$Temp, airquality$Month, mean)

What makes by useful is that unlike aggregate it is easy to use with functions that
take more than one variable as input. If we want to compute the correlation between
Wind and Temp grouped by month, we can do that as follows:
names(airquality) # Check that Wind and Temp are in columns 3 and 4
by(airquality[, 3:4], airquality$Month, cor)

For each month, this outputs a correlation matrix, which shows both the correlation
between Wind and Temp and the correlation of the variables with themselves (which
always is 1).

∼

Exercise 3.12. Load the VAS pain data vas.csv from Exercise 3.8. Then do the
following:

1. Compute the mean VAS for each patient.

2. Compute the lowest and highest VAS recorded for each patient.

3. Compute the number of high-VAS days, defined as days where the VAS was at
least 7, for each patient.

Exercise 3.13. Install the datasauRus package using install.packages("datasauRus")
(note the capital R!). It contains the dataset datasaurus_dozen. Check its structure
and then do the following:

1. Compute the mean of x, mean of y, standard deviation of x, standard deviation
of y, and correlation between x and y, grouped by dataset. Are there any
differences between the 12 datasets?

2. Make a scatterplot of x against y for each dataset (use facetting!). Are there
any differences between the 12 datasets?

3.9 Using %>% pipes
Consider the code you used to solve part 1 of Exercise 3.5:
bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length

Wouldn’t it be more convenient if you didn’t have to write the bookstore$ part each
time? To just say once that you are manipulating bookstore, and have R implicitly
understand that all the variables involved reside in that data frame? Yes. Yes, it
would. Fortunately, R has tools that will let you do just that.
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3.9.1 Ceci n’est pas une pipe
The magrittr package8 adds a set of tools called pipes to R. Pipes are operators that
let you improve your code’s readability and restructure your code so that it is read
from the left to the right instead of from the inside out. Let’s start by installing the
package:
install.packages("magrittr")

Now, let’s say that we are interested in finding out what the mean wind speed (in
m/s rather than mph) on hot days (temperature above 80, say) in the airquality
data is, aggregated by month. We could do something like this:
# Extract hot days:
airquality2 <- airquality[airquality$Temp > 80, ]
# Convert wind speed to m/s:
airquality2$Wind <- airquality2$Wind * 0.44704
# Compute mean wind speed for each month:
hot_wind_means <- aggregate(Wind ~ Month, data = airquality2,

FUN = mean)

There is nothing wrong with this code per se. We create a copy of airquality
(because we don’t want to change the original data), change the units of the wind
speed, and then compute the grouped means. A downside is that we end up with
a copy of airquality that we maybe won’t need again. We could avoid that by
putting all the operations inside of aggregate:
# More compact:
hot_wind_means <- aggregate(Wind*0.44704 ~ Month,

data = airquality[airquality$Temp > 80, ],
FUN = mean)

The problem with this is that it is a little difficult to follow because we have to read
the code from the inside out. When we run the code, R will first extract the hot
days, then convert the wind speed to m/s, and then compute the grouped means -
so the operations happen in an order that is the opposite of the order in which we
wrote them.

magrittr introduces a new operator, %>%, called a pipe, which can be used to chain
functions together. Calls that you would otherwise write as
new_variable <- function_2(function_1(your_data))

can be written as
your_data %>% function_1 %>% function_2 -> new_variable

8Arguably the best-named R package.

https://en.wikipedia.org/wiki/The_Treachery_of_Images


3.9. USING %>% PIPES 79

so that the operations are written in the order they are performed. Some prefer the
former style, which is more like mathematics, but many prefer the latter, which is
more like natural language (particularly for those of us who are used to reading from
left to right).

Three operations are required to solve the airquality wind speed problem:

1. Extract the hot days,
2. Convert the wind speed to m/s,
3. Compute the grouped means.

Where before we used function-less operations like airquality2$Wind <-
airquality2$Wind * 0.44704, we would now require functions that carried
out the same operations if we wanted to solve this problem using pipes.

A function that lets us extract the hot days is subset:
subset(airquality, Temp > 80)

The magrittr function inset lets us convert the wind speed:
library(magrittr)
inset(airquality, "Wind", value = airquality$Wind * 0.44704)

And finally, aggregate can be used to compute the grouped means. We could use
these functions step-by-step:
# Extract hot days:
airquality2 <- subset(airquality, Temp > 80)
# Convert wind speed to m/s:
airquality2 <- inset(airquality2, "Wind",

value = airquality2$Wind * 0.44704)
# Compute mean wind speed for each month:
hot_wind_means <- aggregate(Wind ~ Month, data = airquality2,

FUN = mean)

But, because we have functions to perform the operations, we can instead use %>%
pipes to chain them together in a pipeline. Pipes automatically send the output from
the previous function as the first argument to the next, so that the data flows from
left to right, which make the code more concise. They also let us refer to the output
from the previous function as ., which saves even more space. The resulting code is:
airquality %>%

subset(Temp > 80) %>%
inset("Wind", value = .$Wind * 0.44704) %>%
aggregate(Wind ~ Month, data = ., FUN = mean) ->
hot_wind_means

You can read the %>% operator as then: take the airquality data, then subset it,
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then convert the Wind variable, then compute the grouped means. Once you wrap
your head around the idea of reading the operations from left to right, this code is
arguably clearer and easier to read. Note that we used the right-assignment operator
-> to assign the result to hot_wind_means, to keep in line with the idea that the
data flows from the left to the right.

3.9.2 Aliases and placeholders
In the remainder of the book, we will use pipes in some situations where they make
the code easier to write or read. Pipes don’t always make code easier to read though,
as can be seen if we use them to compute exp(log(2)):
# Standard solution:
exp(log(2))
# magrittr solution:
2 %>% log %>% exp

If you need to use binary operators like +, ^ and <, magrittr has a number of aliases
that you can use. For instance, add works as an alias for +:
x <- 2
exp(x + 2)
x %>% add(2) %>% exp

Here are a few more examples:
x <- 2
# Base solution; magrittr solution
exp(x - 2); x %>% subtract(2) %>% exp
exp(x * 2); x %>% multiply_by(2) %>% exp
exp(x / 2); x %>% divide_by(2) %>% exp
exp(x^2); x %>% raise_to_power(2) %>% exp
head(airquality[,1:4]); airquality %>% extract(,1:4) %>% head
airquality$Temp[1:5]; airquality %>%

use_series(Temp) %>% extract(1:5)

In simple cases like these it is usually preferable to use the base R solution - the
point here is that if you need to perform this kind of operation inside a pipeline, the
aliases make it easy to do so. For a complete list of aliases, see ?extract.

If the function does not take the output from the previous function as its first argu-
ment, you can use . as a placeholder, just as we did in the airquality problem.
Here is another example:
cat(paste("The current time is ", Sys.time())))
Sys.time() %>% paste("The current time is", .) %>% cat

If the data only appears inside parentheses, you need to wrap the function in curly
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brackets {}, or otherwise %>% will try to pass it as the first argument to the function:
airquality %>% cat("Number of rows in data:", nrow(.)) # Doesn't work
airquality %>% {cat("Number of rows in data:", nrow(.))} # Works!

In addition to the magrittr pipes, from version 4.1 R also offers a native pipe, |>,
which can be used in lieu of %>% without loading any packages. Nevertheless, we’ll use
%>% pipes in the remainder of the book, partially because they are more commonly
used (meaning that you are more likely to encounter them when looking at other
people’s code), and partially because magrittr also offers some other useful pipe
operators. You’ll see plenty of examples of how pipes can be used in Chapters 5-9,
and learn about other pipe operators in Section 6.2.

∼

Exercise 3.14. Rewrite the following function calls using pipes, with x <- 1:8:

1. sqrt(mean(x))

2. mean(sqrt(x))

3. sort(x^2-5)[1:2]

Exercise 3.15. Using the bookstore data:

age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
visit_length <- c(5, 2, 20, 22, 12, 31, 9, 10, 11)
bookstore <- data.frame(age, purchase, visit_length)

Add a new variable rev_per_minute which is the ratio between purchase and the
visit length, using a pipe.

3.10 Flavours of R: base and tidyverse
R is a programming language, and just like any language, it has different dialects.
When you read about R online, you’ll frequently see people mentioning the words
“base” and “tidyverse”. These are the two most common dialects of R. Base R is
just that, R in its purest form. The tidyverse is a collection of add-on packages for
working with different types of data. The two are fully compatible, and you can
mix and match as much as you like. Both ggplot2 and magrittr are part of the
tidyverse.

In recent years, the tidyverse has been heavily promoted as being “modern” R which
“makes data science faster, easier and more fun”. You should believe the hype. The
tidyverse is marvellous. But if you only learn tidyverse R, you will miss out on
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much of what R has to offer. Base R is just as marvellous, and can definitely make
data science as fast, easy and fun as the tidyverse. Besides, nobody uses just base
R anyway - there are a ton of non-tidyverse packages that extend and enrich R in
exciting new ways. Perhaps “extended R” or “superpowered R” would be better
names for the non-tidyverse dialect.

Anyone who tells you to just learn one of these dialects is wrong. Both are great,
they work extremely well together, and they are similar enough that you shouldn’t
limit yourself to just mastering one of them. This book will show you both base
R and tidyverse solutions to problems, so that you can decide for yourself which is
faster, easier, and more fun.

A defining property of the tidyverse is that there are separate functions for everything,
which is perfect for code that relies on pipes. In contrast, base R uses fewer functions,
but with more parameters, to perform the same tasks. If you use tidyverse solutions
there is a good chance that there exists a function which performs exactly the task
you’re going to do with its default settings. This is great (once again, especially if
you want to use pipes), but it means that there are many more functions to master
for tidyverse users, whereas you can make do with much fewer in base R. You will
spend more time looking up function arguments when working with base R (which
fortunately is fairly straightforward using the ? documentation), but on the other
hand, looking up arguments for a function that you know the name of is easier than
finding a function that does something very specific that you don’t know the name
of. There are advantages and disadvantages to both approaches.

3.11 Ethics and good statistical practice
Throughout this book, there will be sections devoted to ethics. Good statistical prac-
tice is intertwined with good ethical practice. Both require transparent assumptions,
reproducible results, and valid interpretations.

One of the most commonly cited ethical guidelines for statistical work is The Amer-
ican Statistical Association’s Ethical Guidelines for Statistical Practice (Committee
on Professional Ethics of the American Statistical Association, 2018), a shortened
version of which is presented below9. The full ethical guidelines are available at
https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-
Practice.aspx

• Professional Integrity and Accountability. The ethical statistician uses
methodology and data that are relevant and appropriate; without favoritism
or prejudice; and in a manner intended to produce valid, interpretable, and
reproducible results. The ethical statistician does not knowingly accept work
for which he/she is not sufficiently qualified, is honest with the client about

9The excerpt is from the version of the guidelines dated April 2018, and presented here with
permission from the ASA.

https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-Practice.aspx
https://www.amstat.org/ASA/Your-Career/Ethical-Guidelines-for-Statistical-Practice.aspx
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any limitation of expertise, and consults other statisticians when necessary or
in doubt. It is essential that statisticians treat others with respect.

• Integrity of data and methods. The ethical statistician is candid about
any known or suspected limitations, defects, or biases in the data that may
affect the integrity or reliability of the statistical analysis. Objective and valid
interpretation of the results requires that the underlying analysis recognizes
and acknowledges the degree of reliability and integrity of the data.

• Responsibilities to Science/Public/Funder/Client. The ethical statisti-
cian supports valid inferences, transparency, and good science in general, keep-
ing the interests of the public, funder, client, or customer in mind (as well as
professional colleagues, patients, the public, and the scientific community).

• Responsibilities to Research Subjects. The ethical statistician protects
and respects the rights and interests of human and animal subjects at all stages
of their involvement in a project. This includes respondents to the census or to
surveys, those whose data are contained in administrative records, and subjects
of physically or psychologically invasive research.

• Responsibilities to Research Team Colleagues. Science and statistical
practice are often conducted in teams made up of professionals with different
professional standards. The statistician must know how to work ethically in
this environment.

• Responsibilities to Other Statisticians or Statistics Practitioners. The
practice of statistics requires consideration of the entire range of possible ex-
planations for observed phenomena, and distinct observers drawing on their
own unique sets of experiences can arrive at different and potentially diverging
judgments about the plausibility of different explanations. Even in adversarial
settings, discourse tends to be most successful when statisticians treat one an-
other with mutual respect and focus on scientific principles, methodology, and
the substance of data interpretations.

• Responsibilities Regarding Allegations of Misconduct. The ethical
statistician understands the differences between questionable statistical, sci-
entific, or professional practices and practices that constitute misconduct. The
ethical statistician avoids all of the above and knows how each should be han-
dled.

• Responsibilities of Employers, Including Organizations, Individu-
als, Attorneys, or Other Clients Employing Statistical Practition-
ers. Those employing any person to analyze data are implicitly relying on the
profession’s reputation for objectivity. However, this creates an obligation on
the part of the employer to understand and respect statisticians’ obligation of
objectivity.

Similar ethical guidelines for statisticians have been put forward by the International
Statistical Institute (https://www.isi-web.org/about-isi/policies/professional-
ethics), the United Nations Statistics Division (https://unstats.un.org/unsd/dnss
/gp/fundprinciples.aspx), and the Data Science Association (http://www.datascie

https://www.isi-web.org/about-isi/policies/professional-ethics
https://www.isi-web.org/about-isi/policies/professional-ethics
https://unstats.un.org/unsd/dnss/gp/fundprinciples.aspx
https://unstats.un.org/unsd/dnss/gp/fundprinciples.aspx
http://www.datascienceassn.org/code-of-conduct.html


84CHAPTER 3. TRANSFORMING, SUMMARISING, AND ANALYSING DATA

nceassn.org/code-of-conduct.html). For further reading on ethics in statistics, see
Franks (2020) and Fleming & Bruce (2021).

∼

Exercise 3.16. Discuss the following. In the introduction to American Statisti-
cal Association’s Ethical Guidelines for Statistical Practice, it is stated that “using
statistics in pursuit of unethical ends is inherently unethical”. What is considered
unethical depends on social, moral, political, and religious values, and ultimately you
must decide for yourself what you consider to be unethical ends. Which (if any) of
the following do you consider to be unethical?

1. Using statistical analysis to help a company that harm the environment through
their production processes. Does it matter to you what the purpose of the
analysis is?

2. Using statistical analysis to help a tobacco or liquor manufacturing company.
Does it matter to you what the purpose of the analysis is?

3. Using statistical analysis to help a bank identify which loan applicants that are
likely to default on their loans.

4. Using statistical analysis of social media profiles to identify terrorists.
5. Using statistical analysis of social media profiles to identify people likely to

protest against the government.
6. Using statistical analysis of social media profiles to identify people to target

with political adverts.
7. Using statistical analysis of social media profiles to target ads at people likely

to buy a bicycle.
8. Using statistical analysis of social media profiles to target ads at people likely

to gamble at a new online casino. Does it matter to you if it’s an ad for the
casino or for help for gambling addiction?

http://www.datascienceassn.org/code-of-conduct.html
http://www.datascienceassn.org/code-of-conduct.html


Chapter 4

Exploratory data analysis and
unsupervised learning

Exploratory data analysis (EDA) is a process in which we summarise and visually
explore a dataset. An important part of EDA is unsupervised learning, which is
a collection of methods for finding interesting subgroups and patterns in our data.
Unlike statistical hypothesis testing, which is used to reject hypotheses, EDA can be
used to generate hypotheses (which can then be confirmed or rejected by new studies).
Another purpose of EDA is to find outliers and incorrect observations, which can lead
to a cleaner and more useful dataset. In EDA we ask questions about our data and
then try to answer them using summary statistics and graphics. Some questions will
prove to be important, and some will not. The key to finding important questions
is to ask a lot of questions. This chapter will provide you with a wide range of tools
for question-asking.

After working with the material in this chapter, you will be able to use R to:

• Create reports using R Markdown,
• Customise the look of your plots,
• Visualise the distribution of a variable,
• Create interactive plots,
• Detect and label outliers,
• Investigate patterns in missing data,
• Visualise trends,
• Plot time series data,
• Visualise multiple variables at once using scatterplot matrices, correlograms

and bubble plots,
• Visualise multivariate data using principal component analysis,
• Use unsupervised learning techniques for clustering,

85
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• Use factor analysis to find latent variables in your data.

4.1 Reports with R Markdown
R Markdown files can be used to create nicely formatted documents using R, that
are easy to export to other formats, like HTML, Word or pdf. They allow you to
mix R code with results and text. They can be used to create reproducible reports
that are easy to update with new data, because they include the code for making
tables and figures. Additionally, they can be used as notebooks for keeping track of
your work and your thoughts as you carry out an analysis. You can even use them
for writing books - in fact, this entire book was written using R Markdown.

It is often a good idea to use R Markdown for exploratory analyses, as it allows you
to write down your thoughts and comments as the analysis progresses, as well as to
save the results of the exploratory journey. For that reason, we’ll start this chapter by
looking at some examples of what you can do using R Markdown. According to your
preference, you can use either R Markdown or ordinary R scripts for the analyses
in the remainder of the chapter. The R code used is the same and the results are
identical, but if you use R Markdown, you can also save the output of the analysis
in a nicely formatted document.

4.1.1 A first example
When you create a new R Markdown document in RStudio by clicking File > New
File > R Markdown in the menu, a document similar to that below is created :

---
title: "Untitled"
author: "Måns Thulin"
date: "10/20/2020"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax
for authoring HTML, PDF, and MS Word documents. For more details on
using R Markdown see
<http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that
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includes both content as well as the output of any embedded R code
chunks within the document. You can embed an R code chunk like this:

```{r cars}
summary(cars)
```

## Including Plots

You can also embed plots, for example:

```{r pressure, echo=FALSE}
plot(pressure)
```

Note that the `echo = FALSE` parameter was added to the code chunk to
prevent printing of the R code that generated the plot.

Press the Knit button at the top of the Script panel to create an HTML document
using this Markdown file. It will be saved in the same folder as your Markdown file.
Once the HTML document has been created, it will open so that you can see the
results. You may have to install additional packages for this to work, in which case
RStudio will prompt you.

Now, let’s have a look at what the different parts of the Markdown document do.
The first part is called the document header or YAML header. It contains information
about the document, including its title, the name of its author, and the date on which
it was first created:

---
title: "Untitled"
author: "Måns Thulin"
date: "10/20/2020"
output: html_document
---

The part that says output: html_document specifies what type of document
should be created when you press Knit. In this case, it’s set to html_document,
meaning that an HTML document will be created. By changing this to output:
word_document you can create a .docx Word document instead. By changing it to
output: pdf_document, you can create a .pdf document using LaTeX (you’ll have
to install LaTeX if you haven’t already - RStudio will notify you if that is the case).

The second part sets the default behaviour of code chunks included in the docu-
ment, specifying that the output from running the chunks should be printed unless
otherwise specified:
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```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

The third part contains the first proper section of the document. First, a header is
created using ##. Then there is some text with formatting: < > is used to create a
link and ** is used to get bold text. Finally, there is a code chunk, delimited by
```:

## R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax
for authoring HTML, PDF, and MS Word documents. For more details on
using R Markdown see
<http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will be generated that
includes both content as well as the output of any embedded R code
chunks within the document. You can embed an R code chunk like this:

```{r cars}
summary(cars)
```

The fourth and final part contains another section, this time with a figure created
using R. A setting is added to the code chunk used to create the figure, which prevents
the underlying code from being printed in the document:

## Including Plots

You can also embed plots, for example:

```{r pressure, echo=FALSE}
plot(pressure)
```

Note that the `echo = FALSE` parameter was added to the code chunk to
prevent printing of the R code that generated the plot.

In the next few sections, we will look at how formatting and code chunks work in R
Markdown.

4.1.2 Formatting text
To create plain text in a Markdown file, you simply have to write plain text. If you
wish to add some formatting to your text, you can use the following:
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• _italics_ or *italics*: to create text in italics.
• __bold__ or **bold**: to create bold text.
• [linked text](http://www.modernstatisticswithr.com): to create linked

text.
• `code`: to include inline code in your document.
• $a^2 + b^2 = c^2$: to create inline equations like 𝑎2 + 𝑏2 = 𝑐2 using LaTeX

syntax.
• $$a^2 + b^2 = c^2$$: to create a centred equation on a new line, like

𝑎2 + 𝑏2 = 𝑐2.

To add headers and subheaders, and to divide your document into section, start a
new line with #’s as follows:

# Header text
## Sub-header text
### Sub-sub-header text
...and so on.

4.1.3 Lists, tables, and images
To create a bullet list, you can use * as follows. Note that you need a blank line
between your list and the previous paragraph to begin a list.

* Item 1
* Item 2

+ Sub-item 1
+ Sub-item 2

* Item 3

yielding:

• Item 1
• Item 2

– Sub-item 1
– Sub-item 2

• Item 3

To create an ordered list, use:

1. First item
2. Second item
i) Sub-item 1
ii) Sub-item 2

3. Item 3

yielding:

1. First item

http://www.modernstatisticswithr.com
http://www.modernstatisticswithr.com
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2. Second item

i) Sub-item 1
ii) Sub-item 2

3. Item 3

To create a table, use | and --------- as follows:

Column 1 | Column 2
--------- | ---------
Content | More content
Even more | And some here
Even more? | Yes!

which yields the following output:

Column 1 Column 2
Content More content
Even more And some here
Even more? Yes!

To include an image, use the same syntax as when creating linked text with a link
to the image path (either local or on the web), but with a ! in front:

![](https://www.r-project.org/Rlogo.png)

![Put some text here if you want a caption](https://www.r-project.org/Rlogo.png)

which yields the following:
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Figure 4.1: Put some text here if you want a caption

4.1.4 Code chunks
The simplest way to define a code chunk is to write:

```{r}
plot(pressure)
```

In RStudio, Ctrl+Alt+I is a keyboard shortcut for inserting this kind of code chunk.

We can add a name and a caption to the chunk, which lets us reference objects
created by the chunk:

```{r pressureplot, fig.cap = "Plot of the pressure data."}
plot(pressure)
```

As we can see in Figure \\ref{fig:cars-plot}, the relationship between
temperature and pressure resembles a banana.

This yields the following output:

plot(pressure)

As we can see in Figure 4.2, the relationship between temperature and pressure
resembles a banana.

In addition, you can add settings to the chunk header to control its behaviour. For
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Figure 4.2: Plot of the pressure data.

instance, you can include a code chunk without running it by adding echo = FALSE:

```{r, eval = FALSE}
plot(pressure)
```

You can add the following settings to your chunks:

• echo = FALSE to run the code without printing it,
• eval = FALSE to print the code without running it,
• results = "hide" to hide printed output,
• fig.show = "hide" to hide plots,
• warning = FALSE to suppress warning messages from being printed in your

document,
• message = FALSE to suppress other messages from being printed in your doc-

ument,
• include = FALSE to run a chunk without showing the code or results in the

document,
• error = TRUE to continue running your R Markdown document even if there

is an error in the chunk (by default, the documentation creation stops if there
is an error).

Data frames can be printed either as in the Console or as a nicely formatted table.
For example,
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Table 4.2: Some data I found.

Ozone Solar.R Wind Temp Month Day
41 190 7.4 67 5 1
36 118 8.0 72 5 2
12 149 12.6 74 5 3
18 313 11.5 62 5 4
NA NA 14.3 56 5 5
28 NA 14.9 66 5 6

```{r, echo = FALSE}
head(airquality)
```

yields:

## Ozone Solar.R Wind Temp Month Day
## 1 41 190 7.4 67 5 1
## 2 36 118 8.0 72 5 2
## 3 12 149 12.6 74 5 3
## 4 18 313 11.5 62 5 4
## 5 NA NA 14.3 56 5 5
## 6 28 NA 14.9 66 5 6

whereas

```{r, echo = FALSE}
knitr::kable(
head(airquality),
caption = "Some data I found."

)
```

yields the table below.

Further help and documentation for R Markdown can be found through the RStu-
dio menus, by clicking Help > Cheatsheets > R Markdown Cheat Sheet or Help >
Cheatsheets > R Markdown Reference Guide.

4.2 Customising ggplot2 plots
We’ll be using ggplot2 a lot in this chapter, so before we get started with exploratory
analyses, we’ll take some time to learn how we can customise the look of ggplot2-
plots.

Consider the following facetted plot from Section 2.7.4:
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library(ggplot2)

ggplot(msleep, aes(brainwt, sleep_total)) +
geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10() +
facet_wrap(~ vore)

It looks nice, sure, but there may be things that you’d like to change. Maybe you’d
like the plot’s background to be white instead of grey, or perhaps you’d like to use a
different font. These, and many other things, can be modified using themes.

4.2.1 Using themes
ggplot2 comes with a number of basic themes. All are fairly similar, but differ in
things like background colour, grids and borders. You can add them to your plot
using theme_themeName, where themeName is the name of the theme1. Here are some
examples:
p <- ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +

geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10() +
facet_wrap(~ vore)

# Create plot with different themes:
p + theme_grey() # The default theme
p + theme_bw()
p + theme_linedraw()
p + theme_light()
p + theme_dark()
p + theme_minimal()
p + theme_classic()

There are several packages available that contain additional themes. Let’s download
a few:
install.packages("ggthemes")
library(ggthemes)

# Create plot with different themes from ggthemes:
p + theme_tufte() # Minimalist Tufte theme

1See ?theme_grey for a list of available themes.
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p + theme_wsj() # Wall Street Journal
p + theme_solarized() + scale_colour_solarized() # Solarized colours

##############################

install.packages("hrbrthemes")
library(hrbrthemes)

# Create plot with different themes from hrbrthemes:
p + theme_ipsum() # Ipsum theme
p + theme_ft_rc() # Suitable for use with dark RStudio themes
p + theme_modern_rc() # Suitable for use with dark RStudio themes

4.2.2 Colour palettes
Unlike e.g. background colours, the colour palette, i.e. the list of colours used for
plotting, is not part of the theme that you’re using. Next, we’ll have a look at how
to change the colour palette used for your plot.

Let’s start by creating a ggplot object:
p <- ggplot(msleep, aes(brainwt, sleep_total, colour = vore)) +

geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

You can change the colour palette using scale_colour_brewer. Three types of
colour palettes are available:

• Sequential palettes: that range from a colour to white. These are useful for
representing ordinal (i.e. ordered) categorical variables and numerical variables.

• Diverging palettes: these range from one colour to another, with white in
between. Diverging palettes are useful when there is a meaningful middle or
0 value (e.g. when your variables represent temperatures or profit/loss), which
can be mapped to white.

• Qualitative palettes: which contain multiple distinct colours. These are
useful for nominal (i.e. with no natural ordering) categorical variables.

See ?scale_colour_brewer or http://www.colorbrewer2.org for a list of the avail-
able palettes. Here are some examples:
# Sequential palette:
p + scale_colour_brewer(palette = "OrRd")
# Diverging palette:
p + scale_colour_brewer(palette = "RdBu")

http://www.colorbrewer2.org
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# Qualitative palette:
p + scale_colour_brewer(palette = "Set1")

In this case, because vore is a nominal categorical variable, a qualitative palette is
arguably the best choice.

4.2.3 Theme settings
The point of using a theme is that you get a combination of colours, fonts and other
choices that are supposed to go well together, meaning that you don’t have to spend
too much time picking combinations. But if you like, you can override the default
options and customise any and all parts of a theme.

The theme controls all visual aspects of the plot not related to the aesthetics. You
can change the theme settings using the theme function. For instance, you can use
theme to remove the legend or change its position:
# No legend:
p + theme(legend.position = "none")

# Legend below figure:
p + theme(legend.position = "bottom")

# Legend inside plot:
p + theme(legend.position = c(0.9, 0.7))

In the last example, the vector c(0.9, 0.7) gives the relative coordinates of the
legend, with c(0 0) representing the bottom left corner of the plot and c(1, 1) the
upper right corner. Try to change the coordinates to different values between 0 and
1 and see what happens.

theme has a lot of other settings, including for the colours of the background, the
grid and the text in the plot. Here are a few examples that you can use as starting
point for experimenting with the settings:
p + theme(panel.grid.major = element_line(colour = "black"),

panel.grid.minor = element_line(colour = "purple",
linetype = "dotted"),

panel.background = element_rect(colour = "red", size = 2),
plot.background = element_rect(fill = "yellow"),
axis.text = element_text(family = "mono", colour = "blue"),
axis.title = element_text(family = "serif", size = 14))

To find a complete list of settings, see ?theme, ?element_line (lines), ?element_rect
(borders and backgrounds), ?element_text (text), and element_blank (for sup-
pressing plotting of elements). As before, you can use colors() to get a list of
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built-in colours, or use colour hex codes.

∼

Exercise 4.1. Use the documentation for theme and the element_... functions to
change the plot object p created above as follows:

1. Change the background colour of the entire plot to lightblue.

2. Change the font of the legend to serif.

3. Remove the grid.

4. Change the colour of the axis ticks to orange and make them thicker.

4.3 Exploring distributions
It is often useful to visualise the distribution of a numerical variable. Comparing the
distributions of different groups can lead to important insights. Visualising distri-
butions is also essential when checking assumptions used for various statistical tests
(sometimes called initial data analysis). In this section we will illustrate how this
can be done using the diamonds data from the ggplot2 package, which you started
to explore in Chapter 2.

4.3.1 Density plots and frequency polygons
We already know how to visualise the distribution of the data by dividing it into bins
and plotting a histogram:
library(ggplot2)
ggplot(diamonds, aes(carat)) +

geom_histogram(colour = "black")

A similar plot is created using frequency polygons, which uses lines instead of bars
to display the counts in the bins:
ggplot(diamonds, aes(carat)) +

geom_freqpoly()

An advantage with frequency polygons is that they can be used to compare groups,
e.g. diamonds with different cuts, without facetting:
ggplot(diamonds, aes(carat, colour = cut)) +

geom_freqpoly()
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It is clear from this figure that there are more diamonds with ideal cuts than diamonds
with fair cuts in the data. The polygons have roughly the same shape, except perhaps
for the polygon for diamonds with fair cuts.

In some cases, we are more interested in the shape of the distribution than in the
actual counts in the different bins. Density plots are similar to frequency polygons
but show an estimate of the density function of the underlying random variable.
These estimates are smooth curves that are scaled so that the area below them is 1
(i.e. scaled to be proper density functions):
ggplot(diamonds, aes(carat, colour = cut)) +

geom_density()

From this figure, it becomes clear that low-carat diamonds tend to have better cuts,
which wasn’t obvious from the frequency polygons. However, the plot does not
provide any information about how common different cuts are. Use density plots
if you’re more interested in the shape of a variable’s distribution, and frequency
polygons if you’re more interested in counts.

∼

Exercise 4.2. Using the density plot created above and the documentation for
geom_density, do the following:

1. Increase the smoothness of the density curves.

2. Fill the area under the density curves with the same colour as the curves them-
selves.

3. Make the colours that fill the areas under the curves transparent.

4. The figure still isn’t that easy to interpret. Install and load the ggridges
package, an extension of ggplot2 that allows you to make so-called ridge plots
(density plots that are separated along the y-axis, similar to facetting). Read
the documentation for geom_density_ridges and use it to make a ridge plot
of diamond prices for different cuts.

Exercise 4.3. Return to the histogram created by ggplot(diamonds, aes(carat))
+ geom_histogram() above. As there are very few diamonds with carat greater than
3, cut the x-axis at 3. Then decrease the bin width to 0.01. Do any interesting
patterns emerge?

4.3.2 Asking questions
Exercise 4.3 causes us to ask why diamonds with carat values that are multiples of
0.25 are more common than others. Perhaps the price is involved? Unfortunately, a
plot of carat versus price is not that informative:
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ggplot(diamonds, aes(carat, price)) +
geom_point(size = 0.05)

Maybe we could compute the average price in each bin of the histogram? In that
case, we need to extract the bin breaks from the histogram somehow. We could then
create a new categorical variable using the breaks with cut (as we did in Exercise
3.7). It turns out that extracting the bins is much easier using base graphics than
ggplot2, so let’s do that:
# Extract information from a histogram with bin width 0.01,
# which corresponds to 481 breaks:
carat_br <- hist(diamonds$carat, breaks = 481, right = FALSE,

plot = FALSE)
# Of interest to us are:
# carat_br$breaks, which contains the breaks for the bins
# carat_br$mid, which contains the midpoints of the bins
# (useful for plotting!)

# Create categories for each bin:
diamonds$carat_cat <- cut(diamonds$carat, 481, right = FALSE)

We now have a variable, carat_cat, that shows to which bin each observation belongs.
Next, we’d like to compute the mean for each bin. This is a grouped summary - mean
by category. After we’ve computed the bin means, we could then plot them against
the bin midpoints. Let’s try it:
means <- aggregate(price ~ carat_cat, data = diamonds, FUN = mean)

plot(carat_br$mid, means$price)

That didn’t work as intended. We get an error message when attempting to plot the
results:
Error in xy.coords(x, y, xlabel, ylabel, log) :
'x' and 'y' lengths differ

The error message implies that the number of bins and the number of mean values
that have been computed differ. But we’ve just computed the mean for each bin,
haven’t we? So what’s going on?

By default, aggregate ignores groups for which there are no values when computing
grouped summaries. In this case, there are a lot of empty bins - there is for instance
no observation in the [4.99,5) bin. In fact, only 272 out of the 481 bins are non-
empty.

We can solve this in different ways. One way is to remove the empty bins. We can
do this using the match function, which returns the positions of matching values in
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two vectors. If we use it with the bins from the grouped summary and the vector
containing all bins, we can find the indices of the non-empty bins. This requires the
use of the levels function, that you’ll learn more about in Section 5.4:
means <- aggregate(price ~ carat_cat, data = diamonds, FUN = mean)

id <- match(means$carat_cat, levels(diamonds$carat_cat))

Finally, we’ll also add some vertical lines to our plot, to call attention to multiples
of 0.25.

Using base graphics is faster here:
plot(carat_br$mid[id], means$price,

cex = 0.5)

# Add vertical lines at multiples
# of 0.25:
abline(v = c(0.5, 0.75, 1,

1.25, 1.5))

But we can of course stick to ggplot2 if
we like:
library(ggplot2)

d2 <- data.frame(
bin = carat_br$mid[id],
mean = means$price)

ggplot(d2, aes(bin, mean)) +
geom_point() +
geom_vline(xintercept =

c(0.5, 0.75, 1,
1.25, 1.5))

# geom_vline add vertical lines at
# multiples of 0.25

It appears that there are small jumps in the prices at some of the 0.25-marks. This
explains why there are more diamonds just above these marks than just below.

The above example illustrates three crucial things regarding exploratory data analy-
sis:

• Plots (in our case, the histogram) often lead to new questions.

• Often, we must transform, summarise or otherwise manipulate our data to
answer a question. Sometimes this is straightforward and sometimes it means
diving deep into R code.

• Sometimes the thing that we’re trying to do doesn’t work straight away. There
is almost always a solution though (and oftentimes more than one!). The more
you work with R, the more problem-solving tricks you will learn.
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4.3.3 Violin plots
Density curves can also be used as alternatives to boxplots. In Exercise 2.16, you
created boxplots to visualise price differences between diamonds of different cuts:
ggplot(diamonds, aes(cut, price)) +

geom_boxplot()

Instead of using a boxplot, we can use a violin plot. Each group is represented by a
“violin”, given by a rotated and duplicated density plot:
ggplot(diamonds, aes(cut, price)) +

geom_violin()

Compared to boxplots, violin plots capture the entire distribution of the data rather
than just a few numerical summaries. If you like numerical summaries (and you
should!) you can add the median and the quartiles (corresponding to the borders of
the box in the boxplot) using the draw_quantiles argument:
ggplot(diamonds, aes(cut, price)) +

geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))

∼

Exercise 4.4. Using the first boxplot created above, i.e. ggplot(diamonds,
aes(cut, price)) + geom_violin(), do the following:

1. Add some colour to the plot by giving different colours to each violin.

2. Because the categories are shown along the x-axis, we don’t really need the
legend. Remove it.

3. Both boxplots and violin plots are useful. Maybe we can have the best of both
worlds? Add the corresponding boxplot inside each violin. Hint: the width
and alpha arguments in geom_boxplot are useful for creating a nice-looking
figure here.

4. Flip the coordinate system to create horizontal violins and boxes instead.

4.3.4 Combine multiple plots into a single graphic
When exploring data with many variables, you’ll often want to make the same kind
of plot (e.g. a violin plot) for several variables. It will frequently make sense to
place these side-by-side in the same plot window. The patchwork package extends
ggplot2 by letting you do just that. Let’s install it:
install.packages("patchwork")

To use it, save each plot as a plot object and then add them together:
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plot1 <- ggplot(diamonds, aes(cut, carat, fill = cut)) +
geom_violin() +
theme(legend.position = "none")

plot2 <- ggplot(diamonds, aes(cut, price, fill = cut)) +
geom_violin() +
theme(legend.position = "none")

library(patchwork)
plot1 + plot2

You can also arrange the plots on multiple lines, with different numbers of plots on
each line. This is particularly useful if you are combining different types of plots in
a single plot window. In this case, you separate plots that are same line by | and
mark the beginning of a new line with /:
# Create two more plot objects:
plot3 <- ggplot(diamonds, aes(cut, depth, fill = cut)) +

geom_violin() +
theme(legend.position = "none")

plot4 <- ggplot(diamonds, aes(carat, fill = cut)) +
geom_density(alpha = 0.5) +
theme(legend.position = c(0.9, 0.6))

# One row with three plots and one row with a single plot:
(plot1 | plot2 | plot3) / plot4

# One column with three plots and one column with a single plot:
(plot1 / plot2 / plot3) | plot4

(You may need to enlarge your plot window for this to look good!)

4.4 Outliers and missing data

4.4.1 Detecting outliers
Both boxplots and scatterplots are helpful in detecting deviating observations - often
called outliers. Outliers can be caused by measurement errors or errors in the data
input but can also be interesting rare cases that can provide valuable insights about
the process that generated the data. Either way, it is often of interest to detect
outliers, for instance because that may influence the choice of what statistical tests
to use.

Let’s return to the scatterplot of diamond carats versus prices:
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ggplot(diamonds, aes(carat, price)) +
geom_point()

There are some outliers which we may want to study further. For instance, there is
a surprisingly cheap 5 carat diamond, and some cheap 3 carat diamonds2. But how
can we identify those points?

One option is to use the plotly package to make an interactive version of the plot,
where we can hover interesting points to see more information about them. Start by
installing it:
install.packages("plotly")

To use plotly with a ggplot graphic, we store the graphic in a variable and then
use it as input to the ggplotly function. The resulting (interactive!) plot takes a
little longer than usual to load. Try hovering the points:
myPlot <- ggplot(diamonds, aes(carat, price)) +

geom_point()

library(plotly)
ggplotly(myPlot)

By default, plotly only shows the carat and price of each diamond. But we can add
more information to the box by adding a text aesthetic:
myPlot <- ggplot(diamonds, aes(carat, price, text = paste("Row:",

rownames(diamonds)))) +
geom_point()

ggplotly(myPlot)

We can now find the row numbers of the outliers visually, which is very useful when
exploring data.

∼

Exercise 4.5. The variables x and y in the diamonds data describe the length and
width of the diamonds (in mm). Use an interactive scatterplot to identify outliers in
these variables. Check prices, carat and other information and think about if any of
the outliers can be due to data errors.

2Note that it is not just the prices nor just the carats of these diamonds that make them outliers,
but the unusual combinations of prices and carats!
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4.4.2 Labelling outliers
Interactive plots are great when exploring a dataset but are not always possible to
use in other contexts, e.g. for printed reports and some presentations. In these other
cases, we can instead annotate the plot with notes about outliers. One way to do
this is to use a geom called geom_text.

For instance, we may want to add the row numbers of outliers to a plot. To do so,
we use geom_text along with a condition that specifies for which points we should
add annotations. Like in Section 3.2.3, if we e.g. wish to add row numbers for
diamonds with carats greater than four, our condition would be carat > 4. The
ifelse function, which we’ll look closer at in Section 6.3, is perfect to use here.
The syntax will be ifelse(condition, what text to write if the condition
is satisfied, what text to write else). To add row names for observations
that fulfil the condition but not for other observations, we use ifelse(condition,
rownames(diamonds), ""). If instead, we wanted to print the price of the diamonds,
we’d use ifelse(condition, price, "").

Here are some different examples of conditions used to plot text:
## Using the row number (the 5 carat diamond is on row 27,416)
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_text(aes(label = ifelse(rownames(diamonds) == 27416,

rownames(diamonds), "")),
hjust = 1.1)

## (hjust=1.1 shifts the text to the left of the point)

## Plot text next to all diamonds with carat>4
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_text(aes(label = ifelse(carat > 4, rownames(diamonds), "")),

hjust = 1.1)

## Plot text next to 3 carat diamonds with a price below 7500
ggplot(diamonds, aes(carat, price)) +

geom_point() +
geom_text(aes(label = ifelse(carat == 3 & price < 7500,

rownames(diamonds), "")),
hjust = 1.1)

∼

Exercise 4.6. Create a static (i.e. non-interactive) scatterplot of x versus y from
the diamonds data. Label the diamonds with suspiciously high 𝑦-values.
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4.4.3 Missing data
Like many datasets, the mammal sleep data msleep contains a lot of missing values,
represented by NA (Not Available) in R. This becomes evident when we have a look
at the data:
library(ggplot2)
View(msleep)

We can check if a particular observation is missing using the is.na function:
is.na(msleep$sleep_rem[4])
is.na(msleep$sleep_rem)

We can count the number of missing values for each variable using:
colSums(is.na(msleep))

Here, colSums computes the sum of is.na(msleep) for each column of msleep
(remember that in summation, TRUE counts as 1 and FALSE as 0), yielding the number
of missing values for each variable. In total, there are 136 missing values in the
dataset:
sum(is.na(msleep))

You’ll notice that ggplot2 prints a warning in the Console when you create a plot
with missing data:
ggplot(msleep, aes(brainwt, sleep_total)) +

geom_point() +
scale_x_log10()

Sometimes data are missing simply because the information is not yet available (for
instance, the brain weight of the mountain beaver could be missing because no one
has ever weighed the brain of a mountain beaver). In other cases, data can be missing
because something about them is different (for instance, values for a male patient
in a medical trial can be missing because the patient died, or because some values
only were collected for female patients). Therefore, it is of interest to see if there are
any differences in non-missing variables between subjects that have missing data and
subjects that don’t.

In msleep, all animals have recorded values for sleep_total and bodywt. To check
if the animals that have missing brainwt values differ from the others, we can plot
them in a different colour in a scatterplot:
ggplot(msleep, aes(bodywt, sleep_total, colour = is.na(brainwt))) +

geom_point() +
scale_x_log10()
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(If is.na(brainwt) is TRUE then the brain weight is missing in the dataset.) In this
case, there are no apparent differences between the animals with missing data and
those without.

∼

Exercise 4.7. Create a version of the diamonds dataset where the x value is missing
for all diamonds with 𝑥 > 9. Make a scatterplot of carat versus price, with points
where the x value is missing plotted in a different colour. How would you interpret
this plot?

4.4.4 Exploring data
The nycflights13 package contains data about flights to and from three airports
in New York, USA, in 2013. As a summary exercise, we will study a subset of these,
namely all flights departing from New York on 1 January that year:
install.packages("nycflights13")
library(nycflights13)
flights2 <- flights[flights$month == 1 & flights$day == 1,]

∼

Exercise 4.8. Explore the flights2 dataset, focusing on delays and the amount of
time spent in the air. Are there any differences between the different carriers? Are
there missing data? Are there any outliers?

4.5 Trends in scatterplots
Let’s return to a familiar example - the relationship between animal brain size and
sleep times:
ggplot(msleep, aes(brainwt, sleep_total)) +

geom_point() +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

There appears to be a decreasing trend in the plot. To aid the eye, we can add a
smoothed line by adding a new geom, geom_smooth, to the figure:
ggplot(msleep, aes(brainwt, sleep_total)) +

geom_point() +
geom_smooth() +
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xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

This technique is useful for bivariate data as well as for time series, which we’ll delve
into next.

By default, geom_smooth adds a line fitted using either LOESS3 or GAM4, as well as
the corresponding 95 % confidence interval describing the uncertainty in the estimate.
There are several useful arguments that can be used with geom_smooth. You will
explore some of these in the exercise below.

∼

Exercise 4.9. Check the documentation for geom_smooth. Starting with the plot
of brain weight vs. sleep time created above, do the following:

1. Decrease the degree of smoothing for the LOESS line that was fitted to the
data. What is better in this case, more or less smoothing?

2. Fit a straight line to the data instead of a non-linear LOESS line.

3. Remove the confidence interval from the plot.

4. Change the colour of the fitted line to red.

4.6 Exploring time series
Before we have a look at time series, you should install four useful packages:
forecast, nlme, fma and fpp2. The first contains useful functions for plotting time
series data, and the latter three contain datasets that we’ll use.
install.packages(c("nlme", "forecast", "fma", "fpp2"),

dependencies = TRUE)

The a10 dataset contains information about the monthly anti-diabetic drug sales in
Australia during the period July 1991 to June 2008. By checking its structure, we
see that it is saved as a time series object5:
library(fpp2)
str(a10)

3LOESS, LOcally Estimated Scatterplot Smoothing, is a non-parametric regression method that
fits a polynomial to local areas of the data.

4GAM, Generalised Additive Model, is a generalised linear model where the response variable is
a linear function of smooth functions of the predictors.

5Time series objects are a special class of vectors, with data sampled at equispaced points in
time. Each observation can have a year/date/time associated with it.
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ggplot2 requires that data is saved as a data frame in order for it to be plotted. In
order to plot the time series, we could first convert it to a data frame and then plot
each point using geom_points:
a10_df <- data.frame(time = time(a10), sales = a10)
ggplot(a10_df, aes(time, sales)) +

geom_point()

It is however usually preferable to plot time series using lines instead of points. This
is done using a different geom: geom_line:
ggplot(a10_df, aes(time, sales)) +

geom_line()

Having to convert the time series object to a data frame is a little awkward. Luckily,
there is a way around this. ggplot2 offers a function called autoplot, that auto-
matically draws an appropriate plot for certain types of data. forecast extends this
function to time series objects:
library(forecast)
autoplot(a10)

We can still add other geoms, axis labels and other things just as before. autoplot
has simply replaced the ggplot(data, aes()) + geom part that would be the first
two rows of the ggplot2 figure, and has implicitly converted the data to a data
frame.

∼

Exercise 4.10. Using the autoplot(a10) figure, do the following:

1. Add a smoothed line describing the trend in the data. Make sure that it is
smooth enough not to capture the seasonal variation in the data.

2. Change the label of the x-axis to “Year” and the label of the y-axis to “Sales
($ million)”.

3. Check the documentation for the ggtitle function. What does it do? Use it
with the figure.

4. Change the colour of the time series line to red.

4.6.1 Annotations and reference lines
We sometimes wish to add text or symbols to plots, for instance to highlight inter-
esting observations. Consider the following time series plot of daily morning gold
prices, based on the gold data from the forecast package:
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library(forecast)
autoplot(gold)

There is a sharp spike a few weeks before day 800, which is due to an incorrect value
in the data series. We’d like to add a note about that to the plot. First, we wish
to find out on which day the spike appears. This can be done by checking the data
manually or using some code:
spike_date <- which.max(gold)

To add a circle around that point, we add a call to annotate to the plot:
autoplot(gold) +

annotate(geom = "point", x = spike_date, y = gold[spike_date],
size = 5, shape = 21,
colour = "red",
fill = "transparent")

annotate can be used to annotate the plot with both geometrical objects and text
(and can therefore be used as an alternative to geom_text).

∼

Exercise 4.11. Using the figure created above and the documentation for annotate,
do the following:

1. Add the text “Incorrect value” next to the circle.

2. Create a second plot where the incorrect value has been removed.

3. Read the documentation for the geom geom_hline. Use it to add a red reference
line to the plot, at 𝑦 = 400.

4.6.2 Longitudinal data
Multiple time series with identical time points, known as longitudinal data or panel
data, are common in many fields. One example of this is given by the elecdaily time
series from the fpp2 package, which contains information about electricity demand
in Victoria, Australia during 2014. As with a single time series, we can plot these
data using autoplot:
library(fpp2)
autoplot(elecdaily)

In this case, it is probably a good idea to facet the data, i.e. to plot each series in a
different figure:
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autoplot(elecdaily, facets = TRUE)

∼

Exercise 4.12. Make the following changes to the autoplot(elecdaily, facets
= TRUE):

1. Remove the WorkDay variable from the plot (it describes whether or not a given
date is a workday, and while it is useful for modelling purposes, we do not wish
to include it in our figure).

2. Add smoothed trend lines to the time series plots.

4.6.3 Path plots
Another option for plotting multiple time series is path plots. A path plot is a
scatterplot where the points are connected with lines in the order they appear in the
data (which, for time series data, should correspond to time). The lines and points
can be coloured to represent time.

To make a path plot of Temperature versus Demand for the elecdaily data, we first
convert the time series object to a data frame and create a scatterplot:
library(fpp2)
ggplot(as.data.frame(elecdaily), aes(Temperature, Demand)) +

geom_point()

Next, we connect the points by lines using the geom_path geom:
ggplot(as.data.frame(elecdaily), aes(Temperature, Demand)) +

geom_point() +
geom_path()

The resulting figure is quite messy. Using colour to indicate the passing of time helps
a little. For this, we need to add the day of the year to the data frame. To get the
values right, we use nrow, which gives us the number of rows in the data frame.
elecdaily2 <- as.data.frame(elecdaily)
elecdaily2$day <- 1:nrow(elecdaily2)

ggplot(elecdaily2, aes(Temperature, Demand, colour = day)) +
geom_point() +
geom_path()

It becomes clear from the plot that temperatures were the highest at the beginning
of the year and lower in the winter months (July-August).
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∼

Exercise 4.13. Make the following changes to the plot you created above:

1. Decrease the size of the points.

2. Add text annotations showing the dates of the highest and lowest temperatures,
next to the corresponding points in the figure.

4.6.4 Spaghetti plots
In cases where we’ve observed multiple subjects over time, we often wish to visualise
their individual time series together using so-called spaghetti plots. With ggplot2
this is done using the geom_line geom. To illustrate this, we use the Oxboys data
from the nlme package, showing the heights of 26 boys over time.
library(nlme)
ggplot(Oxboys, aes(age, height, group = Subject)) +

geom_point() +
geom_line()

The first two aes arguments specify the x and y-axes, and the third specifies that
there should be one line per subject (i.e. per boy) rather than a single line interpo-
lating all points. The latter would be a rather useless figure that looks like this:
ggplot(Oxboys, aes(age, height)) +

geom_point() +
geom_line() +
ggtitle("A terrible plot")

Returning to the original plot, if we wish to be able to identify which time series
corresponds to which boy, we can add a colour aesthetic:
ggplot(Oxboys, aes(age, height, group = Subject, colour = Subject)) +

geom_point() +
geom_line()

Note that the boys are ordered by height, rather than subject number, in the legend.

Now, imagine that we wish to add a trend line describing the general growth trend
for all boys. The growth appears approximately linear, so it seems sensible to use
geom_smooth(method = "lm") to add the trend:
ggplot(Oxboys, aes(age, height, group = Subject, colour = Subject)) +

geom_point() +
geom_line() +
geom_smooth(method = "lm", colour = "red", se = FALSE)
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Unfortunately, because we have specified in the aesthetics that the data should be
grouped by Subject, geom_smooth produces one trend line for each boy. The “prob-
lem” is that when we specify an aesthetic in the ggplot call, it is used for all geoms.

∼

Exercise 4.14. Figure out how to produce a spaghetti plot of the Oxboys data with
a single red trend line based on the data from all 26 boys.

4.6.5 Seasonal plots and decompositions
The forecast package includes a number of useful functions when working with time
series. One of them is ggseasonplot, which allows us to easily create a spaghetti plot
of different periods of a time series with seasonality, i.e. with patterns that repeat
seasonally over time. It works similar to the autoplot function, in that it replaces
the ggplot(data, aes) + geom part of the code.
library(forecast)
library(fpp2)
ggseasonplot(a10)

This function is very useful when visually inspecting seasonal patterns.

The year.labels and year.labels.left arguments removes the legend in favour
of putting the years at the end and beginning of the lines:
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE)

As always, we can add more things to our plot if we like:
ggseasonplot(a10, year.labels = TRUE, year.labels.left = TRUE) +

ylab("Sales ($ million)") +
ggtitle("Seasonal plot of anti-diabetic drug sales")

When working with seasonal time series, it is common to decompose the series into
a seasonal component, a trend component and a remainder. In R, this is typically
done using the stl function, which uses repeated LOESS smoothing to decompose
the series. There is an autoplot function for stl objects:
autoplot(stl(a10, s.window = 365))

This plot can too be manipulated in the same way as other ggplot objects. You can
access the different parts of the decomposition as follows:
stl(a10, s.window = 365)$time.series[,"seasonal"]
stl(a10, s.window = 365)$time.series[,"trend"]
stl(a10, s.window = 365)$time.series[,"remainder"]
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∼

Exercise 4.15. Investigate the writing dataset from the fma package graphically.
Make a time series plot with a smoothed trend line, a seasonal plot and an stl-
decomposition plot. Add appropriate plot titles and labels to the axes. Can you see
any interesting patterns?

4.6.6 Detecting changepoints
The changepoint package contains a number of methods for detecting changepoints
in time series, i.e. time points at which either the mean or the variance of the series
changes. Finding changepoints can be important for detecting changes in the process
underlying the time series. The ggfortify package extends ggplot2 by adding
autoplot functions for a variety of tools, including those in changepoint. Let’s
install the packages:
install.packages(c("changepoint", "ggfortify"))

We can now look at some examples with the anti-diabetic drug sales data:
library(forecast)
library(fpp2)
library(changepoint)
library(ggfortify)

# Plot the time series:
autoplot(a10)

# Remove the seasonal part and plot the series again:
a10_ns <- a10 - stl(a10, s.window = 365)$time.series[,"seasonal"]
autoplot(a10_ns)

# Plot points where there are changes in the mean:
autoplot(cpt.mean(a10_ns))

# Choosing a different method for finding changepoints
# changes the result:
autoplot(cpt.mean(a10_ns, method = "BinSeg"))

# Plot points where there are changes in the variance:
autoplot(cpt.var(a10_ns))

# Plot points where there are changes in either the mean or
# the variance:
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autoplot(cpt.meanvar(a10_ns))

As you can see, the different methods from changepoint all yield different results.
The results for changes in the mean are a bit dubious - which isn’t all that strange as
we are using a method that looks for jumps in the mean on a time series where the
increase actually is more or less continuous. The changepoint for the variance looks
more reliable - there is a clear change towards the end of the series where the sales
become more volatile. We won’t go into details about the different methods here,
but mention that the documentation at ?cpt.mean, ?cpt.var, and ?cpt.meanvar
contains descriptions of and references for the available methods.

∼

Exercise 4.16. Are there any changepoints for variance in the Demand time series
in elecdaily? Can you explain why the behaviour of the series changes?

4.6.7 Interactive time series plots
The plotly packages can be used to create interactive time series plots. As before,
you create a ggplot2 object as usual, assigning it to a variable and then call the
ggplotly function. Here is an example with the elecdaily data:
library(plotly)
library(fpp2)
myPlot <- autoplot(elecdaily[,"Demand"])

ggplotly(myPlot)

When you hover the mouse pointer over a point, a box appears, displaying informa-
tion about that data point. Unfortunately, the date formatting isn’t great in this
example - dates are shown as weeks with decimal points. We’ll see how to fix this in
Section 5.6.

4.7 Using polar coordinates
Most plots are made using Cartesian coordinates systems, in which the axes are
orthogonal to each other and values are placed in an even spacing along each axis.
In some cases, nonlinear axes (e.g. log-transformed) are used instead, as we have
already seen.

Another option is to use a polar coordinate system, in which positions are specified
using an angle and a (radial) distance from the origin. Here is an example of a polar
scatterplot:
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ggplot(msleep, aes(sleep_rem, sleep_total, colour = vore)) +
geom_point() +
xlab("REM sleep (circular axis)") +
ylab("Total sleep time (radial axis)") +
coord_polar()

4.7.1 Visualising periodic data
Polar coordinates are particularly useful when the data is periodic. Consider for
instance the following dataset, describing monthly weather averages for Cape Town,
South Africa:
Cape_Town_weather <- data.frame(
Month = 1:12,
Temp_C = c(22, 23, 21, 18, 16, 13, 13, 13, 14, 16, 18, 20),
Rain_mm = c(20, 20, 30, 50, 70, 90, 100, 70, 50, 40, 20, 20),
Sun_h = c(11, 10, 9, 7, 6, 6, 5, 6, 7, 9, 10, 11))

We can visualise the monthly average temperature using lines in a Cartesian coordi-
nate system:
ggplot(Cape_Town_weather, aes(Month, Temp_C)) +

geom_line()

What this plot doesn’t show is that the 12th month and the 1st month actually are
consecutive months. If we instead use polar coordinates, this becomes clearer:
ggplot(Cape_Town_weather, aes(Month, Temp_C)) +

geom_line() +
coord_polar()

To improve the presentation, we can change the scale of the x-axis (i.e. the circular
axis) so that January and December aren’t plotted at the same angle:
ggplot(Cape_Town_weather, aes(Month, Temp_C)) +

geom_line() +
coord_polar() +
xlim(0, 12)

∼

Exercise 4.17. In the plot that we just created, the last and first month of the year
aren’t connected. You can fix manually this by adding a cleverly designed faux data
point to Cape_Town_weather. How?
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4.7.2 Pie charts
Consider the stacked bar chart that we plotted in Section 2.8:
ggplot(msleep, aes(factor(1), fill = vore)) +

geom_bar()

What would happen if we plotted this figure in a polar coordinate system instead?
If we map the height of the bars (the y-axis of the Cartesian coordinate system) to
both the angle and the radial distance, we end up with a pie chart:
ggplot(msleep, aes(factor(1), fill = vore)) +

geom_bar() +
coord_polar(theta = "y")

There are many arguments against using pie charts for visualisations. Most boil
down to the fact that the same information is easier to interpret when conveyed as a
bar chart. This is at least partially due to the fact that most people are more used
to reading plots in Cartesian coordinates than in polar coordinates.

If we make a similar transformation of a grouped bar chart, we get a different type
of pie chart, in which the height of the bars are mapped to both the angle and the
radial distance6:
# Cartestian bar chart:
ggplot(msleep, aes(vore, fill = vore)) +

geom_bar()

# Polar bar chart:
ggplot(msleep, aes(vore, fill = vore)) +

geom_bar() +
coord_polar()

4.8 Visualising multiple variables
4.8.1 Scatterplot matrices
When we have a large enough number of numeric variables in our data, plotting
scatterplots of all pairs of variables becomes tedious. Luckily there are some R
functions that speed up this process.

The GGally package is an extension to ggplot2 which contains several functions for
plotting multivariate data. They work similarly to the autoplot functions that we
have used in previous sections. One of these is ggpairs, which creates a scatterplot
matrix, a grid with scatterplots of all pairs of variables in data. In addition, it also

6Florence Nightingale, who famously pioneered the use of the pie chart, drew her pie charts this
way.
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plots density estimates (along the diagonal) and shows the (Pearson) correlation for
each pair. Let’s start by installing GGally:
install.packages("GGally")

To create a scatterplot matrix for the airquality dataset, simply write:
library(GGally)
ggpairs(airquality)

(Enlarging your Plot window can make the figure look better.)

If we want to create a scatterplot matrix but only want to include some of the
variables in a dataset, we can do so by providing a vector with variable names. Here
is an example for the animal sleep data msleep:
ggpairs(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake",

"brainwt", "bodywt")])

Optionally, if we wish to create a scatterplot involving all numeric variables, we can
replace the vector with variable names with some R code that extracts the columns
containing numeric variables:
ggpairs(msleep[, which(sapply(msleep, class) == "numeric")])

(You’ll learn more about the sapply function in Section 6.5.)

The resulting plot is identical to the previous one, because the list of names contained
all numeric variables. The grab-all-numeric-variables approach is often convenient,
because we don’t have to write all the variable names. On the other hand, it’s not
very helpful in case we only want to include some of the numeric variables.

If we include a categorical variable in the list of variables (such as the feeding be-
haviour vore), the matrix will include a bar plot of the categorical variable as well
as boxplots and facetted histograms to show differences between different categories
in the continuous variables:
ggpairs(msleep[, c("vore", "sleep_total", "sleep_rem", "sleep_cycle",

"awake", "brainwt", "bodywt")])

Alternatively, we can use a categorical variable to colour points and density estimates
using aes(colour = ...). The syntax for this is follows the same pattern as that
for a standard ggplot call - ggpairs(data, aes). The only exception is that if the
categorical variable is not included in the data argument, we much specify which
data frame it belongs to:
ggpairs(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake",

"brainwt", "bodywt")],
aes(colour = msleep$vore, alpha = 0.5))
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As a side note, if all variables in your data frame are numeric, and if you only
are looking for a quick-and-dirty scatterplot matrix without density estimates and
correlations, you can also use the base R plot:
plot(airquality)

∼

Exercise 4.18. Create a scatterplot matrix for all numeric variables in diamonds.
Differentiate different cuts by colour. Add a suitable title to the plot. (diamonds is
a fairly large dataset, and it may take a minute or so for R to create the plot.)

4.8.2 3D scatterplots
The plotly package lets us make three-dimensional scatterplots with the plot_ly
function, which can be a useful alternative to scatterplot matrices in some cases.
Here is an example using the airquality data:
library(plotly)
plot_ly(airquality, x = ~Ozone, y = ~Wind, z = ~Temp,

color = ~factor(Month))

Note that you can drag and rotate the plot, to see it from different angles.

4.8.3 Correlograms
Scatterplot matrices are not a good choice when we have too many variables, partially
because the plot window needs to be very large to fit all variables and partially
because it becomes difficult to get a good overview of the data. In such cases, a
correlogram, where the strength of the correlation between each pair of variables is
plotted instead of scatterplots, can be used instead. It is effectively a visualisation of
the correlation matrix of the data, where the strengths and signs of the correlations
are represented by different colours.

The GGally package contains the function ggcorr, which can be used to create a
correlogram:
ggcorr(msleep[, c("sleep_total", "sleep_rem", "sleep_cycle", "awake",

"brainwt", "bodywt")])

∼

Exercise 4.19. Using the diamonds dataset and the documentation for ggcorr, do
the following:

1. Create a correlogram for all numeric variables in the dataset.
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2. The Pearson correlation that ggcorr uses by default isn’t always the best choice.
A commonly used alternative is the Spearman correlation. Change the type of
correlation used to create the plot to the Spearman correlation.

3. Change the colour scale from a categorical scale with 5 categories.

4. Change the colours on the scale to go from yellow (low correlation) to black
(high correlation).

4.8.4 Adding more variables to scatterplots
We have already seen how scatterplots can be used to visualise two continuous and one
categorical variable by plotting the two continuous variables against each other and
using the categorical variable to set the colours of the points. There are however more
ways we can incorporate information about additional variables into a scatterplot.

So far, we have set three aesthetics in our scatterplots: x, y and colour. Two other
important aesthetics are shape and size, which, as you’d expect, allow us to control
the shape and size of the points. As a first example using the msleep data, we use
feeding behaviour (vore) to set the shapes used for the points:
ggplot(msleep, aes(brainwt, sleep_total, shape = vore)) +

geom_point() +
scale_x_log10()

The plot looks a little nicer if we increase the size of the points:
ggplot(msleep, aes(brainwt, sleep_total, shape = vore, size = 2)) +

geom_point() +
scale_x_log10()

Another option is to let size represent a continuous variable, in what is known as a
bubble plot:
ggplot(msleep, aes(brainwt, sleep_total, colour = vore,

size = bodywt)) +
geom_point() +
scale_x_log10()

The size of each “bubble” now represents the weight of the animal. Because some
animals are much heavier (i.e. have higher bodywt values) than most others, almost
all points are quite small. There are a couple of things we can do to remedy this. First,
we can transform bodywt, e.g. using the square root transformation sqrt(bodywt), to
decrease the differences between large and small animals. This can be done by adding
scale_size(trans = "sqrt") to the plot. Second, we can also use scale_size to
control the range of point sizes (e.g. from size 1 to size 20). This will cause some points
to overlap, so we add alpha = 0.5 to the geom, to make the points transparent:
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ggplot(msleep, aes(brainwt, sleep_total, colour = vore,
size = bodywt)) +

geom_point(alpha = 0.5) +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt")

This produces a fairly nice-looking plot, but it’d look even better if we changed the
axes labels and legend texts. We can change the legend text for the size scale by
adding the argument name to scale_size. Including a \n in the text lets us create
a line break - you’ll learn more tricks like that in Section 5.5. Similarly, we can use
scale_colour_discrete to change the legend text for the colours:
ggplot(msleep, aes(brainwt, sleep_total, colour = vore,

size = bodywt)) +
geom_point(alpha = 0.5) +
xlab("log(Brain weight)") +
ylab("Sleep total (h)") +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt",

name = "Square root of\nbody weight") +
scale_colour_discrete(name = "Feeding behaviour")

∼

Exercise 4.20. Using the bubble plot created above, do the following:

1. Replace colour = vore in the aes by fill = vore and add colour =
"black", shape = 21 to geom_point. What happens?

2. Use ggplotly to create an interactive version of the bubble plot above, where
variable information and the animal name are displayed when you hover a point.

4.8.5 Overplotting
Let’s make a scatterplot of table versus depth based on the diamonds dataset:
ggplot(diamonds, aes(table, depth)) +

geom_point()

This plot is cluttered. There are too many points, which makes it difficult to see
if, for instance, high table values are more common than low table values. In this
section, we’ll look at some ways to deal with this problem, known as overplotting.

The first thing we can try is to decrease the point size:
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ggplot(diamonds, aes(table, depth)) +
geom_point(size = 0.1)

This helps a little, but now the outliers become a bit difficult to spot. We can try
changing the opacity using alpha instead:
ggplot(diamonds, aes(table, depth)) +

geom_point(alpha = 0.2)

This is also better than the original plot, but neither plot is great. Instead of plotting
each individual point, maybe we can try plotting the counts or densities in different
regions of the plot instead? Effectively, this would be a 2D version of a histogram.
There are several ways of doing this in ggplot2.

First, we bin the points and count the numbers in each bin, using geom_bin2d:
ggplot(diamonds, aes(table, depth)) +

geom_bin2d()

By default, geom_bin2d uses 30 bins. Increasing that number can sometimes give us
a better idea about the distribution of the data:
ggplot(diamonds, aes(table, depth)) +

geom_bin2d(bins = 50)

If you prefer, you can get a similar plot with hexagonal bins by using geom_hex
instead:
ggplot(diamonds, aes(table, depth)) +

geom_hex(bins = 50)

As an alternative to bin counts, we could create a 2-dimensional density estimate
and create a contour plot showing the levels of the density:
ggplot(diamonds, aes(table, depth)) +

stat_density_2d(aes(fill = ..level..), geom = "polygon",
colour = "white")

The fill = ..level.. bit above probably looks a little strange to you. It means
that an internal function (the level of the contours) is used to choose the fill colours.
It also means that we’ve reached a point where we’re reaching deep into the depths
of ggplot2!

We can use a similar approach to show a summary statistic for a third variable in a
plot. For instance, we may want to plot the average price as a function of table and
depth. This is called a tile plot:
ggplot(diamonds, aes(table, depth, z = price)) +

geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) +
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ggtitle("Mean prices for diamonds with different depths and
tables")

∼

Exercise 4.21. The following tasks involve the diamonds dataset:

1. Create a tile plot of table versus depth, showing the highest price for a dia-
mond in each bin.

2. Create a bin plot of carat versus price. What type of diamonds have the
highest bin counts?

4.8.6 Categorical data
When visualising a pair of categorical variables, plots similar to those in the previous
section prove to be useful. One way of doing this is to use the geom_count geom.
We illustrate this with an example using diamonds, showing how common different
combinations of colours and cuts are:
ggplot(diamonds, aes(color, cut)) +

geom_count()

However, it is often better to use colour rather than point size to visualise counts,
which we can do using a tile plot. First, we have to compute the counts though, using
aggregate. We now wish to have two grouping variables, color and cut, which we
can put on the right-hand side of the formula as follows:
diamonds2 <- aggregate(carat ~ cut + color, data = diamonds,

FUN = length)
diamonds2

diamonds2 is now a data frame containing the different combinations of color and
cut along with counts of how many diamonds belong to each combination (labelled
carat, because we put carat in our formula). Let’s change the name of the last
column from carat to Count:
names(diamonds2)[3] <- "Count"

Next, we can plot the counts using geom_tile:
ggplot(diamonds2, aes(color, cut, fill = Count)) +

geom_tile()

It is also possible to combine point size and colours:
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ggplot(diamonds2, aes(color, cut, colour = Count, size = Count)) +
geom_count()

∼

Exercise 4.22. Using the diamonds dataset, do the following:

1. Use a plot to find out what the most common combination of cut and clarity
is.

2. Use a plot to find out which combination of cut and clarity has the highest
average price.

4.8.7 Putting it all together
In the next two exercises, you will repeat what you have learned so far by investigating
the gapminder and planes datasets. First, load the corresponding libraries and have
a look at the documentation for each dataset:
install.packages("gapminder")
library(gapminder)
?gapminder

library(nycflights13)
?planes

∼

Exercise 4.23. Do the following using the gapminder dataset:

1. Create a scatterplot matrix showing life expectancy, population and GDP per
capita for all countries, using the data from the year 2007. Use colours to
differentiate countries from different continents. Note: you’ll probably need
to add the argument upper = list(continuous = "na") when creating the
scatterplot matrix. By default, correlations are shown above the diagonal, but
the fact that there only are two countries from Oceania will cause a problem
there - at least 3 points are needed for a correlation test.

2. Create an interactive bubble plot, showing information about each country
when you hover the points. Use data from the year 2007. Put log(GDP
per capita) on the x-axis and life expectancy on the y-axis. Let population
determine point size. Plot each country in a different colour and facet by
continent. Tip: the gapminder package provides a pretty colour scheme for dif-
ferent countries, called country_colors. You can use that scheme by adding
scale_colour_manual(values = country_colors) to your plot.
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Exercise 4.24. Use graphics to answer the following questions regarding the planes
dataset:

1. What is the most common combination of manufacturer and plane type in the
dataset?

2. Which combination of manufacturer and plane type has the highest average
number of seats?

3. Do the numbers of seats on planes change over time? Which plane had the
highest number of seats?

4. Does the type of engine used change over time?

4.9 Principal component analysis
If there are many variables in your data, it can often be difficult to detect differences
between groups or create a perspicuous visualisation. A useful tool in this context is
principal component analysis (PCA, for short), which can reduce high-dimensional
data to a lower number of variables that can be visualised in one or two scatter-
plots. The idea is to compute new variables, called principal components, that are
linear combinations of the original variables7. These are constructed with two goals
in mind: the principal components should capture as much of the variance in the
data as possible, and each principal component should be uncorrelated to the other
components. You can then plot the principal components to get a low-dimensional
representation of your data, which hopefully captures most of its variation.

By design, the number of principal components computed are as many as the original
number of variables, with the first having the largest variance, the second having the
second largest variance, and so on. We hope that it will suffice to use just the first
few of these to represent most of the variation in the data, but this is not guaranteed.
Principal component analysis is more likely to yield a useful result if several variables
are correlated.

To illustrate the principles of PCA we will use a dataset from Charytanowicz et
al. (2010), containing measurements on wheat kernels for three varieties of wheat. A
description of the variables is available at

http://archive.ics.uci.edu/ml/datasets/seeds

We are interested to find out if these measurements can be used to distinguish between
the varieties. The data is stored in a .txt file, which we import using read.table
(which works just like read.csv, but is tailored to text files) and convert the Variety

7A linear combination is a weighted sum of the form 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑝𝑥𝑝. If you like, you
can think of principal components as weighted averages of variables, computed for each row in your
data.

http://archive.ics.uci.edu/ml/datasets/seeds
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column to a categorical factor variable (which you’ll learn more about in Section
5.4):
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

If we make a scatterplot matrix of all variables, it becomes evident that there are
differences between the varieties, but that no single pair of variables is enough to
separate them:
library(ggplot2)
library(GGally)
ggpairs(seeds[, -8], aes(colour = seeds$Variety, alpha = 0.2))

Moreover, for presentation purposes, the amount of information in the scatterplot
matrix is a bit overwhelming. It would be nice to be able to present the data in
a single scatterplot, without losing too much information. We’ll therefore compute
the principal components using the prcomp function. It is usually recommended that
PCA is performed using standardised data, i.e. using data that has been scaled to
have mean 0 and standard deviation 1. The reason for this is that it puts all variables
on the same scale. If we don’t standardise our data then variables with a high variance
will completely dominate the principal components. This isn’t desirable, as variance
is affected by the scale of the measurements, meaning that the choice of measurement
scale would influence the results (as an example, the variance of kernel length will be
a million times greater if lengths are measured in millimetres instead of in metres).

We don’t have to standardise the data ourselves, but can let prcomp do that for us
using the arguments center = TRUE (to get mean 0) and scale. = TRUE (to get
standard deviation 1):
# Compute principal components:
pca <- prcomp(seeds[,-8], center = TRUE, scale. = TRUE)

To see the loadings of the components, i.e. how much each variable contributes to
the components, simply type the name of the object prcomp created:
pca

The first principal component is more or less a weighted average of all variables,
but has stronger weights on Area, Perimeter, Kernel_length, Kernel_width, and
Groove_length, all of which are measures of size. We can therefore interpret it as
a size variable. The second component has higher loadings for Compactness and
Asymmetry, meaning that it mainly measures those shape features. In Exercise 4.26
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you’ll see how the loadings can be visualised in a biplot.

To see how much of the variance each component represents, use summary:
summary(pca)

The first principal component accounts for 71.87 % of the variance, and the first
three combined account for 98.67 %.

To visualise this, we can draw a scree plot, which shows the variance of each principal
component - the total variance of the data is the sum of the variances of the principal
components:
screeplot(pca, type = "lines")

We can use this to choose how many principal components to use when visualising
or summarising our data. In that case, we look for an “elbow”, i.e. a bend after
which increases the number of components doesn’t increase the amount of variance
explained much.

We can access the values of the principal components using pca$x. Let’s check that
the first two components really are uncorrelated:
cor(pca$x[,1], pca$x[,2])

In this case, almost all of the variance is summarised by the first two or three principal
components. It appears that we have successfully reduced the data from 7 variables to
2-3, which should make visualisation much easier. The ggfortify package contains
an autoplot function for PCA objects, that creates a scatterplot of the first two
principal components:
library(ggfortify)
autoplot(pca, data = seeds, colour = "Variety")

That is much better! The groups are almost completely separated, which shows
that the variables can be used to discriminate between the three varieties. The first
principal component accounts for 71.87 % of the total variance in the data, and the
second for 17.11 %.

If you like, you can plot other pairs of principal components than just components 1
and 2. In this case, component 3 may be of interest, as its variance is almost as high
as that of component 2. You can specify which components to plot with the x and y
arguments:
# Plot 2nd and 3rd PC:
autoplot(pca, data = seeds, colour = "Variety",

x = 2, y = 3)

Here, the separation is nowhere near as clear as in the previous figure. In this
particular example, plotting the first two principal components is the better choice.
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Judging from these plots, it appears that the kernel measurements can be used to
discriminate between the three varieties of wheat. In Chapters 7 and 9 you’ll learn
how to use R to build models that can be used to do just that, e.g. by predicting which
variety of wheat a kernel comes from given its measurements. If we wanted to build
a statistical model that could be used for this purpose, we could use the original
measurements. But we could also try using the first two principal components as
the only input to the model. Principal component analysis is very useful as a pre-
processing tool, used to create simpler models based on fewer variables (or ostensibly
simpler, because the new variables are typically more difficult to interpret than the
original ones).

∼

Exercise 4.25. Use principal components on the carat, x, y, z, depth, and table
variables in the diamonds data, and answer the following questions:

1. How much of the total variance does the first principal component account for?
How many components are needed to account for at least 90 % of the total
variance?

2. Judging by the loadings, what do the first two principal components measure?

3. What is the correlation between the first principal component and price?

4. Can the first two principal components be used to distinguish between dia-
monds with different cuts?

Exercise 4.26. Return to the scatterplot of the first two principal components
for the seeds data, created above. Adding the arguments loadings = TRUE and
loadings.label = TRUE to the autoplot call creates a biplot, which shows the
loadings for the principal components on top of the scatterplot. Create a biplot and
compare the result to those obtained by looking at the loadings numerically. Do the
conclusions from the two approaches agree?

4.10 Cluster analysis
Cluster analysis is concerned with grouping observations into groups, clusters, that
in some sense are similar. Numerous methods are available for this task, approaching
the problem from different angles. Many of these are available in the cluster pack-
age, which ships with R. In this section, we’ll look at a smorgasbord of clustering
techniques.
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4.10.1 Hierarchical clustering
As a first example where clustering can be of interest, we’ll consider the votes.repub
data from cluster. It describes the proportion of votes for the Republican candidate
in US presidential elections from 1856 to 1976 in 50 different states:
library(cluster)
?votes.repub
View(votes.repub)

We are interested in finding subgroups - clusters - of states with similar voting pat-
terns.

To find clusters of similar observations (states, in this case), we could start by assign-
ing each observation to its own cluster. We’d then start with 50 clusters, one for each
observation. Next, we could merge the two clusters that are the most similar, yielding
49 clusters, one of which consisted of two observations and 48 consisting of a single
observation. We could repeat this process, merging the two most similar clusters in
each iteration until only a single cluster was left. This would give us a hierarchy of
clusters, which could be plotted in a tree-like structure, where observations from the
same cluster would be one the same branch. Like this:
clusters_agnes <- agnes(votes.repub)
plot(clusters_agnes, which = 2)

This type of plot is known as a dendrogram.

We’ve just used agnes, a function from cluster that can be used to carry out
hierarchical clustering in the manner described above. There are a couple of things
that need to be clarified, though.

First, how do we measure how similar two 𝑝-dimensional observations 𝑥 and 𝑦 are?
agnes provides two measures of distance between points:

• metric = "euclidean" (the default), uses the Euclidean 𝐿2 distance ||𝑥−𝑦|| =
√∑𝑝

𝑖=1(𝑥𝑖 − 𝑦𝑖)2,
• metric = "manhattan", uses the Manhattan 𝐿1 distance ||𝑥 − 𝑦|| =

∑𝑝
𝑖=1 |𝑥𝑖 − 𝑦𝑖|.

Note that neither of these will work create if you have categorical variables in your
data. If all your variables are binary, i.e. categorical with two values, you can use
mona instead of agnes for hierarchical clustering.

Second, how do we measure how similar two clusters of observations are? agnes
offers a number of options here. Among them are:

• method = "average (the default), unweighted average linkage, uses the aver-
age distance between points from the two clusters,
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• method = "single, single linkage, uses the smallest distance between points
from the two clusters,

• method = "complete, complete linkage, uses the largest distance between
points from the two clusters,

• method = "ward", Ward’s method, uses the within-cluster variance to compare
different possible clusterings, with the clustering with the lowest within-cluster
variance being chosen.

Regardless of which of these that you use, it is often a good idea to standardise
the numeric variables in your dataset so that they all have the same variance. If
you don’t, your distance measure is likely to be dominated by variables with larger
variance, while variables with low variances will have little or no impact on the
clustering. To standardise your data, you can use scale:
# Perform clustering on standardised data:
clusters_agnes <- agnes(scale(votes.repub))
# Plot dendrogram:
plot(clusters_agnes, which = 2)

At this point, we’re starting to use several functions after another, and so this looks
like a perfect job for a pipeline. To carry out the same analysis uses %>% pipes, we
write:
library(magrittr)
votes.repub %>% scale() %>%

agnes() %>%
plot(which = 2)

We can now try changing the metric and clustering method used as described above.
Let’s use the Manhattan distance and complete linkage:
votes.repub %>% scale() %>%

agnes(metric = "manhattan", method = "complete") %>%
plot(which = 2)

We can change the look of the dendrogram by adding hang = -1, which causes all
observations to be placed at the same level:
votes.repub %>% scale() %>%

agnes(metric = "manhattan", method = "complete") %>%
plot(which = 2, hang = -1)

As an alternative to agnes, we can consider diana. agnes is an agglomerative method,
which starts with a lot of clusters and then merge them step-by-step. diana, in
contrast, is a divisive method, which starts with one large cluster and then step-by-
step splits it into several smaller clusters.
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votes.repub %>% scale() %>%
diana() %>%
plot(which = 2)

You can change the distance measure used by setting metric in the diana call.
Euclidean distance is the default.

To wrap this section up, we’ll look at two packages that are useful for plotting
the results of hierarchical clustering: dendextend and factoextra. We installed
factoextra in the previous section, but still need to install dendextend:
install.packages("dendextend")

To compare the dendrograms from produced by different methods (or the same
method with different settings), in a tanglegram, where the dendrograms are plot-
ted against each other, we can use tanglegram from dendextend:
library(dendextend)
# Create clusters using agnes:
votes.repub %>% scale() %>%

agnes() -> clusters_agnes
# Create clusters using diana:
votes.repub %>% scale() %>%

diana() -> clusters_diana

# Compare the results:
tanglegram(as.dendrogram(clusters_agnes),

as.dendrogram(clusters_diana))

Some clusters are quite similar here, whereas others are very different.

Often, we are interested in finding a comparatively small number of clusters, 𝑘. In
hierarchical clustering, we can reduce the number of clusters by “cutting” the den-
drogram tree. To do so using the factoextra package, we first use hcut to cut the
tree into 𝑘 parts, and then fviz_dend to plot the dendrogram, with each cluster
plotted in a different colour. If, for instance, we want 𝑘 = 5 clusters8 and want to
use agnes with average linkage and Euclidean distance for the clustering, we’d do
the following:
library(factoextra)
votes.repub %>% scale() %>%

hcut(k = 5, hc_func = "agnes",
hc_method = "average",
hc_metric = "euclidean") %>%

8Just to be clear, 5 is just an arbitrary number here. We could of course want 4, 14, or any other
number of clusters.
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fviz_dend()

There is no inherent meaning to the colours - they are simply a way to visually
distinguish between clusters.

Hierarchical clustering is especially suitable for data with named observations. For
other types of data, other methods may be better. We will consider some alternatives
next.

∼

Exercise 4.27. Continue the last example above by changing the clustering method
to complete linkage with the Manhattan distance.

1. Do any of the 5 coloured clusters remain the same?

2. How can you produce a tanglegram with 5 coloured clusters, to better compare
the results from the two clusterings?

Exercise 4.28. The USArrests data contains statistics on violent crime rates in 50
US states. Perform a hierarchical cluster analysis of the data. With which states are
Maryland clustered?

4.10.2 Heatmaps and clustering variables
When looking at a dendrogram, you may ask why and how different observations are
similar. Similarities between observations can be visualised using a heatmap, which
displays the levels of different variables using colour hues or intensities. The heatmap
function creates a heatmap from a matrix object. Let’s try it with the votes.repub
voting data. Because votes.repub is a data.frame object, we have to convert it to
a matrix with as.matrix first (see Section 3.1.2):
library(cluster)
library(magrittr)
votes.repub %>% as.matrix() %>% heatmap()

You may want to increase the height of your Plot window so that the names of all
states are displayed properly. Using the default colours, low values are represented
by a light yellow and high values by a dark red. White represents missing values.

You’ll notice that dendrograms are plotted along the margins. heatmap performs
hierarchical clustering (by default, agglomerative with complete linkage) of the ob-
servations as well as of the variables. In the latter case, variables are grouped together
based on similarities between observations, creating clusters of variables. In essence,
this is just a hierarchical clustering of the transposed data matrix, but it does offer
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a different view of the data, which at times can be very revealing. The rows and
columns are sorted according to the two hierarchical clusterings.

As per usual, it is a good idea to standardise the data before clustering, which can
be done using the scale argument in heatmap. There are two options for scaling,
either in the row direction (preferable if you wish to cluster variables) or the column
direction (preferable if you wish to cluster observations):
# Standardisation suitable for clustering variables:
votes.repub %>% as.matrix() %>% heatmap(scale = "row")

# Standardisation suitable for clustering observations:
votes.repub %>% as.matrix() %>% heatmap(scale = "col")

Looking at the first of these plots, we can see which elections (i.e. which variables)
had similar outcomes in terms of Republican votes. For instance, we can see that the
elections in 1960, 1976, 1888, 1884, 1880, and 1876 all had similar outcomes, with
the large number of orange rows indicating that the Republicans neither did great
nor did poorly.

If you like, you can change the colour palette used. As in Section 4.2.2, you can
choose between palettes from http://www.colorbrewer2.org. heatmap is not a
ggplot2 function, so this is done in a slightly different way to what you’re used to
from other examples. Here are two examples, with the white-blue-purple sequential
palette "BuPu" and the red-white-blue diverging palette "RdBu":
library(RColorBrewer)
col_palette <- colorRampPalette(brewer.pal(8, "BuPu"))(25)
votes.repub %>% as.matrix() %>%

heatmap(scale = "row", col = col_palette)

col_palette <- colorRampPalette(brewer.pal(8, "RdBu"))(25)
votes.repub %>% as.matrix() %>%

heatmap(scale = "row", col = col_palette)

∼

Exercise 4.29. Draw a heatmap for the USArrests data. Have a look at Maryland
and the states with which it is clustered. Do they have high or low crime rates?

4.10.3 Centroid-based clustering
Let’s return to the seeds data that we explored in Section 4.9:
# Download the data:
seeds <- read.table("https://tinyurl.com/seedsdata",

http://www.colorbrewer2.org
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col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

We know that there are three varieties of seeds in this dataset, but what if we didn’t?
Or what if we’d lost the labels and didn’t know what seeds are of what type? There
are no rows names for this data, and plotting a dendrogram may therefore not be
that useful. Instead, we can use 𝑘-means clustering, where the points are clustered
into 𝑘 clusters based on their distances to the cluster means, or centroids.

When performing 𝑘-means clustering (using the algorithm of Hartigan &Wong (1979)
that is the default in the function that we’ll use), the data is split into 𝑘 clusters
based on their distance to the mean of all points. Points are then moved between
clusters, one at a time, based on how close they are (as measured by Euclidean
distance) to the mean of each cluster. The algorithm finishes when no point can be
moved between clusters without increasing the average distance between points and
the means of their clusters.

To run a 𝑘-means clustering in R, we can use kmeans. Let’s start by using 𝑘 = 3
clusters:
# First, we standardise the data, and then we do a k-means
# clustering.
# We ignore variable 8, Variety, which is the group label.
library(magrittr)
seeds[, -8] %>% scale() %>%

kmeans(centers = 3) -> seeds_cluster

seeds_cluster

To visualise the results, we’ll plot the first two principal components. We’ll use colour
to show the clusters. Moreover, we’ll plot the different varieties in different shapes,
to see if the clusters found correspond to different varieties:
# Compute principal components:
pca <- prcomp(seeds[,-8])
library(ggfortify)
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,

shape = "Variety", size = 2, alpha = 0.75)

In this case, the clusters more or less overlap with the varieties! Of course, in a lot of
cases, we don’t know the number of clusters beforehand. What happens if we change
𝑘?

First, we try 𝑘 = 2:
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seeds[, -8] %>% scale() %>%
kmeans(centers = 2) -> seeds_cluster

autoplot(pca, data = seeds, colour = seeds_cluster$cluster,
shape = "Variety", size = 2, alpha = 0.75)

Next, 𝑘 = 4:
seeds[, -8] %>% scale() %>%

kmeans(centers = 4) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,

shape = "Variety", size = 2, alpha = 0.75)

And finally, a larger number of clusters, say 𝑘 = 12:
seeds[, -8] %>% scale() %>%

kmeans(centers = 12) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$cluster,

shape = "Variety", size = 2, alpha = 0.75)

If it weren’t for the fact that the different varieties were shown as different shapes,
we’d have no way to say, based on this plot alone, which choice of 𝑘 that is preferable
here. Before we go into methods for choosing 𝑘 though, we’ll mention pam. pam is
an alternative to 𝑘-means that works in the same way, but uses median-like points,
medoids instead of cluster means. This makes it more robust to outliers. Let’s try it
with 𝑘 = 3 clusters:
seeds[, -8] %>% scale() %>%

pam(k = 3) -> seeds_cluster
autoplot(pca, data = seeds, colour = seeds_cluster$clustering,

shape = "Variety", size = 2, alpha = 0.75)

For both kmeans and pam, there are visual tools that can help us choose the value of
𝑘 in the factoextra package. Let’s install it:
install.packages("factoextra")

The fviz_nbclust function in factoextra can be used to obtain plots that can
guide the choice of 𝑘. It takes three arguments as input: the data, the clustering
function (e.g. kmeans or pam) and the method used for evaluating different choices
of 𝑘. There are three options for the latter: "wss", "silhouette" and "gap_stat".

method = "wss" yields a plot that relies on the within-cluster sum of squares, WSS,
which is a measure of the within-cluster variation. The smaller this is, the more
compact are the clusters. The WSS is plotted for several choices of 𝑘, and we look
for an “elbow”, just as we did when using a scree plot for PCA. That is, we look for
the value of 𝑘 such that increasing 𝑘 further doesn’t improve the WSS much. Let’s
have a look at an example, using pam for clustering:
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library(factoextra)
fviz_nbclust(scale(seeds[, -8]), pam, method = "wss")

# Or, using a pipeline instead:
library(magrittr)
seeds[, -8] %>% scale() %>%

fviz_nbclust(pam, method = "wss")

𝑘 = 3 seems like a good choice here.

method = "silhouette" produces a silhouette plot. The silhouette value measures
how similar a point is compared to other points in its cluster. The closer to 1 this
value is, the better. In a silhouette plot, the average silhouette value for points in
the data are plotted against 𝑘:
fviz_nbclust(scale(seeds[, -8]), pam, method = "silhouette")

Judging by this plot, 𝑘 = 2 appears to be the best choice.

Finally, method = "gap_stat" yields a plot of the gap statistic (Tibshirani et al.,
2001), which is based on comparing the WSS to its expected value under a null
distribution obtained using the bootstrap (Section 7.7). Higher values of the gap
statistic are preferable:
fviz_nbclust(scale(seeds[, -8]), pam, method = "gap_stat")

In this case, 𝑘 = 3 gives the best value.

In addition to plots for choosing 𝑘, factoextra provides the function fviz_cluster
for creating PCA-based plots, with an option to add convex hulls or ellipses around
the clusters:
# First, find the clusters:
seeds[, -8] %>% scale() %>%

kmeans(centers = 3) -> seeds_cluster

# Plot clusters and their convex hulls:
library(factoextra)
fviz_cluster(seeds_cluster, data = seeds[, -8])

# Without row numbers:
fviz_cluster(seeds_cluster, data = seeds[, -8], geom = "point")

# With ellipses based on the multivariate normal distribution:
fviz_cluster(seeds_cluster, data = seeds[, -8],

geom = "point", ellipse.type = "norm")
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Note that in this plot, the shapes correspond to the clusters and not the varieties of
seeds.

∼

Exercise 4.30. The chorSub data from cluster contains measurements of 10 chem-
icals in 61 geological samples from the Kola Peninsula. Cluster this data using using
either kmeans or pam (does either seem to be a better choice here?). What is a good
choice of 𝑘 here? Visualise the results.

4.10.4 Fuzzy clustering
An alternative to 𝑘-means clustering is fuzzy clustering, in which each point is “spread
out” over the 𝑘 clusters instead of being placed in a single cluster. The more similar
it is to other observations in a cluster, the higher is its membership in that cluster.
Points can have a high degree of membership to several clusters, which is useful in
applications where points should be allowed to belong to more than one cluster. An
important example is genetics, where genes can encode proteins with more than one
function. If each point corresponds to a gene, it then makes sense to allow the points
to belong to several clusters, potentially associated with different functions. The
opposite of fuzzy clustering is hard clustering, in which each point only belongs to
one cluster.

fanny from cluster can be used to perform fuzzy clustering:
library(cluster)
library(magrittr)
seeds[, -8] %>% scale() %>%

fanny(k = 3) -> seeds_cluster

# Check membership of each cluster for the different points:
seeds_cluster$membership

# Plot the closest hard clustering:
library(factoextra)
fviz_cluster(seeds_cluster, geom = "point")

As for kmeans and pam, we can use fviz_nbclust to determine how many clusters
to use:
seeds[, -8] %>% scale() %>%

fviz_nbclust(fanny, method = "wss")
seeds[, -8] %>% scale() %>%

fviz_nbclust(fanny, method = "silhouette")
# Producing the gap statistic plot takes a while here, so
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# you may want to skip it in this case:
seeds[, -8] %>% scale() %>%

fviz_nbclust(fanny, method = "gap")

∼

Exercise 4.31. Do a fuzzy clustering of the USArrests data. Is Maryland strongly
associated with a single cluster, or with several clusters? What about New Jersey?

4.10.5 Model-based clustering
As a last option, we’ll consider model-based clustering, in which each cluster is as-
sumed to come from a multivariate normal distribution. This will yield ellipsoidal
clusters. Mclust from the mclust package fits such a model, called a Gaussian finite
mixture model, using the EM-algorithm (Scrucca et al., 2016). First, let’s install the
package:
install.packages("mclust")

Now, let’s cluster the seeds data. The number of clusters is chosen as part of the
clustering procedure. We’ll use a function from the factoextra for plotting the
clusters with ellipsoids, and so start by installing that:
install.packages("factoextra")

library(mclust)
seeds_cluster <- Mclust(scale(seeds[, -8]))
summary(seeds_cluster)

# Plot results with ellipsoids:
library(factoextra)
fviz_cluster(seeds_cluster, geom = "point", ellipse.type = "norm")

Gaussian finite mixture models are based on the assumption that the data is numer-
ical. For categorical data, we can use latent class analysis, which we’ll discuss in
Section 4.11.2, instead.

∼

Exercise 4.32. Return to the chorSub data from Exercise 4.30. Cluster it using a
Gaussian finite mixture model. How many clusters do you find?
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4.10.6 Comparing clusters
Having found some interesting clusters, we are often interested in exploring differ-
ences between the clusters. To do so, we much first extract the cluster labels from
our clustering (which are contained in the variables clustering for methods with
Western female names, cluster for kmeans, and classification for Mclust). We
can then add those labels to our data frame and use them when plotting.

For instance, using the seeds data, we can compare the area of seeds from different
clusters:
# Cluster the seeds using k-means with k=3:
library(cluster)
seeds[, -8] %>% scale() %>%

kmeans(centers = 3) -> seeds_cluster

# Add the results to the data frame:
seeds$clusters <- factor(seeds_cluster$cluster)
# Instead of $cluster, we'd use $clustering for agnes, pam, and fanny
# objects, and $classification for an Mclust object.

# Compare the areas of the 3 clusters using boxplots:
library(ggplot2)
ggplot(seeds, aes(x = Area, group = clusters, fill = clusters)) +

geom_boxplot()

# Or using density estimates:
ggplot(seeds, aes(x = Area, group = clusters, fill = clusters)) +

geom_density(alpha = 0.7)

We can also create a scatterplot matrix to look at all variables simultaneously:
library(GGally)
ggpairs(seeds[, -8], aes(colour = seeds$clusters, alpha = 0.2))

It may be tempting to run some statistical tests (e.g. a t-test) to see if there are
differences between the clusters. Note, however, that in statistical hypothesis testing,
it is typically assumed that the hypotheses that are being tested have been generated
independently from the data. Double-dipping, where the data first is used to generate
a hypothesis (“judging from this boxplot, there seems to be a difference in means
between these two groups!” or “I found these clusters, and now I’ll run a test to see if
they are different”) and then test that hypothesis, is generally frowned upon, as that
substantially inflates the risk of a type I error. Recently, there have however been
some advances in valid techniques for testing differences in means between clusters
found using hierarchical clustering; see Gao et al. (2020).
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4.11 Exploratory factor analysis
The purpose of factor analysis is to describe and understand the correlation structure
for a set of observable variables through a smaller number of unobservable underlying
variables, called factors or latent variables. These are thought to explain the values
of the observed variables in a causal manner. Factor analysis is a popular tool in
psychometrics, where it for instance is used to identify latent variables that explain
people’s results on different tests, e.g. related to personality, intelligence, or attitude.

4.11.1 Factor analysis
We’ll use the psych package, along with the associated package GPArotation, for
our analyses. Let’s install them:
install.packages(c("psych", "GPArotation"))

For our first example of factor analysis, we’ll be using the attitude data that comes
with R. It describes the outcome of a survey of employees at a financial organisation.
Have a look at its documentation to read about the variables in the dataset:
?attitude
attitude

To fit a factor analysis model to these data, we can use fa from psych. fa requires us
to specify the number of factors used in the model. We’ll get back to how to choose
the number of factors, but for now, let’s go with 2:
library(psych)
# Fit factor model:
attitude_fa <- fa(attitude, nfactors = 2,

rotate = "oblimin", fm = "ml")

fa does two things for us. First, it fits a factor model to the data, which yields a
table of factor loadings, i.e. the correlation between the two unobserved factors and
the observed variables. However, there is an infinite number of mathematically valid
factor models for any given dataset. Therefore, the factors are rotated according
to some rule to obtain a factor model that hopefully allows for easy and useful
interpretation. Several methods can be used to fit the factor model (set using the fm
argument in fa) and for rotation the solution (set using rotate). We’ll look at some
of the options shortly.

First, we’ll print the result, showing the factor loadings (after rotation). We’ll also
plot the resulting model using fa.diagram, showing the correlation between the
factors and the observed variables:
# Print results:
attitude_fa
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# Plot results:
fa.diagram(attitude_fa, simple = FALSE)

The first factor is correlated to the variables advance, learning and raises. We can
perhaps interpret this factor as measuring the employees’ career opportunity at the
organisation. The second factor is strongly correlated to complaints and (overall)
rating, but also to a lesser degree correlated to raises, learning and privileges.
This can maybe be interpreted as measuring how the employees’ feel that they are
treated at the organisation.

We can also see that the two factors are correlated. In some cases, it makes sense
to expect the factors to be uncorrelated. In that case, we can change the rotation
method used, from oblimin (which yields oblique rotations, allowing for correlations
- usually a good default) to varimax, which yields uncorrelated factors:
attitude_fa <- fa(attitude, nfactors = 2,

rotate = "varimax", fm = "ml")
fa.diagram(attitude_fa, simple = FALSE)

In this case, the results are fairly similar.

The fm = "ml" setting means that maximum likelihood estimation of the factor
model is performed, under the assumption of a normal distribution for the data.
Maximum likelihood estimation is widely recommended for estimation of factor mod-
els, and can often work well even for non-normal data (Costello & Osborne, 2005).
However, there are cases where it fails to find useful factors. fa offers several differ-
ent estimation methods. A good alternative is minres, which often works well when
maximum likelihood fails:
attitude_fa <- fa(attitude, nfactors = 2,

rotate = "oblimin", fm = "minres")
fa.diagram(attitude_fa, simple = FALSE)

Once again, the results are similar to what we saw before. In other examples, the
results differ more. When choosing which estimation method and rotation to use,
bear in mind that in an exploratory study, there is no harm in playing around with a
few different methods. After all, your purpose is to generate hypotheses rather than
confirm them, and looking at the data in a few different ways will help you do that.

To determine the number of factors that are appropriate for a particular dataset, we
can draw a scree plot with scree. This is interpreted in the same way as for principal
components analysis (Section 4.9) and centroid-based clustering (Section 4.10.3) - we
look for an “elbow” in the plot, which tells us at which point adding more factors no
longer contributes much to the model:
scree(attitude, pc = FALSE)
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A useful alternative version of this is provided by fa.parallel, which adds lines
showing what the scree plot would look like for randomly generated uncorrelated
data of the same size as the original dataset. As long as the blue line, representing
the actual data, is higher than the red line, representing randomly generated data,
adding more factors improves the model:
fa.parallel(attitude, fm = "ml", fa = "fa")

Some older texts recommend that only factors with an eigenvalue (the y-axis in the
scree plot) greater than 1 be kept in the model. It is widely agreed that this so-called
Kaiser rule is inappropriate (Costello & Osborne, 2005), as it runs the risk of leaving
out important factors.

Similarly, some older texts also recommend using principal components analysis to fit
factor models. While the two are mathematically similar in that both in some sense
reduce the dimensionality of the data, PCA and factor analysis are designed to target
different problems. Factor analysis is concerned with an underlying causal structure
where the unobserved factors affect the observed variables. In contrast, PCA simply
seeks to create a small number of variables that summarise the variation in the data,
which can work well even if there are no unobserved factors affecting the variables.

∼

Exercise 4.33. Factor analysis only relies on the covariance or correlation matrix
of your data. When using fa and other functions for factor analysis, you can input
either a data frame or a covariance/correlation matrix. Read about the ability.cov
data that comes shipped with R, and perform a factor analysis of it.

4.11.2 Latent class analysis
When there is a single categorical latent variable, factor analysis overlaps with clus-
tering, which we studied in Section 4.10. Whether we think of the values of the latent
variable as clusters, classes, factor levels, or something else is mainly a philosophical
question - from a mathematical perspective, it doesn’t matter what name we use for
them.

When observations from the same cluster are assumed to be uncorrelated, the result-
ing model is called latent profile analysis, which typically is handled using model-
based clustering (Section 4.10.5). The special case where the observed variables are
categorical is instead known as latent class analysis. This is common e.g. in analyses
of survey data, and we’ll have a look at such an example in this section. The package
that we’ll use for our analyses is called poLCA - let’s install it:
install.packages("poLCA")
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The National Mental Health Services Survey is an annual survey collecting informa-
tion about mental health treatment facilities in the US. We’ll analyse data from the
2019 survey, courtesy of the Substance Abuse and Mental Health Data Archive, and
try to find latent classes. Download nmhss-puf-2019.csv from the book’s web page,
and set file_path to its path. We can then load and look at a summary of the data
using:
nmhss <- read.csv(file_path)
summary(nmhss)

All variables are categorical (except perhaps for the first one, which is an identifier).
According to the survey’s documentation, negative values are used to represent miss-
ing values. For binary variables, 0 means no/non-presence and 1 means yes/presence.

Next, we’ll load the poLCA package and read the documentation for the function that
we’ll use for the analysis.
library(poLCA)
?poLCA

As you can see in the description of the data argument, the observed variables
(called manifest variables here) are only allowed to contain consecutive integer values,
starting from 1. Moreover, missing values should be represented by NA, and not by
negative numbers (just as elsewhere in R!). We therefore need to make two changes
to our data:

• Change negative values to NA,
• Change the levels of binary variables so that 1 means no/non-presence and 2

means yes/presence.

In our example, we’ll look at variables describing what treatments are available at
the different facilities. Let’s create a new data frame for those variables:
treatments <- nmhss[, names(nmhss)[17:30]]
summary(treatments)

To make the changes to the data that we need, we can do the following:
# Change negative values to NA:
treatments[treatments < 0] <- NA

# Change binary variables from 0 and 1 to
# 1 and 2:
treatments <- treatments + 1

# Check the results:
summary(treatments)

https://www.datafiles.samhsa.gov/study-dataset/national-mental-health-services-survey-2019-n-mhss-2019-ds0001-nid18959
http://www.modernstatisticswithr.com/data.zip
https://www.datafiles.samhsa.gov/sites/default/files/field-uploads-protected/studies/N-MHSS-2019/N-MHSS-2019-datasets/N-MHSS-2019-DS0001/N-MHSS-2019-DS0001-info/N-MHSS-2019-DS0001-info-codebook.pdf
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We are now ready to get started with our analysis. To begin with, we will try to find
classes based on whether or not the facilities offer the following five treatments:

• TREATPSYCHOTHRPY: The facility offers individual psychotherapy,
• TREATFAMTHRPY: The facility offers couples/family therapy,
• TREATGRPTHRPY: The facility offers group therapy,
• TREATCOGTHRPY: The facility offers cognitive behavioural therapy,
• TREATPSYCHOMED: The facility offers psychotropic medication. The poLCA func-

tion needs three inputs: a formula describing what observed variables to use,
a data frame containing the observations, and nclass, the number of latent
classes to find. To begin with, let’s try two classes:

m <- poLCA(cbind(TREATPSYCHOTHRPY, TREATFAMTHRPY,
TREATGRPTHRPY, TREATCOGTHRPY,
TREATPSYCHOMED) ~ 1,

data = treatments, nclass = 2)

The output shows the probabilities of 1’s (no/non-presence) and 2’s (yes/presence)
for the two classes. So, for instance, from the output
$TREATPSYCHOTHRPY

Pr(1) Pr(2)
class 1: 0.6628 0.3372
class 2: 0.0073 0.9927

we gather that 34 % of facilities belonging to the first class offer individual psychother-
apy, whereas 99 % of facilities from the second class offer individual psychotherapy.
Looking at the other variables, we see that the second class always has high proba-
bilities of offering therapies, while the first class doesn’t. Interpreting this, we’d say
that the second class contains facilities that offer a wide variety of treatments, and
the first facilities that only offer some therapies. Finally, we see from the output that
88 % of the facilities belong to the second class:
Estimated class population shares
0.1167 0.8833

We can visualise the class differences in a plot:
plot(m)

To see which classes different observations belong to, we can use:
m$predclass

Just as in a cluster analysis, it is often a good idea to run the analysis with different
numbers of classes. Next, let’s try 3 classes:
m <- poLCA(cbind(TREATPSYCHOTHRPY, TREATFAMTHRPY,

TREATGRPTHRPY, TREATCOGTHRPY,
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TREATPSYCHOMED) ~ 1,
data = treatments, nclass = 3)

This time, we run into numerical problems - the model estimation has failed, as
indicated by the following warning message:
ALERT: iterations finished, MAXIMUM LIKELIHOOD NOT FOUND

poLCA fits the model using a method known as the EM algorithm, which finds maxi-
mum likelihood estimates numerically. First, the observations are randomly assigned
to the classes. Step by step, the observations are then moved between classes, un-
til the optimal split has been found. It can however happen that more steps are
needed to find the optimum (by default 1,000 steps are used), or that we end up
with unfortunate initial class assignments that prevent the algorithm from finding
the optimum. To attenuate this problem, we can increase the number of steps used,
or run the algorithm multiple times, each with new initial class assignments. The
poLCA arguments for this are maxiter, which controls the number of steps (or itera-
tions) used, and nrep, which controls the number of repetitions with different initial
assignments. We’ll increase both, and see if that helps. Note that this means that
the algorithm will take longer to run:
m <- poLCA(cbind(TREATPSYCHOTHRPY, TREATFAMTHRPY,

TREATGRPTHRPY, TREATCOGTHRPY,
TREATPSYCHOMED) ~ 1,

data = treatments, nclass = 3,
maxiter = 2500, nrep = 5)

These setting should do the trick for this dataset, and you probably won’t see a
warning message this time. If you do, try increasing either number and run the code
again.

The output that you get can differ between runs - in particular, the order of the
classes can differ depending on initial assignments. Here is part of the output from
my run:
$TREATPSYCHOTHRPY

Pr(1) Pr(2)
class 1: 0.0076 0.9924
class 2: 0.0068 0.9932
class 3: 0.6450 0.3550

$TREATFAMTHRPY
Pr(1) Pr(2)

class 1: 0.1990 0.8010
class 2: 0.0223 0.9777
class 3: 0.9435 0.0565
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$TREATGRPTHRPY
Pr(1) Pr(2)

class 1: 0.0712 0.9288
class 2: 0.3753 0.6247
class 3: 0.4935 0.5065

$TREATCOGTHRPY
Pr(1) Pr(2)

class 1: 0.0291 0.9709
class 2: 0.0515 0.9485
class 3: 0.5885 0.4115

$TREATPSYCHOMED
Pr(1) Pr(2)

class 1: 0.0825 0.9175
class 2: 1.0000 0.0000
class 3: 0.3406 0.6594

Estimated class population shares
0.8059 0.0746 0.1196

We can interpret this as follows:

• Class 1 (81 % of facilities): Offer all treatments, including psychotropic medi-
cation.

• Class 2 (7 % of facilities): Offer all treatments, except for psychotropic medi-
cation.

• Class 3 (12 % of facilities): Only offer some treatments, which may include
psychotropic medication.

You can either let interpretability guide your choice of how many classes to include
in your analysis, our use model fit measures like 𝐴𝐼𝐶 and 𝐵𝐼𝐶, which are printed
in the output and can be obtained from the model using:
m$aic
m$bic

The lower these are, the better is the model fit.

If you like, you can add a covariate to your latent class analysis, which allows you to
simultaneously find classes and study their relationship with the covariate. Let’s add
the variable PAYASST (which says whether a facility offers treatment at no charge or
minimal payment to clients who cannot afford to pay) to our data, and then use that
as a covariate.
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# Add PAYASST variable to data, then change negative values
# to NA's:
treatments$PAYASST <- nmhss$PAYASST
treatments$PAYASST[treatments$PAYASST < 0] <- NA

# Run LCA with covariate:
m <- poLCA(cbind(TREATPSYCHOTHRPY, TREATFAMTHRPY,

TREATGRPTHRPY, TREATCOGTHRPY,
TREATPSYCHOMED) ~ PAYASST,

data = treatments, nclass = 3,
maxiter = 2500, nrep = 5)

My output from this model includes the following tables:
=========================================================
Fit for 3 latent classes:
=========================================================
2 / 1

Coefficient Std. error t value Pr(>|t|)
(Intercept) 0.10616 0.18197 0.583 0.570
PAYASST 0.43302 0.11864 3.650 0.003
=========================================================
3 / 1

Coefficient Std. error t value Pr(>|t|)
(Intercept) 1.88482 0.20605 9.147 0
PAYASST 0.59124 0.10925 5.412 0
=========================================================

The interpretation is that both class 2 and class 3 differ significantly from class 1 (the
p-values in the Pr(>|t|) column are low), with the positive coefficients for PAYASST
telling us that class 2 and 3 facilities are more likely to offer pay assistance than class
1 facilities.

∼

Exercise 4.34. The cheating dataset from poLCA contains students’ answers to
four questions about cheating, along with their grade point averages (GPA). Perform
a latent class analysis using GPA as a covariate. What classes do you find? Does
having a high GPA increase the probability of belonging to either class?



Chapter 5

Dealing with messy data

…or, put differently, welcome to the real world. Real datasets are seldom as tidy and
clean as those you have seen in the previous examples in this book. On the contrary,
real data is messy. Things will be out of place, and formatted in the wrong way.
You’ll need to filter the rows to remove those that aren’t supposed to be used in the
analysis. You’ll need to remove some columns and merge others. You will need to
wrestle, clean, coerce, and coax your data until it finally has the right format. Only
then will you be able to actually analyse it.

This chapter contains a number of examples that serve as cookbook recipes for com-
mon data wrangling tasks. And as with any cookbook, you’ll find yourself returning
to some recipes more or less every day, until you know them by heart, while you
never find the right time to use other recipes. You do definitely not have to know all
of them by heart, and can always go back and look up a recipe that you need.

After working with the material in this chapter, you will be able to use R to:

• Handle numeric and categorical data,
• Manipulate and find patterns in text strings,
• Work with dates and times,
• Filter, subset, sort, and reshape your data using data.table, dplyr, and

tidyr,
• Split and merge datasets,
• Scrape data from the web,
• Import data from different file formats.

5.1 Changing data types
In Exercise 3.1 you discovered that R implicitly coerces variables into other data
types when needed. For instance, if you add a numeric to a logical, the result is
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a numeric. And if you place them together in a vector, the vector will contain two
numeric values:
TRUE + 5
v1 <- c(TRUE, 5)
v1

However, if you add a numeric to a character, the operation fails. If you put them
together in a vector, both become character strings:
"One" + 5
v2 <- c("One", 5)
v2

There is a hierarchy for data types in R: logical< integer< numeric< character.
When variables of different types are somehow combined (with addition, put in the
same vector, and so on), R will coerce both to the higher ranking type. That is why
v1 contained numeric variables (numeric is higher ranked than logical) and v2
contained character values (character is higher ranked than numeric).

Automatic coercion is often useful, but will sometimes cause problems. As an exam-
ple, a vector of numbers may accidentally be converted to a character vector, which
will confuse plotting functions. Luckily it is possible to convert objects to other data
types. The functions most commonly used for this are as.logical, as.numeric and
as.character. Here are some examples of how they can be used:
as.logical(1) # Should be TRUE
as.logical("FALSE") # Should be FALSE
as.numeric(TRUE) # Should be 1
as.numeric("2.718282") # Should be numeric 2.718282
as.character(2.718282) # Should be the string "2.718282"
as.character(TRUE) # Should be the string "TRUE"

A word of warning though - conversion only works if R can find a natural conversion
between the types. Here are some examples where conversion fails. Note that only
some of them cause warning messages:
as.numeric("two") # Should be 2
as.numeric("1+1") # Should be 2
as.numeric("2,718282") # Should be numeric 2.718282
as.logical("Vaccines cause autism") # Should be FALSE

∼

Exercise 5.1. The following tasks are concerned with converting and checking data
types:
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1. What happens if you apply as.logical to the numeric values 0 and 1? What
happens if you apply it to other numbers?

2. What happens if you apply as.character to a vector containing numeric
values?

3. The functions is.logical, is.numeric and is.character can be used to
check if a variable is a logical, numeric or character, respectively. What
type of object do they return?

4. Is NA a logical, numeric or character?

5.2 Working with lists
A data structure that is very convenient for storing data of different types is list.
You can think of a list as a data frame where you can put different types of objects
in each column: like a numeric vector of length 5 in the first, a data frame in the
second and a single character in the third1. Here is an example of how to create a
list using the function of the same name:
my_list <- list(my_numbers = c(86, 42, 57, 61, 22),

my_data = data.frame(a = 1:3, b = 4:6),
my_text = "Lists are the best.")

To access the elements in the list, we can use the same $ notation as for data frames:
my_list$my_numbers
my_list$my_data
my_list$my_text

In addition, we can access them using indices, but using double brackets:
my_list[[1]]
my_list[[2]]
my_list[[3]]

To access elements within the elements of lists, additional brackets can be added.
For instance, if you wish to access the second element of the my_numbers vector, you
can use either of these:
my_list[[1]][2]
my_list$my_numbers[2]

1In fact, the opposite is true: under the hood, a data frame is a list of vectors of equal length.
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5.2.1 Splitting vectors into lists
Consider the airquality dataset, which among other things describe the temper-
ature on each day during a five-month period. Suppose that we wish to split the
airquality$Temp vector into five separate vectors: one for each month. We could
do this by repeated filtering, e.g.
temp_may <- airquality$Temp[airquality$Month == 5]
temp_june <- airquality$Temp[airquality$Month == 6]
# ...and so on.

Apart from the fact that this isn’t a very good-looking solution, this would be infeasi-
ble if we needed to split our vector into a larger number of new vectors. Fortunately,
there is a function that allows us to split the vector by month, storing the result as
a list - split:
temps <- split(airquality$Temp, airquality$Month)
temps

# To access the temperatures for June:
temps$`6`
temps[[2]]

# To give more informative names to the elements in the list:
names(temps) <- c("May", "June", "July", "August", "September")
temps$June

Note that, in breach of the rules for variable names in R, the original variable names
here were numbers (actually character variables that happened to contain numeric
characters). When accessing them using $ notation, you need to put them between
backticks (`), e.g. temps$`6`, to make it clear that 6 is a variable name and not a
number.

5.2.2 Collapsing lists into vectors
Conversely, there are times where you want to collapse a list into a vector. This can
be done using unlist:
unlist(temps)

∼

Exercise 5.2. Load the vas.csv data from Exercise 3.8. Split the VAS vector so
that you get a list containing one vector for each patient. How can you then access
the VAS values for patient 212?
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5.3 Working with numbers
A lot of data analyses involve numbers, which typically are represented as numeric
values in R. We’ve already seen in Section 2.4.5 that there are numerous mathematical
operators that can be applied to numbers in R. But there are also other functions
that come in handy when working with numbers.

5.3.1 Rounding numbers
At times you may want to round numbers, either for presentation purposes or for
some other reason. There are several functions that can be used for this:
a <- c(2.1241, 3.86234, 4.5, -4.5, 10000.1001)
round(a, 3) # Rounds to 3 decimal places
signif(a, 3) # Rounds to 3 significant digits
ceiling(a) # Rounds up to the nearest integer
floor(a) # Rounds down to the nearest integer
trunc(a) # Rounds to the nearest integer, toward 0

# (note the difference in how 4.5
# and -4.5 are treated!)

5.3.2 Sums and means in data frames
When working with numerical data, you’ll frequently find yourself wanting to com-
pute sums or means of either columns or rows of data frames. The colSums, rowSums,
colMeans and rowMeans functions can be used to do this. Here is an example with an
expanded version of the bookstore data, where three purchases have been recorded
for each customer:
bookstore2 <- data.frame(purchase1 = c(20, 59, 2, 12, 22, 160,

34, 34, 29),
purchase2 = c(14, 67, 9, 20, 20, 81,

19, 55, 8),
purchase3 = c(4, 62, 11, 18, 33, 57,

24, 49, 29))

colSums(bookstore2) # The total amount for customers' 1st, 2nd and
# 3rd purchases

rowSums(bookstore2) # The total amount for each customer
colMeans(bookstore2) # Mean purchase for 1st, 2nd and 3rd purchases
rowMeans(bookstore2) # Mean purchase for each customer

Moving beyond sums and means, in Section 6.5 you’ll learn how to apply any function
to the rows or columns of a data frame.
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5.3.3 Summaries of series of numbers
When a numeric vector contains a series of consecutive measurements, as is the case
e.g. in a time series, it is often of interest to compute various cumulative summaries.
For instance, if the vector contains the daily revenue of a business during a month,
it may be of value to know the total revenue up to each day - that is, the cumulative
sum for each day.

Let’s return to the a10 data from Section 4.6, which described the monthly anti-
diabetic drug sales in Australia during 1991-2008.
library(fpp2)
a10

Elements 7 to 18 contain the sales for 1992. We can compute the total, highest and
smallest monthly sales up to and including each month using cumsum, cummax and
cummin:
a10[7:18]
cumsum(a10[7:18]) # Total sales
cummax(a10[7:18]) # Highest monthly sales
cummin(a10[7:18]) # Lowest monthly sales

# Plot total sales up to and including each month:
plot(1:12, cumsum(a10[7:18]),

xlab = "Month",
ylab = "Total sales",
type = "b")

In addition, the cumprod function can be used to compute cumulative products.

At other times, we are interested in studying run lengths in series, that is, the lengths
of runs of equal values in a vector. Consider the upp_temp vector defined in the code
chunk below, which contains the daily temperatures in Uppsala, Sweden, in February
20202.
upp_temp <- c(5.3, 3.2, -1.4, -3.4, -0.6, -0.6, -0.8, 2.7, 4.2, 5.7,

3.1, 2.3, -0.6, -1.3, 2.9, 6.9, 6.2, 6.3, 3.2, 0.6, 5.5,
6.1, 4.4, 1.0, -0.4, -0.5, -1.5, -1.2, 0.6)

It could be interesting to look at runs of sub-zero days, i.e. consecutive days with
sub-zero temperatures. The rle function counts the lengths of runs of equal values
in a vector. To find the length of runs of temperatures below or above zero we can
use the vector defined by the condition upp_temp < 0, the values of which are TRUE
on sub-zero days and FALSE when the temperature is 0 or higher. When we apply
rle to this vector, it returns the length and value of the runs:

2Courtesy of the Department of Earth Sciences at Uppsala University.
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rle(upp_temp < 0)

We first have a 2-day run of above zero temperatures (FALSE), then a 5-day run of
sub-zero temperatures (TRUE), then a 5-day run of above zero temperatures, and so
on.

5.3.4 Scientific notation 1e-03
When printing very large or very small numbers, R uses scientific notation, meaning
that 7, 000, 000 (7 followed by 6 zeroes) is displayed as (the mathematically equiva-
lent) 7 ⋅ 106 and 0.0000007 is displayed as 7 ⋅ 10−7. Well, almost, the ten raised to
the power of x bit isn’t really displayed as 10𝑥, but as e+x, a notation used in many
programming languages and calculators. Here are some examples:
7000000
0.0000007
7e+07
exp(30)

Scientific notation is a convenient way to display large numbers, but it’s not always
desirable. If you just want to print the number, the format function can be used to
convert it to a character, suppressing scientific notation:
format(7000000, scientific = FALSE)

If you still want your number to be a numeric (as you often do), a better choice is
to change the option for when R uses scientific notation. This can be done using the
scipen argument in the options function:
options(scipen = 1000)
7000000
0.0000007
7e+07
exp(30)

To revert this option back to the default, you can use:
options(scipen = 0)
7000000
0.0000007
7e+07
exp(30)

Note that this option only affects how R prints numbers, and not how they are
treated in computations.
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5.3.5 Floating point arithmetics
Some numbers cannot be written in finite decimal forms. Take 1/3 for example, the
decimal form of which is

0.33333333333333333333333333333333 … .

Clearly, the computer cannot store this number exactly, as that would require an
infinite memory3. Because of this, numbers in computers are stored as floating point
numbers, which aim to strike a balance between range (being able to store both
very small and very large numbers) and precision (being able to represent numbers
accurately). Most of the time, calculations with floating points yield exactly the
results that we’d expect, but sometimes these non-exact representations of numbers
will cause unexpected problems. If we wish to compute 1.5 − 0.2 and 1.1 − 0.2, say,
we could of course use R for that. Let’s see if it gets the answers right:
1.5 - 0.2
1.5 - 0.2 == 1.3 # Check if 1.5-0.2=1.3
1.1 - 0.2
1.1 - 0.2 == 0.9 # Check if 1.1-0.2=0.9

The limitations of floating point arithmetics causes the second calculation to fail. To
see what has happened, we can use sprintf to print numbers with 30 decimals (by
default, R prints a rounded version with fewer decimals):
sprintf("%.30f", 1.1 - 0.2)
sprintf("%.30f", 0.9)

The first 12 decimals are identical, but after that the two numbers 1.1 - 0.2 and
0.9 diverge. In our other example, 1.5 − 0.2, we don’t encounter this problem - both
1.5 - 0.2 and 0.3 have the same floating point representation:
sprintf("%.30f", 1.5 - 0.2)
sprintf("%.30f", 1.3)

The order of the operations also matters in this case. The following three calculations
would all yield identical results if performed with real numbers, but in floating point
arithmetics the results differ:
1.1 - 0.2 - 0.9
1.1 - 0.9 - 0.2
1.1 - (0.9 + 0.2)

In most cases, it won’t make a difference whether a variable is represented as
0.90000000000000013 … or 0.90000000000000002 …, but in some cases tiny differ-
ences like that can propagate and cause massive problems. A famous example of this

3This is not strictly speaking true; if we use base 3, 1/3 is written as 0.1 which can be stored in
a finite memory. But then other numbers become problematic instead.
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involves the US Patriot surface-to-air defence system, which at the end of the first
Gulf war missed an incoming missile due to an error in floating point arithmetics4. It
is important to be aware of the fact that floating point arithmetics occasionally will
yield incorrect results. This can happen for numbers of any size, but is more likely
to occur when very large and very small numbers appear in the same computation.

So, 1.1 - 0.2 and 0.9 may not be the same thing in floating point arithmetics, but
at least they are nearly the same thing. The == operator checks if two numbers are
exactly equal, but there is an alternative that can be used to check if two numbers
are nearly equal: all.equal. If the two numbers are (nearly) equal, it returns TRUE,
and if they are not, it returns a description of how they differ. In order to avoid the
latter, we can use the isTRUE function to return FALSE instead:
1.1 - 0.2 == 0.9
all.equal(1.1 - 0.2, 0.9)
all.equal(1, 2)
isTRUE(all.equal(1, 2))

∼

Exercise 5.3. These tasks showcase some problems that are commonly faced when
working with numeric data:

1. The vector props <- c(0.1010, 0.2546, 0.6009, 0.0400, 0.0035) con-
tains proportions (which, by definition, are between 0 and 1). Convert the
proportions to percentages with one decimal place.

2. Compute the highest and lowest temperatures up to and including each day in
the airquality dataset.

3. What is the longest run of days with temperatures above 80 in the airquality
dataset?

Exercise 5.4. These tasks are concerned with floating point arithmetics:

1. Very large numbers, like 10e500, are represented by Inf (infinity) in R. Try to
find out what the largest number that can be represented as a floating point
number in R is.

2. Due to an error in floating point arithmetics, sqrt(2)^2 - 2 is not equal to 0.
Change the order of the operations so that the results is 0.

4Not in R though.
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5.4 Working with factors
In Sections 2.6.2 and 2.8 we looked at how to analyse and visualise categorical data,
i.e data where the variables can take a fixed number of possible values that somehow
correspond to groups or categories. But so far we haven’t really gone into how to
handle categorical variables in R.

Categorical data is stored in R as factor variables. You may ask why a special data
structure is needed for categorical data, when we could just use character variables
to represent the categories. Indeed, the latter is what R does by default, e.g. when
creating a data.frame object or reading data from .csv and .xlsx files.

Let’s say that you’ve conducted a survey on students’ smoking habits. The possible
responses are Never, Occasionally, Regularly and Heavy. From 10 students, you get
the following responses:
smoke <- c("Never", "Never", "Heavy", "Never", "Occasionally",

"Never", "Never", "Regularly", "Regularly", "No")

Note that the last answer is invalid - No was not one of the four answers that were
allowed for the question.

You could use table to get a summary of how many answers of each type that you
got:
table(smoke)

But the categories are not presented in the correct order! There is a clear order
between the different categories, Never < Occasionally < Regularly < Heavy, but
table doesn’t present the results in that way. Moreover, R didn’t recognise that No
was an invalid answer, and treats it just the same as the other categories.

This is where factor variables come in. They allow you to specify which values your
variable can take, and the ordering between them (if any).

5.4.1 Creating factors
When creating a factor variable, you typically start with a character, numeric or
logical variable, the values of which are turned into categories. To turn the smoke
vector that you created in the previous section into a factor, you can use the factor
function:
smoke2 <- factor(smoke)

You can inspect the elements, and levels, i.e. the values that the categorical variable
takes, as follows:
smoke2
levels(smoke2)
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So far, we haven’t solved neither the problem of the categories being in the wrong
order nor that invalid No value. To fix both these problems, we can use the levels
argument in factor:
smoke2 <- factor(smoke, levels = c("Never", "Occasionally",

"Regularly", "Heavy"),
ordered = TRUE)

# Check the results:
smoke2
levels(smoke2)
table(smoke2)

You can control the order in which the levels are presented by choosing which order
we write them in in the levels argument. The ordered = TRUE argument specifies
that the order of the variables is meaningful. It can be excluded in cases where you
wish to specify the order in which the categories should be presented purely for presen-
tation purposes (e.g. when specifying whether to use the order Male/Female/Other
or Female/Male/Other). Also note that the No answer now became an NA, which in
the case of factor variables represents both missing observations and invalid obser-
vations. To find the values of smoke that became NA in smoke2 you can use which
and is.na:
smoke[which(is.na(smoke2))]

By checking the original values of the NA elements, you can see if they should be
excluded from the analysis or recoded into a proper category (No could for instance
be recoded into Never). In Section 5.5.3 you’ll learn how to replace values in larger
datasets automatically using regular expressions.

5.4.2 Changing factor levels
When we created smoke2, one of the elements became an NA. NA was however not
included as a level of the factor. Sometimes it is desirable to include NA as a level,
for instance when you want to analyse rows with missing data. This is easily done
using the addNA function:
smoke2 <- addNA(smoke2)

If you wish to change the name of one or more of the factor levels, you can do it
directly via the levels function. For instance, we can change the name of the NA
category, which is the 5th level of smoke2, as follows:
levels(smoke2)[5] <- "Invalid answer"

The above solution is a little brittle in that it relies on specifying the index of the
level name, which can change if we’re not careful. More robust solutions using the
data.table and dplyr packages are presented in Section 5.7.6.
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Finally, if you’ve added more levels than what are actually used, these can be dropped
using the droplevels function:
smoke2 <- factor(smoke, levels = c("Never", "Occasionally",

"Regularly", "Heavy",
"Constantly"),

ordered = TRUE)
levels(smoke2)
smoke2 <- droplevels(smoke2)
levels(smoke2)

5.4.3 Changing the order of levels
Now suppose that we’d like the levels of the smoke2 variable to be presented in the
reverse order: Heavy, Regularly, Occasionally, and Never. This can be done by a new
call to factor, where the new level order is specified in the levels argument:
smoke2 <- factor(smoke2, levels = c("Heavy", "Regularly",

"Occasionally", "Never"))

# Check the results:
levels(smoke2)

5.4.4 Combining levels
Finally, levels can be used to merge categories by replacing their separate names
with a single name. For instance, we can combine the smoking categories Occasion-
ally, Regularly, and Heavy to a single category named Yes. Assuming that these are
first, second and third in the list of names (as will be the case if you’ve run the last
code chunk above), here’s how to do it:
levels(smoke2)[1:3] <- "Yes"

# Check the results:
levels(smoke2)

Alternative ways to do this are presented in Section 5.7.6.

∼

Exercise 5.5. In Exercise 3.7 you learned how to create a factor variable from a
numeric variable using cut. Return to your solution (or the solution at the back of
the book) and do the following:

1. Change the category names to Mild, Moderate and Hot.
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2. Combine Moderate and Hot into a single level named Hot.

Exercise 5.6. Load the msleep data from the ggplot2 package. Note that cate-
gorical variable vore is stored as a character. Convert it to a factor by running
msleep$vore <- factor(msleep$vore).

1. How are the resulting factor levels ordered? Why are they ordered in that way?

2. Compute the mean value of sleep_total for each vore group.

3. Sort the factor levels according to their sleep_total means. Hint: this can
be done manually, or more elegantly using e.g. a combination of the functions
rank and match in an intermediate step.

5.5 Working with strings
Text in R is represented by character strings. These are created using double or
single quotes. I recommend double quotes for three reasons. First, it is the default in
R, and is the recommended style (see e.g. ?Quotes). Second, it improves readability
- code with double quotes is easier to read because double quotes are easier to spot
than single quotes. Third, it will allow you to easily use apostrophes in your strings,
which single quotes don’t (because apostrophes will be interpreted as the end of the
string). Single quotes can however be used if you need to include double quotes inside
your string:
# This works:
text1 <- "An example of a string. Isn't this great?"
text2 <- 'Another example of a so-called "string".'

# This doesn't work:
text1_fail <- 'An example of a string. Isn't this great?'
text2_fail <- "Another example of a so-called "string"."

If you check what these two strings look like, you’ll notice something funny about
text2:
text1
text2

R has put backslash characters, \, before the double quotes. The backslash is called
an escape character, which invokes a different interpretation of the character that
follows it. In fact, you can use this to put double quotes inside a string that you
define using double quotes:
text2_success <- "Another example of a so-called \"string\"."

There are a number of other special characters that can be included using a backslash:
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\n for a line break (a new line) and \t for a tab (a long whitespace) being the most
important5:
text3 <- "Text...\n\tWith indented text on a new line!"

To print your string in the Console in a way that shows special characters instead of
their escape character-versions, use the function cat:
cat(text3)

You can also use cat to print the string to a text file…
cat(text3, file = "new_findings.txt")

…and to append text at the end of a text file:
cat("Let's add even more text!", file = "new_findings.txt",

append = TRUE)

(Check the output by opening new_findings.txt!)

5.5.1 Concatenating strings
If you wish to concatenate multiple strings, cat will do that for you:
first <- "This is the beginning of a sentence"
second <- "and this is the end."
cat(first, second)

By default, cat places a single white space between the two strings, so that "This is
the beginning of a sentence" and "and this is the end." are concatenated
to "This is the beginning of a sentence and this is the end.". You can
change that using the sep argument in cat. You can also add as many strings as
you like as input:
cat(first, second, sep = "; ")
cat(first, second, sep = "\n")
cat(first, second, sep = "")
cat(first, second, "\n", "And this is another sentence.")

At other times, you want to concatenate two or more strings without printing them.
You can then use paste in exactly the same way as you’d use cat, the exception
being that paste returns a string instead of printing it.
my_sentence <- paste(first, second, sep = "; ")
my_novel <- paste(first, second, "\n",

"And this is another sentence.")

5See ?Quotes for a complete list.
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# View results:
my_sentence
my_novel
cat(my_novel)

Finally, if you wish to create a number of similar strings based on information from
other variables, you can use sprintf, which allows you to write a string using %s as
a placeholder for the values that should be pulled from other variables:
names <- c("Irma", "Bea", "Lisa")
ages <- c(5, 59, 36)

sprintf("%s is %s years old.", names, ages)

There are many more uses of sprintf (we’ve already seen some in Section 5.3.5),
but this enough for us for now.

5.5.2 Changing case
If you need to translate characters from lowercase to uppercase or vice versa, that
can be done using toupper and tolower:
my_string <- "SOMETIMES I SCREAM (and sometimes I whisper)."
toupper(my_string)
tolower(my_string)

If you only wish to change the case of some particular element in your string, you
can use substr, which allows you to access substrings:
months <- c("january", "february", "march", "aripl")

# Replacing characters 2-4 of months[4] with "pri":
substr(months[4], 2, 4) <- "pri"
months

# Replacing characters 1-1 (i.e. character 1) of each element of month
# with its uppercase version:
substr(months, 1, 1) <- toupper(substr(months, 1, 1))
months

5.5.3 Finding patterns using regular expressions
Regular expressions, or regexps for short, are special strings that describe patterns.
They are extremely useful if you need to find, replace or otherwise manipulate a
number of strings depending on whether or not a certain pattern exists in each one
of them. For instance, you may want to find all strings containing only numbers and
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convert them to numeric, or find all strings that contain an email address and remove
said addresses (for censoring purposes, say). Regular expressions are incredibly useful,
but can be daunting. Not everyone will need them, and if this all seems a bit too
much to you can safely skip this section, or just skim through it, and return to it at
a later point.

To illustrate the use of regular expressions we will use a sheet from the
projects-email.xlsx file from the books’ web page. In Exercise 3.9, you ex-
plored the second sheet in this file, but here we’ll use the third instead. Set
file_path to the path to the file, and then run the following code to import the
data:
library(openxlsx)
contacts <- read.xlsx(file_path, sheet = 3)
str(contacts)

There are now three variables in contacts. We’ll primarily be concerned with the
third one: Address. Some people have email addresses attached to them, others have
postal addresses and some have no address at all:
contacts$Address

You can find loads of guides on regular expressions online, but few of them are easy to
use with R, the reason being that regular expressions in R sometimes require escape
characters that aren’t needed in some other programming languages. In this section
we’ll take a look at regular expressions, as they are written in R.

The basic building blocks of regular expressions are patterns consisting of one or
more characters. If, for instance, we wish to find all occurrences of the letter y in a
vector of strings, the regular expression describing that “pattern” is simply "y". The
functions used to find occurrences of patterns are called grep and grepl. They differ
only in the output they return: grep returns the indices of the strings containing
the pattern, and grepl returns a logical vector with TRUE at indices matching the
patterns and FALSE at other indices.

To find all addresses containing a lowercase y, we use grep and grepl as follows:
grep("y", contacts$Address)
grepl("y", contacts$Address)

Note how both outputs contain the same information presented in different ways.

In the same way, we can look for word or substrings. For instance, we can find all
addresses containing the string "Edin":
grep("Edin", contacts$Address)
grepl("Edin", contacts$Address)

Similarly, we can also look for special characters. Perhaps we can find all email
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addresses by looking for strings containing the @ symbol:
grep("@", contacts$Address)
grepl("@", contacts$Address)

# To display the addresses matching the pattern:
contacts$Address[grep("@", contacts$Address)]

Interestingly, this includes two rows that aren’t email addresses. To separate the
email addresses from the other rows, we’ll need a more complicated regular expression,
describing the pattern of an email address in more general terms. Here are four
examples or regular expressions that’ll do the trick:
grep(".+@.+[.].+", contacts$Address)
grep(".+@.+\\..+", contacts$Address)
grep("[[:graph:]]+@[[:graph:]]+[.][[:alpha:]]+", contacts$Address)
grep("[[:alnum:]._-]+@[[:alnum:]._-]+[.][[:alpha:]]+",

contacts$Address)

To try to wrap our head around what these mean we’ll have a look at the building
blocks of regular expressions. These are:

• Patterns describing a single character.
• Patterns describing a class of characters, e.g. letters or numbers.
• Repetition quantifiers describing how many repetitions of a pattern to look for.
• Other operators.

We’ve already looked at single character expressions, as well as the multi-character
expression "Edin" which simply is a combination of four single-character expressions.
Patterns describing classes of characters, e.g. characters with certain properties, are
denoted by brackets [] (for manually defined classes) or double brackets [[]] (for
predefined classes). One example of the latter is "[[:digit:]] which is a pattern
that matches all digits: 0 1 2 3 4 5 6 7 8 9. Let’s use it to find all addresses
containing a number:
grep("[[:digit:]]", contacts$Address)
contacts$Address[grep("[[:digit:]]", contacts$Address)]

Some important predefined classes are:

• [[:lower:]] matches lowercase letters,
• [[:upper:]] matches UPPERCASE letters,
• [[:alpha:]] matches both lowercase and UPPERCASE letters,
• [[:digit:]] matches digits: 0 1 2 3 4 5 6 7 8 9,
• [[:alnum:]] matches alphanumeric characters (alphabetic characters and dig-

its),
• [[:punct:]] matches punctuation characters: ! " # $ % & ' ( ) * + , -

. / : ; < = > ? @ [ \ ] ^ _ { | } ~‘,
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• [[:space:]] matches space characters: space, tab, newline, and so on,
• [[:graph:]] matches letters, digits, and punctuation characters,
• [[:print:]] matches letters, digits, punctuation characters, and space char-

acters,
• . matches any character.

Examples of manually defined classes are:

• [abcd] matches a, b, c, and d,
• [a-d] matches a, b, c, and d,
• [aA12] matches a, A, 1 and 2,
• [.] matches .,
• [.,] matches . and ,,
• [^abcd] matches anything except a, b, c, or d.

So for instance, we can find all addresses that don’t contain at least one of the letters
y and z using:
grep("[^yz]", contacts$Address)
contacts$Address[grep("[^yz]", contacts$Address)]

All of these patterns can be combined with patterns describing a single character:

• gr[ea]y matches grey and gray (but not greay!),
• b[^o]g matches bag, beg, and similar strings, but not bog,
• [.]com matches .com.

When using the patterns above, you only look for a single occurrence of the pattern.
Sometimes you may want a pattern like a word of 2-4 letters or any number of digits
in a row. To create these, you add repetition patterns to your regular expression:

• ? means that the preceding patterns is matched at most once, i.e. 0 or 1 time,
• * means that the preceding pattern is matched 0 or more times,
• + means that the preceding pattern is matched at least once, i.e. 1 time or more,
• {n} means that the preceding pattern is matched exactly n times,
• {n,} means that the preceding pattern is matched at least n times, i.e. n times

or more,
• {n,m} means that the preceding pattern is matched at least n times but not

more than m times.

Here are some examples of how repetition patterns can be used:
# There are multiple ways of finding strings containing two n's
# in a row:
contacts$Address[grep("nn", contacts$Address)]
contacts$Address[grep("n{2}", contacts$Address)]

# Find strings with words beginning with an uppercase letter, followed
# by at least one lowercase letter:
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contacts$Address[grep("[[:upper:]][[:lower:]]+", contacts$Address)]

# Find strings with words beginning with an uppercase letter, followed
# by at least six lowercase letters:
contacts$Address[grep("[[:upper:]][[:lower:]]{6,}", contacts$Address)]

# Find strings containing any number of letters, followed by any
# number of digits, followed by a space:
contacts$Address[grep("[[:alpha:]]+[[:digit:]]+[[:space:]]",

contacts$Address)]

Finally, there are some other operators that you can use to create even more complex
patterns:

• | alteration, picks one of multiple possible patterns. For example, ab|bc
matches ab or bc.

• () parentheses are used to denote a subset of an expression that should be evalu-
ated separately. For example, colo|ourmatches colo or our while col(o|ou)r
matches color or colour.

• ^, when used outside of brackets [], means that the match should be found at
the start of the string. For example, ^a matches strings beginning with a, but
not "dad".

• $ means that the match should be found at the end of the string. For example,
a$ matches strings ending with a, but not "dad".

• \\ escape character that can be used to match special characters like ., ^ and
$ (\\., \\^, \\$).

This may seem like a lot (and it is!), but there are in fact many more possibilities
when working with regular expression. For the sake of some sorts of brevity, we’ll
leave it at this for now though.

Let’s return to those email addresses. We saw three regular expressions that could
be used to find them:
grep(".+@.+[.].+", contacts$Address)
grep(".+@.+\\..+", contacts$Address)
grep("[[:graph:]]+@[[:graph:]]+[.][[:alpha:]]+", contacts$Address)
grep("[[:alnum:]._-]+@[[:alnum:]._-]+[.][[:alpha:]]+",

contacts$Address)

The first two of these both specify the same pattern: any number of any characters,
followed by an @, followed by any number of any characters, followed by a period .,
followed by any number of characters. This will match email addresses, but would
also match strings like "?=)(/x@!.a??", which isn’t a valid email address. In this
case, that’s not a big issue, as our goal was to find addresses that looked like email
addresses, and not to verify that the addresses were valid.
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The third alternative has a slightly different pattern: any number of letters, digits,
and punctuation characters, followed by an @, followed by any number of letters,
digits, and punctuation characters, followed by a period ., followed by any number of
letters. This too would match "?=)(/x@!.a??" as it allows punctuation characters
that don’t usually occur in email addresses. The fourth alternative, however, won’t
match "?=)(/x@!.a??" as it only allows letters, digits and the symbols ., _ and -
in the name and domain name of the address.

5.5.4 Substitution
An important use of regular expressions is in substitutions, where the parts of strings
that match the pattern in the expression are replaced by another string. There are
two email addresses in our data that contain (a) instead of @:
contacts$Address[grep("[(]a[])]", contacts$Address)]

If we wish to replace the (a) by @, we can do so using sub and gsub. The former
replaces only the first occurrence of the pattern in the input vector, whereas the
latter replaces all occurrences.
contacts$Address[grep("[(]a[])]", contacts$Address)]
sub("[(]a[])]", "@", contacts$Address) # Replace first occurrence
gsub("[(]a[])]", "@", contacts$Address) # Replace all occurrences

5.5.5 Splitting strings
At times you want to extract only a part of a string, for example if measurements
recorded in a column contains units, e.g. 66.8 kg instead of 66.8. To split a string
into different parts, we can use strsplit.

As an example, consider the email addresses in our contacts data. Suppose
that we want to extract the user names from all email addresses, i.e. remove the
@domain.topdomain part. First, we store all email addresses from the data in a new
vector, and then we split them at the @ sign:
emails <- contacts$Address[grepl(

"[[:alnum:]._-]+@[[:alnum:]._-]+[.][[:alpha:]]+",
contacts$Address)]

emails_split <- strsplit(emails, "@")
emails_split

emails_split is a list. In this case, it seems convenient to convert the split strings
into a matrix using unlist and matrix (you may want to have a quick look at
Exercise 3.3 to re-familiarise yourself with matrix):
emails_split <- unlist(emails_split)
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# Store in a matrix with length(emails_split)/2 rows and 2 columns:
emails_matrix <- matrix(emails_split,

nrow = length(emails_split)/2,
ncol = 2,
byrow = TRUE)

# Extract usernames:
emails_matrix[,1]

Similarly, when working with data stored in data frames, it is sometimes desirable
to split a column containing strings into two columns. Some convenience functions
for this are discussed in Section 5.11.3.

5.5.6 Variable names
Variable names can be very messy, particularly when they are imported from files.
You can access and manipulate the variable names of a data frame using names:
names(contacts)
names(contacts)[1] <- "ID number"
grep("[aA]", names(contacts))

∼

Exercise 5.7. Download the file handkerchief.csv from the book’s web page. It
contains a short list of prices of Italian handkerchiefs from the 1769 publication Prices
in those branches of the weaving manufactory, called, the black branch, and, the fancy
branch. Load the data in a data frame in R and then do the following:

1. Read the documentation for the function nchar. What does it do? Apply it to
the Italian.handkerchief column of your data frame.

2. Use grep to find out how many rows of the Italian.handkerchief column
that contain numbers.

3. Find a way to extract the prices in shillings (S) and pence (D) from the Price
column, storing these in two new numeric variables in your data frame.

Exercise 5.8. Download the oslo-biomarkers.xlsx data from the book’s web
page. It contains data from a medical study about patients with disc herniations,
performed at the Oslo University Hospital, Ullevål (this is a modified6 version of the
data analysed by Moen et al. (2016)). Blood samples were collected from a number of
patients with disc herniations at three time points: 0 weeks (first visit at the hospital),

6For patient confidentiality purposes.

http://www.modernstatisticswithr.com/data.zip
https://books.google.se/books?id=rUxiAAAAcAAJ
http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
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6 weeks and 12 months. The levels of some biomarkers related to inflammation
were measured in each blood sample. The first column in the spreadsheet contains
information about the patient ID and the time point of sampling. Load the data
and check its structure. Each patient is uniquely identified by their ID number. How
many patients were included in the study?

Exercise 5.9. What patterns do the following regular expressions describe? Apply
them to the Address vector of the contacts data to check that you interpreted them
correctly.

1. "$g"

2. "^[^[[:digit:]]"

3. "a(s|l)"

4. "[[:lower:]]+[.][[:lower:]]+"

Exercise 5.10. Write code that, given a string, creates a vector containing all words
from the string, with one word in each element and no punctuation marks. Apply it
to the following string to check that it works:

x <- "This is an example of a sentence, with 10 words. Here are 4 more!"

5.6 Working with dates and times
Data describing dates and times can be complex, not least because they can be
written is so many different formats. 1 April 2020 can be written as 2020-04-01,
20/04/01, 200401, 1/4 2020, 4/1/20, 1 Apr 20, and a myriad of other ways. 5 past
6 in the evening can be written as 18:05 or 6.05 pm. In addition to this ambiguity,
time zones, daylight saving time, leap years and even leap seconds make working
with dates and times even more complicated.

The default in R is to use the ISO8601 standards, meaning that dates are written as
YYYY-MM-DD and that times are written using the 24-hour hh:mm:ss format. In
order to avoid confusion, you should always use these, unless you have very strong
reasons not to.

Dates in R are represented as Date objects, and dates with times as POSIXct objects.
The examples below are concerned with Date objects, but you will explore POSIXct
too, in Exercise 5.12.

5.6.1 Date formats
The as.Date function tries to coerce a character string to a date. For some formats,
it will automatically succeed, whereas for others, you have to provide the format of
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the date manually. To complicate things further, what formats work automatically
will depend on your system settings. Consequently, the safest option is always to
specify the format of your dates, to make sure that the code still will run if you at
some point have to execute it on a different machine. To help describe date formats,
R has a number of tokens to describe days, months and years:

• %d - day of the month as a number (01-31).
• %m - month of the year as a number (01-12).
• %y - year without century (00-99).
• %Y - year with century (e.g. 2020).

Here are some examples of date formats, all describing 1 April 2020 - try them both
with and without specifying the format to see what happens:
as.Date("2020-04-01")
as.Date("2020-04-01", format = "%Y-%m-%d")
as.Date("4/1/20")
as.Date("4/1/20", format = "%m/%d/%y")

# Sometimes dates are expressed as the number of days since a
# certain date. For instance, 1 April 2020 is 43,920 days after
# 1 January 1900:
as.Date(43920, origin = "1900-01-01")

If the date includes month or weekday names, you can use tokens to describe that as
well:

• %b - abbreviated month name, e.g. Jan, Feb.
• %B - full month name, e.g. January, February.
• %a - abbreviated weekday, e.g. Mon, Tue.
• %A - full weekday, e.g. Monday, Tuesday.

Things become a little more complicated now though, because R will interpret the
names as if they were written in the language set in your locale, which contains a
number of settings related your language and region. To find out what language is
in your locale, you can use:
Sys.getlocale("LC_TIME")

I’m writing this on a machine with Swedish locale settings (my output from the above
code chunk is "sv_SE.UTF-8"). The Swedish word for Wednesday is onsdag7, and
therefore the following code doesn’t work on my machine:
as.Date("Wednesday 1 April 2020", format = "%A %d %B %Y")

However, if I translate it to Swedish, it runs just fine:
7The Swedish onsdag and English Wednesday both derive from the proto-Germanic Wodensdag,

Odin’s day, in honour of the old Germanic god of that name.
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as.Date("Onsdag 1 april 2020", format = "%A %d %B %Y")

You may at times need to make similar translations of dates. One option is to use
gsub to translate the names of months and weekdays into the correct language (see
Section 5.5.4). Alternatively, you can change the locale settings. On most systems,
the following setting will allow you to read English months and days properly:
Sys.setlocale("LC_TIME", "C")

The locale settings will revert to the defaults the next time you start R.

Conversely, you may want to extract a substring from a Date object, for instance
the day of the month. This can be done using strftime, using the same tokens as
above. Here are some examples, including one with the token %j, which can be used
to extract the day of the year:
dates <- as.Date(c("2020-04-01", "2021-01-29", "2021-02-22"),

format = "%Y-%m-%d")

# Extract the day of the month:
strftime(dates, format = "%d")

# Extract the month:
strftime(dates, format = "%m")

# Extract the year:
strftime(dates, format = "%Y")

# Extract the day of the year:
strftime(dates, format = "%j")

Should you need to, you can of course convert these objects from character to
numeric using as.numeric.

For a complete list of tokens that can be used to describe date patterns, see
?strftime.

∼

Exercise 5.11. Consider the following Date vector:

dates <- as.Date(c("2015-01-01", "1984-03-12", "2012-09-08"),
format = "%Y-%m-%d")

1. Apply the functions weekdays, months and quarters to the vector. What do
they do?
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2. Use the julian function to find out how many days passed between 1970-01-01
and the dates in dates.

Exercise 5.12. Consider the three character objects created below:

time1 <- "2020-04-01 13:20"
time2 <- "2020-04-01 14:30"
time3 <- "2020-04-03 18:58"

1. What happens if you convert the three variables to Date objects using as.Date
without specifying the date format?

2. Convert time1 to a Date object and add 1 to it. What is the result?

3. Convert time3 and time1 to Date objects and subtract them. What is the
result?

4. Convert time2 and time1 to Date objects and subtract them. What is the
result?

5. What happens if you convert the three variables to POSIXct date and time
objects using as.POSIXct without specifying the date format?

6. Convert time3 and time1 to POSIXct objects and subtract them. What is the
result?

7. Convert time2 and time1 to POSIXct objects and subtract them. What is the
result?

8. Use the difftime to repeat the calculation in task 6, but with the result pre-
sented in hours.

Exercise 5.13. In some fields, e.g. economics, data is often aggregated on a quarter-
year level, as in these examples:

qvec1 <- c("2020 Q4", "2021 Q1", "2021 Q2")
qvec2 <- c("Q4/20", "Q1/21", "Q2/21")
qvec3 <- c("Q4-2020", "Q1-2021", "Q2-2021")

To convert qvec1 to a Date object, we can use as.yearqtr from the zoo package in
two ways:
library(zoo)
as.Date(as.yearqtr(qvec1, format = "%Y Q%q"))
as.Date(as.yearqtr(qvec1, format = "%Y Q%q"), frac = 1)

1. Describe the results. What is the difference? Which do you think is preferable?

2. Convert qvec2 and qvec3 to Date objects in the same way. Make sure that
you get the format argument, which describes the date format, right.
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5.6.2 Plotting with dates
ggplot2 automatically recognises Date objects and will usually plot them in a nice
way. That only works if it actually has the dates though. Consider the following plot,
which we created in Section 4.6.7 - it shows the daily electricity demand in Victoria,
Australia in 2014:
library(plotly)
library(fpp2)

## Create the plot object
myPlot <- autoplot(elecdaily[,"Demand"])

## Create the interactive plot
ggplotly(myPlot)

When you hover the points, the formatting of the dates looks odd. We’d like to have
proper dates instead. In order to do so, we’ll use seq.Date to create a sequence of
dates, ranging from 2014-01-01 to 2014-12-31:
## Create a data frame with better formatted dates
elecdaily2 <- as.data.frame(elecdaily)
elecdaily2$Date <- seq.Date(as.Date("2014-01-01"),

as.Date("2014-12-31"),
by = "day")

## Create the plot object
myPlot <- ggplot(elecdaily2, aes(Date, Demand)) +

geom_line()

## Create the interactive plot
ggplotly(myPlot)

seq.Date can be used analogously to create sequences where there is a week, month,
quarter or year between each element of the sequence, by changing the by argument.

∼

Exercise 5.14. Return to the plot from Exercise 4.12, which was created using

library(fpp2)
autoplot(elecdaily, facets = TRUE)

You’ll notice that the x-axis shows week numbers rather than dates (the dates in
the elecdaily time series object are formatted as weeks with decimal numbers).
Make a time series plot of the Demand variable with dates (2014-01-01 to 2014-12-31)
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along the x-axis (your solution is likely to rely on standard R techniques rather than
autoplot).

Exercise 5.15. Create an interactive version time series plot of the a10 anti-diabetic
drug sales data, as in Section 4.6.7. Make sure that the dates are correctly displayed.

5.7 Data manipulation with data.table, dplyr, and
tidyr

In the remainder of this chapter, we will use three packages that contain functions for
fast and efficient data manipulation: data.table and the tidyverse packages dplyr
and tidyr. To begin with, it is therefore a good idea to install them. And while you
wait for the installation to finish, read on.
install.packages(c("dplyr", "tidyr", "data.table"))

There is almost always more than one way to solve a problem in R. We now know
how to access vectors and elements in data frames, e.g. to compute means. We also
know how to modify and add variables to data frames. Indeed, you can do just about
anything using the functions in base R. Sometimes, however, those solutions become
rather cumbersome, as they can require a fair amount of programming and verbose
code. data.table and the tidyverse packages offer simpler solutions and speed up
the workflow for these types of problems. Both can be used for the same tasks. You
can learn one of them or both. The syntax used for data.table is often more concise
and arguably more consistent than that in dplyr (it is in essence an extension of the
[i, j] notation that we have already used for data frames). Second, it is fast and
memory-efficient, which makes a huge difference if you are working with big data
(you’ll see this for yourself in Section 6.6). On the other hand, many people prefer
the syntax in dplyr and tidyr, which lends itself exceptionally well for usage with
pipes. If you work with small or medium-sized datasets, the difference in performance
between the two packages is negligible. dplyr is also much better suited for working
directly with databases, which is a huge selling point if your data already is in a
database8.

In the sections below, we will see how to perform different operations using both
data.table and the tidyverse packages. Perhaps you already know which one that
you want to use (data.table if performance is important to you, dplyr+tidyr if
you like to use pipes or will be doing a lot of work with databases). If not, you can
use these examples to guide your choice. Or not choose at all! I regularly use both
packages myself, to harness the strength of both. There is no harm in knowing how
to use both a hammer and a screwdriver.

8There is also a package called dtplyr, which allows you to use the fast functions from data.table
with dplyr syntax. It is useful if you are working with big data, already know dplyr and don’t want
to learn data.table. If that isn’t an accurate description of you, you can safely ignore dtplyr for
now.
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5.7.1 data.table and tidyverse syntax basics
data.table relies heavily on the [i, j] notation that is used for data frames in R.
It also adds a third element: [i, j, by]. Using this, R selects the rows indicated
by i, the columns indicated by j and groups them by by. This makes it easy e.g. to
compute grouped summaries.

With the tidyverse packages you will instead use new functions with names like
filter and summarise to perform operations on your data. These are typically
combined using the pipe operator, %>%, which makes the code flow nicely from left
to right.

It’s almost time to look at some examples of what this actually looks like in practice.
First though, now that you’ve installed data.table and dplyr, it’s time to load
them (we’ll get to tidyr a little later). We’ll also create a data.table version of the
airquality data, which we’ll use in the examples below. This is required in order
to use data.table syntax, as it only works on data.table objects. Luckily, dplyr
works perfectly when used on data.table objects, so we can use the same object for
the examples for both packages.
library(data.table)
library(dplyr)

aq <- as.data.table(airquality)

When importing data from csv files, you can import them as data.table objects in-
stead of data.frame objects by replacing read.csv with fread from the data.table
package. The latter function also has the benefit of being substantially faster when
importing large (several MB’s) csv files.

Note that, similar to what we saw in Section 5.2.1, variables in imported data frames
can have names that would not be allowed in base R, for instance including forbidden
characters like -. data.table and dplyr allow you to work with such variables by
wrapping their names in apostrophes: referring to the illegally named variable as
illegal-character-name won’t work, but `illegal-character-name` will.

5.7.2 Modifying a variable
As a first example, let’s consider how to use data.table and dplyr to modify a
variable in a data frame. The wind speed in airquality is measured in miles per
hour. We can convert that to metres per second by multiplying the speed by 0.44704.
Using only base R, we’d do this using airquality$Wind <- airquality$Wind *
0.44704. With data.table we can instead do this using [i, j] notation, and with
dplyr we can do it by using a function called mutate (because it “mutates” your
data).

Change wind speed to m/s instead of mph:
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With data.table:
aq[, Wind := Wind * 0.44704]

With dplyr:
aq %>% mutate(Wind =

Wind * 0.44704) -> aq

Note that when using data.table, there is not an explicit assignment. We don’t use
<- to assign the new data frame to aq - instead the assignment happens automatically.
This means that you have to be a little bit careful, so that you don’t inadvertently
make changes to your data when playing around with it.

In this case, using data.table or dplyr doesn’t make anything easier. Where these
packages really shine is when we attempt more complicated operations. Before that
though, let’s look at a few more simple examples.

5.7.3 Computing a new variable based on existing variables
What if we wish to create new variables based on other variables in the data frame?
For instance, maybe we want to create a dummy variable called Hot, containing a
logical that describes whether a day was hot (temperature above 90 - TRUE) or not
(FALSE). That is, we wish to check the condition Temp > 90 for each row, and put
the resulting logical in the new variable Hot.

Add a dummy variable describing whether it is hotter than 90:

With data.table:
aq[, Hot := Temp > 90]

With dplyr:
aq %>% mutate(Hot = Temp > 90) -> aq

5.7.4 Renaming a variable
To change the name of a variable, we can use setnames from data.table or rename
from dplyr. Let’s change the name of the variable Hot that we created in the previous
section, to HotDay:

With data.table:
setnames(aq, "Hot", "HotDay")

With dplyr:
aq %>% rename(HotDay = Hot) -> aq

5.7.5 Removing a variable
Maybe adding Hot to the data frame wasn’t such a great idea after all. How can we
remove it?

Removing Hot:



176 CHAPTER 5. DEALING WITH MESSY DATA

With data.table:
aq[, Hot := NULL]

With dplyr:
aq %>% select(-Hot) -> aq

If we wish to remove multiple columns at once, the syntax is similar:

Removing multiple columns:

With data.table:
aq[, c("Month", "Day") := NULL]

With dplyr:
aq %>% select(-Month, -Day) -> aq

∼

Exercise 5.16. Load the VAS pain data vas.csv from Exercise 3.8. Then do the
following:

1. Remove the columns X and X.1.

2. Add a dummy variable called highVAS that indicates whether a patient’s VAS
is 7 or greater on any given day.

5.7.6 Recoding factor levels
Changing the names of factor levels in base R typically relies on using indices of
level names, as in Section 5.4.2. This can be avoided using data.table or the recode
function in dplyr. We return to the smoke example from Section 5.4 and put it in a
data.table:
library(data.table)
library(dplyr)

smoke <- c("Never", "Never", "Heavy", "Never", "Occasionally",
"Never", "Never", "Regularly", "Regularly", "No")

smoke2 <- factor(smoke, levels = c("Never", "Occasionally",
"Regularly", "Heavy"),

ordered = TRUE)

smoke3 <- data.table(smoke2)

Suppose that we want to change the levels’ names to abbreviated versions: Nvr, Occ,
Reg and Hvy. Here’s how to do this:
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With data.table:
new_names = c("Nvr", "Occ", "Reg", "Hvy")
smoke3[.(smoke2 = levels(smoke2), to = new_names),

on = "smoke2",
smoke2 := i.to]

smoke3[, smoke2 := droplevels(smoke2)]

With dplyr:
smoke3 %>% mutate(smoke2 = recode(smoke2,

"Never" = "Nvr",
"Occasionally" = "Occ",
"Regularly" = "Reg",
"Heavy" = "Hvy"))

Next, we can combine the Occ, Reg and Hvy levels into a single level, called Yes:

With data.table:
smoke3[.(smoke2 = c("Occ", "Reg", "Hvy"), to = "Yes"),

on = "smoke2",
smoke2 := i.to]

With dplyr:
smoke3 %>% mutate(smoke2 = recode(smoke2,

"Occ" = "Yes",
"Reg" = "Yes",
"Hvy" = "Yes"))

∼

Exercise 5.17. In Exercise 3.7 you learned how to create a factor variable from a
numeric variable using cut. Return to your solution (or the solution at the back of
the book) and do the following using data.table and/or dplyr:

1. Change the category names to Mild, Moderate and Hot.

2. Combine Moderate and Hot into a single level named Hot.

5.7.7 Grouped summaries
We’ve already seen how we can use aggregate and by to create grouped summaries.
However, in many cases it is as easy or easier to use data.table or dplyr for such
summaries.
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To begin with, let’s load the packages again (in case you don’t already have them
loaded), and let’s recreate the aq data.table, which we made a bit of a mess of by
removing some important columns in the previous section:
library(data.table)
library(dplyr)

aq <- data.table(airquality)

Now, let’s compute the mean temperature for each month. Both data.table and
dplyr will return a data frame with the results. In the data.table approach, as-
signing a name to the summary statistic (mean, in this case) is optional, but not in
dplyr.

With data.table:
aq[, mean(Temp), Month]
# or, to assign a name:
aq[, .(meanTemp = mean(Temp)),

Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(meanTemp =
mean(Temp))

You’ll recall that if we apply mean to a vector containing NA values, it will return NA:

With data.table:
aq[, mean(Ozone), Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(meanTemp =
mean(Ozone))

In order to avoid this, we can pass the argument na.rm = TRUE to mean, just as we
would in other contexts. To compute the mean ozone concentration for each month,
ignoring NA values:

With data.table:
aq[, mean(Ozone, na.rm = TRUE),

Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(meanTemp =
mean(Ozone,
na.rm = TRUE))

What if we want to compute a grouped summary statistic involving two variables?
For instance, the correlation between temperature and wind speed for each month?
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With data.table:
aq[, cor(Temp, Wind), Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(cor =
cor(Temp, Wind))

The syntax for computing multiple grouped statistics is similar. We compute both
the mean temperature and the correlation for each month:

With data.table:
aq[, .(meanTemp = mean(Temp),

cor = cor(Temp, Wind)),
Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(meanTemp =
mean(Temp),
cor =
cor(Temp, Wind))

At times, you’ll want to compute summaries for all variables that share some property.
As an example, you may want to compute the mean of all numeric variables in your
data frame. In dplyr there is a convenience function called across that can be used
for this: summarise(across(where(is.numeric), mean)) will compute the mean
of all numeric variables. In data.table, we can instead utilise the apply family of
functions from base R, that we’ll study in Section 6.5. To compute the mean of all
numeric variables:

With data.table:
aq[, lapply(.SD, mean),

Month,
.SDcols = names(aq)[
sapply(aq, is.numeric)]]

With dplyr:
aq %>% group_by(Month) %>%

summarise(across(
where(is.numeric),
mean, na.rm = TRUE))

Both packages have special functions for counting the number of observations in
groups: .N for data.table and n for dplyr. For instance, we can count the number
of days in each month:

With data.table:
aq[, .N, Month]

With dplyr:
aq %>% group_by(Month) %>%

summarise(days = n())

Similarly, you can count the number of unique values of variables using uniqueN for
data.table and n_distinct for dplyr:
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With data.table:
aq[, uniqueN(Month)]

With dplyr:
aq %>% summarise(months =

n_distinct(Month))

∼

Exercise 5.18. Load the VAS pain data vas.csv from Exercise 3.8. Then do the
following using data.table and/or dplyr:

1. Compute the mean VAS for each patient.

2. Compute the lowest and highest VAS recorded for each patient.

3. Compute the number of high-VAS days, defined as days with where the VAS
was at least 7, for each patient.

Exercise 5.19. We return to the datasauRus package and the datasaurus_dozen
dataset from Exercise 3.13. Check its structure and then do the following using
data.table and/or dplyr:

1. Compute the mean of x, mean of y, standard deviation of x, standard deviation
of y, and correlation between x and y, grouped by dataset. Are there any
differences between the 12 datasets?

2. Make a scatterplot of x against y for each dataset. Are there any differences
between the 12 datasets?

5.7.8 Filling in missing values
In some cases, you may want to fill missing values of a variable with the previous
non-missing entry. To see an example of this, let’s create a version of aq where the
value of Month are missing for some days:
aq$Month[c(2:3, 36:39, 70)] <- NA

# Some values of Month are now missing:
head(aq)

To fill the missing values with the last non-missing entry, we can now use nafill or
fill as follows:

With data.table:
aq[, Month := nafill(

Month, "locf")]

With tidyr:
aq %>% fill(Month) -> aq



5.8. FILTERING: SELECT ROWS 181

To instead fill the missing values with the next non-missing entry:

With data.table:
aq[, Month := nafill(

Month, "nocb")]

With tidyr:
aq %>% fill(Month,

.direction = "up") -> aq

∼

Exercise 5.20. Load the VAS pain data vas.csv from Exercise 3.8. Fill the missing
values in the Visit column with the last non-missing value.

5.7.9 Chaining commands together
When working with tidyverse packages, commands are usually chained together using
%>% pipes. When using data.table, commands are chained by repeated use of []
brackets on the same line. This is probably best illustrated using an example. Assume
again that there are missing values in Month in aq:
aq$Month[c(2:3, 36:39, 70)] <- NA

To fill in the missing values with the last non-missing entry (Section 5.7.8) and then
count the number of days in each month (Section 5.7.7), we can do as follows.

With data.table:
aq[, Month := nafill(Month, "locf")][, .N, Month]

With tidyr and dplyr:
aq %>% fill(Month) %>%

group_by(Month) %>%
summarise(days = n())

5.8 Filtering: select rows
You’ll frequently want to filter away some rows from your data. Perhaps you only
want to select rows where a variable exceeds some value, or want to exclude rows
with NA values. This can be done in several different ways: using row numbers, using
conditions, at random, or using regular expressions. Let’s have a look at them, one
by one. We’ll use aq, the data.table version of airquality that we created before,
for the examples.
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library(data.table)
library(dplyr)

aq <- data.table(airquality)

5.8.1 Filtering using row numbers
If you know the row numbers of the rows that you wish to remove (perhaps you’ve
found them using which, as in Section 3.2.3?), you can use those numbers for filtering.
Here are four examples.

To select the third row:

With data.table:
aq[3,]

With dplyr:
aq %>% slice(3)

To select rows 3 to 5:

With data.table:
aq[3:5,]

With dplyr:
aq %>% slice(3:5)

To select rows 3, 7 and 15:

With data.table:
aq[c(3, 7, 15),]

With dplyr:
aq %>% slice(c(3, 7, 15))

To select all rows except rows 3, 7 and 15:

With data.table:
aq[-c(3, 7, 15),]

With dplyr:
aq %>% slice(-c(3, 7, 15))

5.8.2 Filtering using conditions
Filtering is often done using conditions, e.g. to select observations with certain prop-
erties. Here are some examples:

To select rows where Temp is greater than 90:
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With data.table:
aq[Temp > 90,]

With dplyr:
aq %>% filter(Temp > 90)

To select rows where Month is 6 (June):

With data.table:
aq[Month == 6,]

With dplyr:
aq %>% filter(Month == 6)

To select rows where Temp is greater than 90 and Month is 6 (June):

With data.table:
aq[Temp > 90 & Month == 6,]

With dplyr:
aq %>% filter(Temp > 90,

Month == 6)

To select rows where Temp is between 80 and 90 (including 80 and 90):

With data.table:
aq[Temp %between% c(80, 90),]

With dplyr:
aq %>% filter(between(Temp,

80, 90))

To select the 5 rows with the highest Temp:

With data.table:
aq[frankv(-Temp,

ties.method = "min") <= 5,
]

With dplyr:
aq %>% top_n(5, Temp)

In this case, the above code returns more than 5 rows because of ties.

To remove duplicate rows:

With data.table:
unique(aq)

With dplyr:
aq %>% distinct

To remove rows with missing data (NA values) in at least one variable:
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With data.table:
na.omit(aq)

With tidyr:
library(tidyr)
aq %>% drop_na

To remove rows with missing Ozone values:

With data.table:
na.omit(aq, "Ozone")

With tidyr:
library(tidyr)
aq %>% drop_na("Ozone")

At times, you want to filter your data based on whether the observations are con-
nected to observations in a different dataset. Such filters are known as semijoins and
antijoins, and are discussed in Section 5.12.4.

5.8.3 Selecting rows at random
In some situations, for instance when training and evaluating machine learning mod-
els, you may wish to draw a random sample from your data. This is done using the
sample (data.table) and sample_n (dplyr) functions.

To select 5 rows at random:

With data.table:
aq[sample(.N, 5),]

With dplyr:
aq %>% sample_n(5)

If you run the code multiple times, you will get different results each time. See
Section 7.1 for more on random sampling and how it can be used.

5.8.4 Using regular expressions to select rows
In some cases, particularly when working with text data, you’ll want to filter using
regular expressions (see Section 5.5.3). data.table has a convenience function called
%like% that can be used to call grepl in an alternative (less opaque?) way. With
dplyr we use grepl in the usual fashion. To have some text data to try this out on,
we’ll use this data frame, which contains descriptions of some dogs:
dogs <- data.table(Name = c("Bianca", "Bella", "Mimmi", "Daisy",

"Ernst", "Smulan"),
Breed = c("Greyhound", "Greyhound", "Pug", "Poodle",

"Bedlington Terrier", "Boxer"),
Desc = c("Fast, playful", "Fast, easily worried",
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"Intense, small, loud",
"Majestic, protective, playful",
"Playful, relaxed",
"Loving, cuddly, playful"))

View(dogs)

To select all rows with names beginning with B:

With data.table:
dogs[Name %like% "^B",]
# or:
dogs[grepl("^B", Name),]

With dplyr:
dogs %>% filter(grepl("B[a-z]",

Name))

To select all rows where Desc includes the word playful:

With data.table:
dogs[Desc %like% "[pP]layful",]

With dplyr:
dogs %>% filter(grepl("[pP]layful",

Desc))

∼

Exercise 5.21. Download the ucdp-onesided-191.csv data file from the book’s
web page. It contains data about international attacks on civilians by governments
and formally organised armed groups during the period 1989-2018, collected as part
of the Uppsala Conflict Data Program (Eck & Hultman, 2007; Petterson et al., 2019).
Among other things, it contains information about the actor (attacker), the fatality
rate, and attack location. Load the data and check its structure.

1. Filter the rows so that only conflicts that took place in Colombia are retained.
How many different actors were responsible for attacks in Colombia during the
period?

2. Using the best_fatality_estimate column to estimate fatalities, calculate
the number of worldwide fatalities caused by government attacks on civilians
during 1989-2018.

Exercise 5.22. Load the oslo-biomarkers.xlsx data from Exercise 5.8. Use
data.table and/or dplyr to do the following:

1. Select only the measurements from blood samples taken at 12 months.

2. Select only the measurements from the patient with ID number 6.

http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
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5.9 Subsetting: select columns
Another common situation is that you want to remove some variables from your data.
Perhaps the variables aren’t of interest in a particular analysis that you’re going to
perform, or perhaps you’ve simply imported more variables than you need. As with
rows, this can be done using numbers, names or regular expressions. Let’s look at
some examples using the aq data:
library(data.table)
library(dplyr)

aq <- data.table(airquality)

5.9.1 Selecting a single column
When selecting a single column from a data frame, you sometimes want to extract
the column as a vector and sometimes as a single-column data frame (for instance if
you are going to pass it to a function that takes a data frame as input). You should
be a little bit careful when doing this, to make sure that you get the column in the
correct format:

With data.table:
# Return a vector:
aq$Temp
# or
aq[, Temp]

# Return a data.table:
aq[, "Temp"]

With dplyr:
# Return a vector:
aq$Temp
# or
aq %>% pull(Temp)

# Return a tibble:
aq %>% select(Temp)

5.9.2 Selecting multiple columns
Selecting multiple columns is more straightforward, as the object that is returned
always will be a data frame. Here are some examples.

To select Temp, Month and Day:

With data.table:
aq[, .(Temp, Month, Day)]

With dplyr:
aq %>% select(Temp, Month, Day)

To select all columns between Wind and Month:
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With data.table:
aq[, Wind:Month]

With dplyr:
aq %>% select(Wind:Month)

To select all columns except Month and Day:

With data.table:
aq[, -c("Month", "Day")]

With dplyr:
aq %>% select(-Month, -Day)

To select all numeric variables (which for the aq data is all variables!):

With data.table:
aq[, sapply(msleep, class) ==

"numeric"]

With dplyr:
aq %>% select_if(is.numeric)

To remove columns with missing (NA) values:

With data.table:
aq[, .SD,

.SDcols = colSums(
is.na(aq)) == 0]

With dplyr:
aq %>% select_if(~all(!is.na(.)))

5.9.3 Using regular expressions to select columns
In data.table, using regular expressions to select columns is done using grep.
dplyr differs in that it has several convenience functions for selecting columns, like
starts_with, ends_with, contains. As an example, we can select variables the
name of which contains the letter n:

With data.table:
vars <- grepl("n", names(aq))
aq[, ..vars]

With dplyr:
# contains is a convenience
# function for checking if a name
# contains a string:
aq %>% select(contains("n"))
# matches can be used with any
# regular expression:
aq %>% select(matches("n"))
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5.9.4 Subsetting using column numbers
It is also possible to subsetting using column numbers, but you need to be careful
if you want to use that approach. Column numbers can change, for instance if a
variable is removed from the data frame. More importantly, however, using column
numbers can yield different results depending on what type of data table you’re using.
Let’s have a look at what happens if we use this approach with different types of
data tables:
# data.frame:
aq <- as.data.frame(airquality)
str(aq[,2])

# data.table:
aq <- as.data.table(airquality)
str(aq[,2])

# tibble:
aq <- as_tibble(airquality)
str(aq[,2])

As you can see, aq[, 2] returns a vector, a data table or a tibble, depending on what
type of object aq is. Unfortunately, this approach is used by several R packages, and
can cause problems, because it may return the wrong type of object.

A better approach is to use aq[[2]], which works the same for data frames, data
tables and tibbles, returning a vector:
# data.frame:
aq <- as.data.frame(airquality)
str(aq[[2]])

# data.table:
aq <- as.data.table(airquality)
str(aq[[2]])

# tibble:
aq <- as_tibble(airquality)
str(aq[[2]])

∼

Exercise 5.23. Return to the ucdp-onesided-191.csv data from Exercise 5.21. To
have a cleaner and less bloated dataset to work with, it can make sense to remove
some columns. Select only the actor_name, year, best_fatality_estimate and
location columns.
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5.10 Sorting
Sometimes you don’t want to filter rows, but rearrange their order according to their
values for some variable. Similarly, you may want to change the order of the columns
in your data. I often do this after merging data from different tables (as we’ll do in
Section 5.12). This is often useful for presentation purposes, but can at times also
aid in analyses.

5.10.1 Changing the column order
It is straightforward to change column positions using setcolorder in data.table
and relocate in dplyr.

To put Month and Day in the first two columns, without rearranging the other
columns:

With data.table:
setcolorder(aq, c("Month", "Day"))

With dplyr:
aq %>% relocate("Month", "Day")

5.10.2 Changing the row order
In data.table, order is used for sorting rows, and in dplyr, arrange is used (some-
times in combination with desc). The syntax differs depending on whether you wish
to sort your rows in ascending or descending order. We will illustrate this using the
airquality data.
library(data.table)
library(dplyr)

aq <- data.table(airquality)

First of all, if you’re just looking to sort a single vector, rather than an entire data
frame, the quickest way to do so is to use sort:
sort(aq$Wind)
sort(aq$Wind, decreasing = TRUE)
sort(c("C", "B", "A", "D"))

If you’re looking to sort an entire data frame by one or more variables, you need to
move beyond sort. To sort rows by Wind (ascending order):

With data.table:
aq[order(Wind),]

With dplyr:
aq %>% arrange(Wind)



190 CHAPTER 5. DEALING WITH MESSY DATA

To sort rows by Wind (descending order):

With data.table:
aq[order(-Wind),]

With dplyr:
aq %>% arrange(-Wind)
# or
aq %>% arrange(desc(Wind))

To sort rows, first by Temp (ascending order) and then by Wind (descending order):

With data.table:
aq[order(Temp, -Wind),]

With dplyr:
aq %>% arrange(Temp, desc(Wind))

∼

Exercise 5.24. Load the oslo-biomarkers.xlsx data from Exercise 5.8. Note that
it is not ordered in a natural way. Reorder it by patient ID instead.

5.11 Reshaping data
The gapminder dataset from the gapminder package contains information about life
expectancy, population size and GDP per capita for 142 countries for 12 years from
the period 1952-2007. To begin with, let’s have a look at the data9:
library(gapminder)
?gapminder
View(gapminder)

Each row contains data for one country and one year, meaning that the data for
each country is spread over 12 rows. This is known as long data or long format. As
another option, we could store it in wide format, where the data is formatted so that
all observations corresponding to a country are stored on the same row:
Country Continent lifeExp1952 lifeExp1957 lifeExp1962 ...
Afghanistan Asia 28.8 30.2 32.0 ...
Albania Europe 55.2 59.3 64.8 ...

Sometimes it makes sense to spread an observation over multiple rows (long format),
and sometimes it makes more sense to spread a variable across multiple columns
(wide format). Some analyses require long data, whereas others require wide data.

9You may need to install the package first, using install.packages("gapminder").
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And if you’re unlucky, data will arrive in the wrong format for the analysis you need
to do. In this section, you’ll learn how to transform your data from long to wide,
and back again.

5.11.1 From long to wide
When going from a long format to a wide format, you choose columns to group
the observations by (in the gapminder case: country and maybe also continent),
columns to take values names from (lifeExp, pop and gdpPercap), and columns to
create variable names from (year).

In data.table, the transformation from long to wide is done using the dcast func-
tion. dplyr does not contain functions for such transformations, but its sibling, the
tidyverse package tidyr, does.

The tidyr function used for long-to-wide formatting is pivot_wider. First, we
convert the gapminder data frame to a data.table object:
library(data.table)
library(tidyr)

gm <- as.data.table(gapminder)

To transform the gm data from long to wide and store it as gmw:

With data.table:
gmw <- dcast(gm, country + continent ~ year,

value.var = c("pop", "lifeExp", "gdpPercap"))

With tidyr:
gm %>% pivot_wider(id_cols = c(country, continent),

names_from = year,
values_from =
c(pop, lifeExp, gdpPercap)) -> gmw

5.11.2 From wide to long
We’ve now seen how to transform the long format gapminder data to the wide format
gmw data. But what if we want to go from wide format to long? Let’s see if we can
transform gmw back to the long format.

In data.table, wide-to-long formatting is done using melt, and in dplyr it is done
using pivot_longer.

To transform the gmw data from long to wide:

With data.table:
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gm <- melt(gmw, id.vars = c("country", "continent"),
measure.vars = 2:37)

With tidyr:
gmw %>% pivot_longer(names(gmw)[2:37],

names_to = "variable",
values_to = "value") -> gm

The resulting data frames are perhaps too long, with each variable (pop, lifeExp
and gdpPercapita) being put on a different row. To make it look like the original
dataset, we must first split the variable variable (into a column with variable names
and column with years) and then make the data frame a little wider again. That is
the topic of the next section.

5.11.3 Splitting columns
In the too long gm data that you created at the end of the last section, the observations
in the variable column look like pop_1952 and gdpPercap_2007, i.e. are of the form
variableName_year. We’d like to split them into two columns: one with variable
names and one with years. dplyr has a function called tstrsplit for this purpose,
and tidyr has separate.

To split the variable column at the underscore _, and then reformat gm to look like
the original gapminder data:

With data.table:
gm[, c("variable", "year") := tstrsplit(variable,

"_", fixed = TRUE)]
gm <- dcast(gm, country + year ~ variable,

value.var = c("value"))

With tidyr:
gm %>% separate(variable,

into = c("variable", "year"),
sep = "_") %>%

pivot_wider(id_cols = c(country, continent, year),
names_from = variable,
values_from = value) -> gm

5.11.4 Merging columns
Similarly, you may at times want to merge two columns, for instance if one contains
the day+month part of a date and the other contains the year. An example of such a
situation can be found in the airquality dataset, where we may want to merge the
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Day and Month columns into a new Date column. Let’s re-create the aq data.table
object one last time:
library(data.table)
library(tidyr)

aq <- as.data.table(airquality)

If we wanted to create a Date column containing the year (1973), month and day for
each observation, we could use paste and as.Date:
as.Date(paste(1973, aq$Month, aq$Day, sep = "-"))

The natural data.table approach is just this, whereas tidyr offers a function called
unite to merge columns, which can be combined with mutate to paste the year to
the date. To merge the Month and Day columns with a year and convert it to a Date
object:

With data.table:
aq[, Date := as.Date(paste(1973,

aq$Month,
aq$Day,
sep = "-"))]

With tidyr and dplyr:
aq %>% unite("Date", Month, Day,

sep = "-") %>%
mutate(Date = as.Date(

paste(1973,
Date,
sep = "-")))

∼

Exercise 5.25. Load the oslo-biomarkers.xlsx data from Exercise 5.8. Then do
the following using data.table and/or dplyr/tidyr:

1. Split the PatientID.timepoint column in two parts: one with the patient ID
and one with the timepoint.

2. Sort the table by patient ID, in numeric order.

3. Reformat the data from long to wide, keeping only the IL-8 and VEGF-A
measurements.

Save the resulting data frame - you will need it again in Exercise 5.26!

5.12 Merging data from multiple tables
It is common that data is spread over multiple tables: different sheets in Excel files,
different .csv files, or different tables in databases. Consequently, it is important to
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be able to merge data from different tables.

As a first example, let’s study the sales datasets available from the books web page:
sales-rev.csv and sales-weather.csv. The first dataset describes the daily rev-
enue for a business in the first quarter of 2020, and the second describes the weather
in the region (somewhere in Sweden) during the same period10. Store their respective
paths as file_path1 and file_path2 and then load them:
rev_data <- read.csv(file_path1, sep = ";")
weather_data <- read.csv(file_path2, sep = ";")

str(rev_data)
View(rev_data)

str(weather_data)
View(weather_data)

5.12.1 Binds
The simplest types of merges are binds, which can be used when you have two tables
where either the rows or the columns match each other exactly. To illustrate what this
may look like, we will use data.table/dplyr to create subsets of the business revenue
data. First, we format the tables as data.table objects and the DATE columns as
Date objects:
library(data.table)
library(dplyr)

rev_data <- as.data.table(rev_data)
rev_data$DATE <- as.Date(rev_data$DATE)

weather_data <- as.data.table(weather_data)
weather_data$DATE <- as.Date(weather_data$DATE)

Next, we wish to subtract three subsets: the revenue in January (rev_jan), the
revenue in February (rev_feb) and the weather in January (weather_jan).

With data.table: rev_jan <- rev_data[DATE %between%
c("2020-01-01",
"2020-01-31"),]

rev_feb <- rev_data[DATE %between%
c("2020-02-01",
"2020-02-29"),]

weather_jan <- weather_data[DATE
%between%
c("2020-01-01",
"2020-01-31"),]

10I’ve intentionally left out the details regarding the business - these are real sales data from a
client, which can be sensitive information.
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With dplyr:
rev_data %>% filter(between(DATE,

as.Date("2020-01-01"),
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as.Date("2020-01-31"))
) -> rev_jan

rev_data %>% filter(between(DATE,
as.Date("2020-02-01"),
as.Date("2020-02-29"))

) -> rev_feb
weather_data %>% filter(between(

DATE,
as.Date("2020-01-01"),
as.Date("2020-01-31"))

) -> weather_jan

A quick look at the structure of the data reveals some similarities:
str(rev_jan)
str(rev_feb)
str(weather_jan)

The rows in rev_jan correspond one-to-one to the rows in weather_jan, with both
tables being sorted in exactly the same way. We could therefore bind their columns,
i.e. add the columns of weather_jan to rev_jan.

rev_jan and rev_feb contain the same columns. We could therefore bind their rows,
i.e. add the rows of rev_feb to rev_jan. To perform these operations, we can use
either base R or dplyr:

With base R:
# Join columns of datasets that
# have the same rows:
cbind(rev_jan, weather_jan)

# Join rows of datasets that have
# the same columns:
rbind(rev_jan, rev_feb)

With dplyr:
# Join columns of datasets that
# have the same rows:
bind_cols(rev_jan, weather_jan)

# Join rows of datasets that have
# the same columns:
bind_rows(rev_jan, rev_feb)

5.12.2 Merging tables using keys
A closer look at the business revenue data reveals that rev_data contains observa-
tions from 90 days whereas weather_data only contains data for 87 days; revenue
data for 2020-03-01 is missing, and weather data for 2020-02-05, 2020-02-06, 2020-
03-10, and 2020-03-29 are missing.

Suppose that we want to study how weather affects the revenue of the business. In
order to do so, we must merge the two tables. We cannot use a simple column bind,
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because the two tables have different numbers of rows. If we attempt a bind, R will
produce a merged table by recycling the first few rows from rev_data - note that
the two DATE columns aren’t properly aligned:
tail(cbind(rev_data, weather_data))

Clearly, this is not the desired output! We need a way to connect the rows in
rev_data with the right rows in weather_data. Put differently, we need something
that allows us to connect the observations in one table to those in another. Variables
used to connect tables are known as keys, and must in some way uniquely identify
observations. In this case the DATE column gives us the key - each observation is
uniquely determined by it’s DATE. So to combine the two tables, we can combine
rows from rev_data with the rows from weather_data that have the same DATE
values. In the following sections, we’ll look at different ways of merging tables using
data.table and dplyr.

But first, a word of warning: finding the right keys for merging tables is not always
straightforward. For a more complex example, consider the nycflights13 package,
which contains five separate but connected datasets:
library(nycflights13)
?airlines # Names and carrier codes of airlines.
?airports # Information about airports.
?flights # Departure and arrival times and delay information for

# flights.
?planes # Information about planes.
?weather # Hourly meteorological data for airports.

Perhaps you want to include weather information with the flight data, to study how
weather affects delays. Or perhaps you wish to include information about the longi-
tude and latitude of airports (from airports) in the weather dataset. In airports,
each observation can be uniquely identified in three different ways: either by its
airport code faa, its name name or its latitude and longitude, lat and lon:
?airports
head(airports)

If we want to use either of these options as a key when merging with airports data
with another table, that table should also contain the same key.

The weather data requires no less than four variables to identify each observation:
origin, month, day and hour:
?weather
head(weather)

It is not perfectly clear from the documentation, but the origin variable is actually
the FAA airport code of the airport corresponding to the weather measurements. If
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we wish to add longitude and latitude to the weather data, we could therefore use
faa from airports as a key.

5.12.3 Inner and outer joins
An operation that combines columns from two tables is called a join. There are two
main types of joins: inner joins and outer joins.

• Inner joins: create a table containing all observations for which the key ap-
peared in both tables. So if we perform an inner join on the rev_data and
weather_data tables using DATE as the key, it won’t contain data for the days
that are missing from either the revenue table or the weather table.

In contrast, outer joins create a table retaining rows, even if there is no match in the
other table. There are three types of outer joins:

• Left join: retains all rows from the first table. In the revenue example, this
means all dates present in rev_data.

• Right join: retains all rows from the second table. In the revenue example, this
means all dates present in weather_data.

• Full join: retains all rows present in at least one of the tables. In the rev-
enue example, this means all dates present in at least one of rev_data and
weather_data.

We will use the rev_data and weather_data datasets to exemplify the different types
of joins. To begin with, we convert them to data.table objects (which is optional
if you wish to use dplyr):
library(data.table)
library(dplyr)

rev_data <- as.data.table(rev_data)
weather_data <- as.data.table(weather_data)

Remember that revenue data for 2020-03-01 is missing, and weather data for 2020-
02-05, 2020-02-06, 2020-03-10, and 2020-03-29 are missing. This means that out of
the 91 days in the period, only 86 have complete data. If we perform an inner join,
the resulting table should therefore have 86 rows.

To perform and inner join of rev_data and weather_data using DATE as key:

With data.table:
merge(rev_data, weather_data,

by = "DATE")

# Or:
setkey(rev_data, DATE)
rev_data[weather_data, nomatch = 0]

With dplyr:
rev_data %>% inner_join(

weather_data,
by = "DATE")
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A left join will retain the 90 dates present in rev_data. To perform a(n outer) left
join of rev_data and weather_data using DATE as key:

With data.table:
merge(rev_data, weather_data,

all.x = TRUE, by = "DATE")

# Or:
setkey(weather_data, DATE)
weather_data[rev_data]

With dplyr:
rev_data %>% left_join(

weather_data,
by = "DATE")

A right join will retain the 87 dates present in weather_data. To perform a(n outer)
right join of rev_data and weather_data using DATE as key:

With data.table:
merge(rev_data, weather_data,

all.y = TRUE, by = "DATE")

# Or:
setkey(rev_data, DATE)
rev_data[weather_data]

With dplyr:
rev_data %>% right_join(

weather_data,
by = "DATE")

A full join will retain the 91 dates present in at least one of rev_data and
weather_data. To perform a(n outer) full join of rev_data and weather_data
using DATE as key:

With data.table:
merge(rev_data, weather_data,

all = TRUE, by = "DATE")

With dplyr:
rev_data %>% full_join(

weather_data,
by = "DATE")

5.12.4 Semijoins and antijoins
Semijoins and antijoins are similar to joins, but work on observations rather than
variables. That is, they are used for filtering one table using data from another table:

• Semijoin: retains all observations in the first table that have a match in the
second table.

• Antijoin: retains all observations in the first table that do not have a match in
the second table.
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The same thing can be achieved using the filtering techniques of Section 5.8, but
semijoins and antijoins are simpler to use when the filtering relies on conditions from
another table.

Suppose that we are interested in the revenue of our business for days in February
with subzero temperatures. First, we can create a table called filter_data listing
all such days:

With data.table:
rev_data$DATE <- as.Date(rev_data$DATE)
weather_data$DATE <- as.Date(weather_data$DATE)
filter_data <- weather_data[TEMPERATURE < 0 &

DATE %between%
c("2020-02-01",
"2020-02-29"),]

With dplyr:
rev_data$DATE <- as.Date(rev_data$DATE)
weather_data$DATE <- as.Date(weather_data$DATE)
weather_data %>% filter(TEMPERATURE < 0,

between(DATE,
as.Date("2020-02-01"),
as.Date("2020-02-29"))

) -> filter_data

Next, we can use a semijoin to extract the rows of rev_data corresponding to the
days of filter_data:

With data.table:
setkey(rev_data, DATE)
rev_data[rev_data[filter_data,

which = TRUE]]

With dplyr:
rev_data %>% semi_join(

filter_data,
by = "DATE")

If instead we wanted to find all days except the days in February with subzero tem-
peratures, we could perform an antijoin:

With data.table:
setkey(rev_data, DATE)
rev_data[!filter_data]

With dplyr:
rev_data %>% anti_join(

filter_data,
by = "DATE")

∼
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Exercise 5.26. We return to the oslo-biomarkers.xlsx data from Exercises 5.8
and 5.25. Load the data frame that you created in Exercise 5.25 (or copy the code
from its solution). You should also load the oslo-covariates.xlsx data from the
book’s web page - it contains information about the patients, such as age, gender
and smoking habits.

Then do the following using data.table and/or dplyr/tidyr:

1. Merge the wide data frame from Exercise 5.25 with the oslo-covariates.xlsx
data, using patient ID as key.

2. Use the oslo-covariates.xlsx data to select data for smokers from the wide
data frame Exercise 5.25.

5.13 Scraping data from websites
Web scraping is the process of extracting data from a webpage. For instance, let’s
say that we’d like to download the list of Nobel laureates from the Wikipedia page
https://en.wikipedia.org/wiki/List_of_Nobel_laureates. As with most sites, the
text and formatting of the page is stored in an HTML file. In most browsers, you can
view the HTML code by right-clicking on the page and choosing View page source.
As you can see, all the information from the table can be found there, albeit in a
format that is only just human-readable:
...
<tbody><tr>
<th>Year
</th>
<th width="18%"><a href="/wiki/List_of_Nobel_laureates_in_Physics"
title="List of Nobel laureates in Physics">Physics</a>

</th>
<th width="16%"><a href="/wiki/List_of_Nobel_laureates_in_Chemistry"
title="List of Nobel laureates in Chemistry">Chemistry</a>
</th>
<th width="18%"><a href="/wiki/List_of_Nobel_laureates_in_Physiology_
or_Medicine" title="List of Nobel laureates in Physiology or Medicine
">Physiology<br />or Medicine</a>
</th>
<th width="16%"><a href="/wiki/List_of_Nobel_laureates_in_Literature"
title="List of Nobel laureates in Literature">Literature</a>
</th>
<th width="16%"><a href="/wiki/List_of_Nobel_Peace_Prize_laureates"
title="List of Nobel Peace Prize laureates">Peace</a>
</th>
<th width="15%"><a href="/wiki/List_of_Nobel_laureates_in_Economics"
class="mw-redirect" title="List of Nobel laureates in Economics">

https://en.wikipedia.org/wiki/List_of_Nobel_laureates
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Economics</a><br />(The Sveriges Riksbank Prize)<sup id="cite_ref-
11" class="reference"><a href="#cite_note-11">&#91;11&#93;</a></sup>
</th></tr>
<tr>
<td align="center">1901
</td>
<td><span data-sort-value="Röntgen, Wilhelm"><span class="vcard"><span
class="fn"><a href="/wiki/Wilhelm_R%C3%B6ntgen" title="Wilhelm
Röntgen"> Wilhelm Röntgen</a></span></span></span>
</td>
<td><span data-sort-value="Hoff, Jacobus Henricus van &#39;t"><span
class="vcard"><span class="fn"><a href="/wiki/Jacobus_Henricus_van_
%27t_Hoff" title="Jacobus Henricus van &#39;t Hoff">Jacobus Henricus
van 't Hoff</a></span></span></span>
</td>
<td><span data-sort-value="von Behring, Emil Adolf"><span class=
"vcard">
<span class="fn"><a href="/wiki/Emil_Adolf_von_Behring" class="mw-
redirect" title="Emil Adolf von Behring">Emil Adolf von Behring</a>
</span></span></span>
</td>
...

To get hold of the data from the table, we could perhaps select all rows, copy them
and paste them into a spreadsheet software such as Excel. But it would be much
more convenient to be able to just import the table to R straight from the HTML file.
Because tables written in HTML follow specific formats, it is possible to write code
that automatically converts them to data frames in R. The rvest package contains
a number of functions for that. Let’s install it:
install.packages("rvest")

To read the entire Wikipedia page, we use:
library(rvest)
url <- "https://en.wikipedia.org/wiki/List_of_Nobel_laureates"
wiki <- read_html(url)

The object wiki now contains all the information from the page - you can have a
quick look at it by using html_text:
html_text(wiki)

That is more information than we need. To extract all tables from wiki, we can use
html_nodes:
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tables <- html_nodes(wiki, "table")
tables

The first table, starting with the HTML code
<table class="wikitable sortable"><tbody>\n<tr>\n<th>Year\n</th>

is the one we are looking for. To transform it to a data frame, we use html_table
as follows:
laureates <- html_table(tables[[1]], fill = TRUE)
View(laureates)

The rvest package can also be used for extracting data from more complex website
structures using the SelectorGadget tool in the web browser Chrome. This let’s you
select the page elements that you wish to scrape in your browser, and helps you
create the code needed to import them to R. For an example of how to use it, run
vignette("selectorgadget").

∼

Exercise 5.27. Scrape the table containing different keytar models from https:
//en.wikipedia.org/wiki/List_of_keytars. Perform the necessary operations to
convert the Dates column to numeric.

5.14 Other commons tasks
5.14.1 Deleting variables
If you no longer need a variable, you can delete it using rm:
my_variable <- c(1, 8, pi)
my_variable
rm(my_variable)
my_variable

This can be useful for instance if you have loaded a data frame that no longer is
needed and takes up a lot of memory. If you, for some reason, want to wipe all
your variables, you can use ls, which returns a vector containing the names of all
variables, in combination with rm:
# Use this at your own risk! This deletes all currently loaded
# variables.

# Uncomment to run:
# rm(list = ls())

https://selectorgadget.com/
https://www.google.com/chrome/
https://en.wikipedia.org/wiki/List_of_keytars
https://en.wikipedia.org/wiki/List_of_keytars
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Variables are automatically deleted when you exit R (unless you choose to save your
workspace). On the rare occasions where I want to wipe all variables from memory,
I usually do a restart instead of using rm.

5.14.2 Importing data from other statistical packages
The foreign library contains functions for importing data from other statistical
packages, such as Stata (read.dta), Minitab (read.mtp), SPSS (read.spss), and
SAS (XPORT files, read.xport). They work just like read.csv (see Section 3.3),
with additional arguments specific to the file format used for the statistical package
in question.

5.14.3 Importing data from databases
R and RStudio have excellent support for connecting to databases. However, this
requires some knowledge about databases and topics like ODBC drivers, and is there-
fore beyond the scope of the book. More information about using databases with R
can be found at https://db.rstudio.com/.

5.14.4 Importing data from JSON files
JSON is a common file format for transmitting data between different systems. It is
often used in web server systems where users can request data. One example of this
is found in the JSON file at https://opendata-download-metobs.smhi.se/api/version
/1.0/parameter/2/station/98210/period/latest-months/data.json. It contains daily
mean temperatures from Stockholm, Sweden, during the last few months, accessible
from the Swedish Meteorological and Hydrological Institute’s server. Have a look at
it in your web browser, and then install the jsonlite package:
install.packages("jsonlite")

We’ll use the fromJSON function from jsonlite to import the data:
library(jsonlite)
url <- paste("https://opendata-download-metobs.smhi.se/api/version/",

"1.0/parameter/2/station/98210/period/latest-months/",
"data.json",
sep = "")

stockholm <- fromJSON(url)
stockholm

By design, JSON files contain lists, and so stockholm is a list object. The temper-
ature data that we were looking for is (in this particular case) contained in the list
element called value:

https://db.rstudio.com/
https://opendata-download-metobs.smhi.se/api/version/1.0/parameter/2/station/98210/period/latest-months/data.json
https://opendata-download-metobs.smhi.se/api/version/1.0/parameter/2/station/98210/period/latest-months/data.json
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stockholm$value
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Chapter 6

R programming

The tools in Chapters 2-5 will allow you to manipulate, summarise and visualise your
data in all sorts of ways. But what if you need to compute some statistic that there
isn’t a function for? What if you need automatic checks of your data and results?
What if you need to repeat the same analysis for a large number of files? This is where
the programming tools you’ll learn about in this chapter, like loops and conditional
statements, come in handy. And this is where you take the step from being able to
use R for routine analyses to being able to use R for any analysis.

After working with the material in this chapter, you will be able to use R to:

• Write your own R functions,
• Use several new pipe operators,
• Use conditional statements to perform different operations depending on

whether or not a condition is satisfied,
• Iterate code operations multiple times using loops,
• Iterate code operations multiple times using functionals,
• Measure the performance of your R code.

6.1 Functions
Suppose that we wish to compute the mean of a vector x. One way to do this would
be to use sum and length:
x <- 1:100
# Compute mean:
sum(x)/length(x)

Now suppose that we wish to compute the mean of several vectors. We could do this
by repeated use of sum and length:

207
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x <- 1:100
y <- 1:200
z <- 1:300

# Compute means:
sum(x)/length(x)
sum(y)/length(y)
sum(z)/length(x)

But wait! I made a mistake when I copied the code to compute the mean of z - I
forgot to change length(x) to length(z)! This is an easy mistake to make when
you repeatedly copy and paste code. In addition, repeating the same code multiple
times just doesn’t look good. It would be much more convenient to have a single
function for computing the means. Fortunately, such a function exists - mean:
# Compute means
mean(x)
mean(y)
mean(z)

As you can see, using mean makes the code shorter and easier to read and reduces
the risk of errors induced by copying and pasting code (we only have to change the
argument of one function instead of two).

You’ve already used a ton of different functions in R: functions for computing means,
manipulating data, plotting graphics, and more. All these functions have been writ-
ten by somebody who thought that they needed to repeat a task (e.g. computing a
mean or plotting a bar chart) over and over again. And in such cases, it is much
more convenient to have a function that does that task than to have to write or copy
code every time you want to do it. This is true also for your own work - whenever
you need to repeat the same task several times, it is probably a good idea to write
a function for it. It will reduce the amount of code you have to write and lessen the
risk of errors caused by copying and pasting old code. In this section, you will learn
how to write your own functions.

6.1.1 Creating functions
For the sake of the example, let’s say that we wish to compute the mean of several
vectors but that the function mean doesn’t exist. We would therefore like to write
our own function for computing the mean of a vector. An R function takes some
variables as input (arguments or parameters) and returns an object. Functions are
defined using function. The definition follows a particular format:
function_name <- function(argument1, argument2, ...)
{

# ...
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# Some rows with code that creates some_object
# ...
return(some_object)

}

In the case of our function for computing a mean, this could look like:
average <- function(x)
{

avg <- sum(x)/length(x)
return(avg)

}

This defines a function called average, that takes an object called x as input. It
computes the sum of the elements of x, divides that by the number of elements in x,
and returns the resulting mean.

If we now make a call to average(x), our function will compute the mean value of
the vector x. Let’s try it out, to see that it works:
x <- 1:100
y <- 1:200
average(x)
average(y)

6.1.2 Local and global variables
Note that despite the fact that the vector was called x in the code we used to define
the function, average works regardless of whether the input is called x or y. This
is because R distinguishes between global variables and local variables. A global
variable is created in the global environment outside a function, and is available to
all functions (these are the variables that you can see in the Environment panel in
RStudio). A local variable is created in the local environment inside a function, and is
only available to that particular function. For instance, our average function creates
a variable called avg, yet when we attempt to access avg after running average this
variable doesn’t seem to exist:
average(x)
avg

Because avg is a local variable, it is only available inside of the average function.
Local variables take precedence over global variables inside the functions to which
they belong. Because we named the argument used in the function x, x becomes the
name of a local variable in average. As far as average is concerned, there is only
one variable named x, and that is whatever object that was given as input to the
function, regardless of what its original name was. Any operations performed on the



210 CHAPTER 6. R PROGRAMMING

local variable x won’t affect the global variable x at all.

Functions can access global variables:
y_squared <- function()
{

return(y^2)
}

y <- 2
y_squared()

But operations performed on global variables inside functions won’t affect the global
variable:
add_to_y <- function(n)
{

y <- y + n
}

y <- 1
add_to_y(1)
y

Suppose you really need to change a global variable inside a function1. In that case,
you can use an alternative assignment operator, <<-, which assigns a value to the
variable in the parent environment to the current environment. If you use <<- for
assignment inside a function that is called from the global environment, this means
that the assignment takes place in the global environment. But if you use <<- in a
function (function 1) that is called by another function (function 2), the assignment
will take place in the environment for function 2, thus affecting a local variable in
function 2. Here is an example of a global assignment using <<-:
add_to_y_global <- function(n)
{

y <<- y + n
}

y <- 1
add_to_y_global(1)
y

1Do you really?
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6.1.3 Will your function work?
It is always a good idea to test if your function works as intended, and to try to
figure out what can cause it to break. Let’s return to our average function:
average <- function(x)
{

avg <- sum(x)/length(x)
return(avg)

}

We’ve already seen that it seems to work when the input x is a numeric vector. But
what happens if we input something else instead?
average(c(1, 5, 8)) # Numeric input
average(c(TRUE, TRUE, FALSE)) # Logical input
average(c("Lady Gaga", "Tool", "Dry the River")) # Character input
average(data.frame(x = c(1, 1, 1), y = c(2, 2, 1))) # Numeric df
average(data.frame(x = c(1, 5, 8), y = c("A", "B", "C"))) # Mixed type

The first two of these render the desired output (the logical values being represented
by 0’s and 1’s), but the rest don’t. Many R functions include checks that the input
is of the correct type, or checks to see which method should be applied depending on
what data type the input is. We’ll learn how to perform such checks in Section 6.3.

As a side note, it is possible to write functions that don’t end with return. In that
case, the output (i.e. what would be written in the Console if you’d run the code
there) from the last line of the function will automatically be returned. I prefer to
(almost) always use return though, as it is easy to accidentally make the function
return nothing by finishing it with a line that yields no output. Below are two
examples of how we could have written average without a call to return. The first
doesn’t work as intended, because the function’s final (and only) line doesn’t give
any output.
average_bad <- function(x)
{

avg <- sum(x)/length(x)
}

average_ok <- function(x)
{

sum(x)/length(x)
}

average_bad(c(1, 5, 8))
average_ok(c(1, 5, 8))
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6.1.4 More on arguments
It is possible to create functions with as many arguments as you like, but it will
become quite unwieldy if the user has to supply too many arguments to your function.
It is therefore common to provide default values to arguments, which is done by
setting a value in the function call. Here is an example of a function that computes
𝑥𝑛, using 𝑛 = 2 as the default:
power_n <- function(x, n = 2)
{

return(x^n)
}

If we don’t supply n, power_n uses the default n = 2:
power_n(3)

But if we supply an n, power_n will use that instead:
power_n(3, 1)
power_n(3, 3)

For clarity, you can specify which value corresponds to which argument:
power_n(x = 2, n = 5)

…and can then even put the arguments in the wrong order:
power_n(n = 5, x = 2)

However, if we only supply n we get an error, because there is no default value for x:
power_n(n = 5)

It is possible to pass a function as an argument. Here is a function that takes a
vector and a function as input, and applies the function to the first two elements of
the vector:
apply_to_first2 <- function(x, func)
{

result <- func(x[1:2])
return(result)

}

By supplying different functions to apply_to_first2, we can make it perform dif-
ferent tasks:
x <- c(4, 5, 6)
apply_to_first2(x, sqrt)
apply_to_first2(x, is.character)
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apply_to_first2(x, power_n)

But what if the function that we supply requires additional arguments? Using
apply_to_first2 with sum and the vector c(4, 5, 6) works fine:
apply_to_first2(x, sum)

But if we instead use the vector c(4, NA, 6) the function returns NA :
x <- c(4, NA, 6)
apply_to_first2(x, sum)

Perhaps we’d like to pass na.rm = TRUE to sum to ensure that we get a numeric
result, if at all possible. This can be done by adding ... to the list of arguments for
both functions, which indicates additional parameters (to be supplied by the user)
that will be passed to func:
apply_to_first2 <- function(x, func, ...)
{

result <- func(x[1:2], ...)
return(result)

}

x <- c(4, NA, 6)
apply_to_first2(x, sum)
apply_to_first2(x, sum, na.rm = TRUE)

∼

Exercise 6.1. Write a function that converts temperature measurements in degrees
Fahrenheit to degrees Celsius, and apply it to the Temp column of the airquality
data.

Exercise 6.2. Practice writing functions by doing the following:

1. Write a function that takes a vector as input and returns a vector containing
its minimum and maximum, without using min and max.

2. Write a function that computes the mean of the squared values of a vector
using mean, and that takes additional arguments that it passes on to mean
(e.g. na.rm).

6.1.5 Namespaces
It is possible, and even likely, that you will encounter functions in packages with the
same name as functions in other packages. Or, similarly, that there are functions in



214 CHAPTER 6. R PROGRAMMING

packages with the same names as those you have written yourself. This is of course a
bit of a headache, but it’s actually something that can be overcome without changing
the names of the functions. Just like variables can live in different environments, R
functions live in namespaces, usually corresponding to either the global environment
or the package they belong to. By specifying which namespace to look for the function
in, you can use multiple functions that all have the same name.

For example, let’s create a function called sqrt. There is already such a function in
the base package2 (see ?sqrt), but let’s do it anyway:
sqrt <- function(x)
{

return(x^10)
}

If we now apply sqrt to an object, the function that we just defined will be used:
sqrt(4)

But if we want to use the sqrt from base, we can specify that by writing the names-
pace (which almost always is the package name) followed by :: and the function
name:
base::sqrt(4)

The :: notation can also be used to call a function or object from a package without
loading the package’s namespace:
msleep # Doesn't work if ggplot2 isn't loaded
ggplot2::msleep # Works, without loading the ggplot2 namespace!

When you call a function, R will look for it in all active namespaces, following a
particular order. To see the order of the namespaces, you can use search:
search()

Note that the global environment is first in this list - meaning that the functions that
you define always will be preferred to functions in packages.

All this being said, note that it is bad practice to give your functions and variables
the same names as common functions. Don’t name them mean, c or sqrt. Nothing
good can ever come from that sort of behaviour.

Nothing.

2base is automatically loaded when you start R, and contains core functions such as sqrt.
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6.1.6 Sourcing other scripts
If you want to reuse a function that you have written in a new script, you can of
course copy it into that script. But if you then make changes to your function, you
will quickly end up with several different versions of it. A better idea can therefore
be to put the function in a separate script, which you then can call in each script
where you need the function. This is done using source. If, for instance, you have
code that defines some functions in a file called helper-functions.R in your working
directory, you can run it (thus defining the functions) when the rest of your code is
run by adding source("helper-functions.R") to your code.

Another option is to create an R package containing the function, but that is beyond
the scope of this book. Should you choose to go down that route, I highly recommend
reading R Packages by Wickham and Bryan.

6.2 More on pipes
We have seen how the magrittr pipe %>% can be used to chain functions together.
But there are also other pipe operators that are useful. In this section we’ll look at
some of them, and see how you can create functions using pipes.

6.2.1 Ce ne sont pas non plus des pipes
Although %>% is the most used pipe operator, the magrittr package provides a
number of other pipes that are useful in certain situations.

One example is when you want to pass variables rather than an entire dataset to the
next function. This is needed for instance if you want to use cor to compute the
correlation between two variables, because cor takes two vectors as input instead of
a data frame. You can do it using ordinary %>% pipes:
library(magrittr)
airquality %>%

subset(Temp > 80) %>%
{cor(.$Temp, .$Wind)}

However, the curly brackets {} and the dots . makes this a little awkward and
difficult to read. A better option is to use the %$% pipe, which passes on the names
of all variables in your data frame instead:
airquality %>%

subset(Temp > 80) %$%
cor(Temp, Wind)

If you want to modify a variable using a pipe, you can use the compound assignment
pipe %<>%. The following three lines all yield exactly the same result:

https://r-pkgs.org/index.html
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x <- 1:8; x <- sqrt(x); x
x <- 1:8; x %>% sqrt -> x; x
x <- 1:8; x %<>% sqrt; x

As long as the first pipe in the pipeline is the compound assignment operator %<>%,
you can combine it with other pipes:
x <- 1:8
x %<>% subset(x > 5) %>% sqrt
x

Sometimes you want to do something in the middle of a pipeline, like creating a plot,
before continuing to the next step in the chain. The tee operator %T>% can be used
to execute a function without passing on its output (if any). Instead, it passes on
the output to its left. Here is an example:
airquality %>%

subset(Temp > 80) %T>%
plot %$%
cor(Temp, Wind)

Note that if we’d used an ordinary pipe %>% instead, we’d get an error:
airquality %>%

subset(Temp > 80) %>%
plot %$%
cor(Temp, Wind)

The reason is that cor looks for the variables Temp and Wind in the plot object, and
not in the data frame. The tee operator takes care of this by passing on the data
from its left side.

Remember that if you have a function where data only appears within parentheses,
you need to wrap the function in curly brackets:
airquality %>%

subset(Temp > 80) %T>%
{cat("Number of rows in data:", nrow(.), "\n")} %$%
cor(Temp, Wind)

When using the tee operator, this is true also for call to ggplot, where you addition-
ally need to wrap the plot object in a call to print:
library(ggplot2)
airquality %>%

subset(Temp > 80) %T>%
{print(ggplot(., aes(Temp, Wind)) + geom_point())} %$%
cor(Temp, Wind)
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6.2.2 Writing functions with pipes
If you will be reusing the same pipeline multiple times, you may want to create
a function for it. Let’s say that you have a data frame containing only numeric
variables, and that you want to create a scatterplot matrix (which can be done using
plot) and compute the correlations between all variables (using cor). As an example,
you could do this for airquality as follows:
airquality %T>% plot %>% cor

To define a function for this combination of operators, we simply write:
plot_and_cor <- . %T>% plot %>% cor

Note that we don’t have to write function(...) when defining functions with pipes!

We can now use this function just like any other:
# With the airquality data:
airquality %>% plot_and_cor
plot_and_cor(airquality)

# With the bookstore data:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)
bookstore %>% plot_and_cor

∼

Exercise 6.3. Write a function that takes a data frame as input and uses pipes to
print the number of NA values in the data, remove all rows with NA values and return
a summary of the remaining data.

Exercise 6.4. Pipes are operators, that is, functions that take two variables as input
and can be written without parentheses (other examples of operators are + and *).
You can define your own operators just as you would any other function. For instance,
we can define an operator called quadratic that takes two numbers a and b as input
and computes the quadratic expression (𝑎 + 𝑏)2:

`%quadratic%` <- function(a, b) { (a + b)^2 }
2 %quadratic% 3

Create an operator called %against% that takes two vectors as input and draws a
scatterplot of them.
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6.3 Checking conditions
Sometimes you’d like your code to perform different operations depending on whether
or not a certain condition is fulfilled. Perhaps you want it to do something different
if there is missing data, if the input is a character vector, or if the largest value
in a numeric vector is greater than some number. In Section 3.2.3 you learned how
to filter data using conditions. In this section, you’ll learn how to use conditional
statements for a number of other tasks.

6.3.1 if and else
The most important functions for checking whether a condition is fulfilled are if and
else. The basic syntax is
if(condition) { do something } else { do something else }

The condition should return a single logical value, so that it evaluates to either
TRUE or FALSE. If the condition is fulfilled, i.e. if it is TRUE, the code inside the first
pair of curly brackets will run, and if it’s not (FALSE), the code within the second
pair of curly brackets will run instead.

As a first example, assume that you want to compute the reciprocal of 𝑥, 1/𝑥, unless
𝑥 = 0, in which case you wish to print an error message:
x <- 2
if(x == 0) { cat("Error! Division by zero.") } else { 1/x }

Now try running the same code with x set to 0:
x <- 0
if(x == 0) { cat("Error! Division by zero.") } else { 1/x }

Alternatively, we could check if 𝑥 ≠ 0 and then change the order of the segments
within the curly brackets:
x <- 0
if(x != 0) { 1/x } else { cat("Error! Division by zero.") }

You don’t have to write all of the code on the same line, but you must make sure
that the else part is on the same line as the first }:
if(x == 0)
{

cat("Error! Division by zero.")
} else
{

1/x
}
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You can also choose not to have an else part at all. In that case, the code inside the
curly brackets will run if the condition is satisfied, and if not, nothing will happen:
x <- 0
if(x == 0) { cat("x is 0.") }

x <- 2
if(x == 0) { cat("x is 0.") }

Finally, if you need to check a number of conditions one after another, in order to
list different possibilities, you can do so by repeated use of if and else:
if(x == 0)
{

cat("Error! Division by zero.")
} else if(is.infinite((x)))
{

cat("Error! Divison by infinity.")
} else if(is.na((x)))
{

cat("Error! Divison by NA.")
} else
{

1/x
}

6.3.2 & & &&
Just as when we used conditions for filtering in Sections 3.2.3 and 5.8.2, it is possible
to combine several conditions into one using & (AND) and | (OR). However, the &
and | operators are vectorised, meaning that they will return a vector of logical
values whenever possible. This is not desirable in conditional statements, where the
condition must evaluate to a single value. Using a condition that returns a vector
results in a warning message:
if(c(1, 2) == 2) { cat("The vector contains the number 2.\n") }
if(c(2, 1) == 2) { cat("The vector contains the number 2.\n") }

As you can see, only the first element of the logical vector is evaluated by if.
Usually, if a condition evaluates to a vector, it is because you’ve made an error
in your code. Remember, if you really need to evaluate a condition regarding the
elements in a vector, you can collapse the resulting logical vector to a single value
using any or all.

Some texts recommend using the operators && and || instead of & and | in conditional
statements. These work almost like & and |, but force the condition to evaluate to a
single logical. I prefer to use & and |, because I want to be notified if my condition
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evaluates to a vector - once again, that likely means that there is an error somewhere
in my code!

There is, however, one case where I much prefer && and ||. & and | always evaluate
all the conditions that you’re combining, while && and || don’t: && stops as soon as
it encounters a FALSE and || stops as soon as it encounters a TRUE. Consequently,
you can put the conditions you wish to combine in a particular order to make sure
that they can be evaluated. For instance, you may want first to check that a variable
exists, and then check a property. This can be done using exists to check whether
or not it exists - note that the variable name must be written within quotes:
# a is a variable that doesn't exist

# Using && works:
if(exists("a") && a > 0)
{

cat("The variable exists and is positive.")
} else { cat("a doesn't exist or is negative.") }

# But using & doesn't, because it attempts to evaluate a>0
# even though a doesn't exist:
if(exists("a") & a > 0)
{

cat("The variable exists and is positive.")
} else { cat("a doesn't exist or is negative.") }

6.3.3 ifelse
It is common that you want to assign different values to a variable depending on
whether or not a condition is satisfied:
x <- 2

if(x == 0)
{

reciprocal <- "Error! Division by zero."
} else
{

reciprocal <- 1/x
}

reciprocal

In fact, this situation is so common that there is a special function for it: ifelse:
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reciprocal <- ifelse(x == 0, "Error! Division by zero.", 1/x)

ifelse evaluates a condition and then returns different answers depending on
whether the condition is TRUE or FALSE. It can also be applied to vectors, in which
case it checks the condition for each element of the vector and returns an answer for
each element:
x <- c(-1, 1, 2, -2, 3)
ifelse(x > 0, "Positive", "Negative")

6.3.4 switch
For the sake of readability, it is usually a good idea to try to avoid chains of the type
if() {} else if() {} else if() {} else {}. One function that can be useful
for this is switch, which lets you list a number of possible results, either by position
(a number) or by name:
position <- 2
switch(position,

"First position",
"Second position",
"Third position")

name <- "First"
switch(name,

First = "First name",
Second = "Second name",
Third = "Third name")

You can for instance use this to decide what function should be applied to your data:
x <- 1:3
y <- c(3, 5, 4)
method <- "nonparametric2"
cor_xy <- switch(method,

parametric = cor(x, y, method = "pearson"),
nonparametric1 = cor(x, y, method = "spearman"),
nonparametric2 = cor(x, y, method = "kendall"))

cor_xy

6.3.5 Failing gracefully
Conditional statements are useful for ensuring that the input to a function you’ve
written is of the correct type. In Section 6.1.3 we saw that our average function
failed if we applied it to a character vector:



222 CHAPTER 6. R PROGRAMMING

average <- function(x)
{

avg <- sum(x)/length(x)
return(avg)

}

average(c("Lady Gaga", "Tool", "Dry the River"))

By using a conditional statement, we can provide a more informative error message.
We can check that the input is numeric and, if it’s not, stop the function and print
an error message, using stop:
average <- function(x)
{

if(is.numeric(x))
{

avg <- sum(x)/length(x)
return(avg)

} else
{

stop("The input must be a numeric vector.")
}

}

average(c(1, 5, 8))
average(c("Lady Gaga", "Tool", "Dry the River"))

∼

Exercise 6.5. Which of the following conditions are TRUE? First think about the
answer, and then check it using R.

x <- 2
y <- 3
z <- -3

1. x > 2

2. x > y | x > z

3. x > y & x > z

4. abs(x*z) >= y

Exercise 6.6. Fix the errors in the following code:
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x <- c(1, 2, pi, 8)

# Only compute square roots if x exists
# and contains positive values:
if(exists(x)) { if(x > 0) { sqrt(x) } }

6.4 Iteration using loops
We have already seen how you can use functions to make it easier to repeat the
same task over and over. But there is still a part of the puzzle missing - what if, for
example, you wish to apply a function to each column of a data frame? What if you
want to apply it to data from a number of files, one at a time? The solution to these
problems is to use iteration. In this section, we’ll explore how to perform iteration
using loops.

6.4.1 for loops
for loops can be used to run the same code several times, with different settings,
e.g. different data, in each iteration. Their use is perhaps best explained by some
examples. We create the loop using for, give the name of a control variable and
a vector containing its values (the control variable controls how many iterations to
run) and then write the code that should be repeated in each iteration of the loop.
In each iteration, a new value of the control variable is used in the code, and the
loop stops when all values have been used.

As a first example, let’s write a for loop that runs a block of code five times, where
the block prints the current iteration number:
for(i in 1:5)
{

cat("Iteration", i, "\n")
}

This is equivalent to writing:
cat("Iteration", 1, "\n")
cat("Iteration", 2, "\n")
cat("Iteration", 3, "\n")
cat("Iteration", 4, "\n")
cat("Iteration", 5, "\n")

The upside is that we didn’t have to copy and edit the same code multiple times
- and as you can imagine, this benefit becomes even more pronounced if you have
more complicated code blocks.
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The values for the control variable are given in a vector, and the code block will be
run once for each element in the vector - we say the we loop over the values in the
vector. The vector doesn’t have to be numeric - here is an example with a character
vector:
for(word in c("one", "two", "five hundred and fifty five"))
{

cat("Iteration", word, "\n")
}

Of course, loops are used for so much more than merely printing text on the screen.
A common use is to perform some computation and then store the result in a vector.
In this case, we must first create an empty vector to store the result in, e.g. using
vector, which creates an empty vector of a specific type and length:
squares <- vector("numeric", 5)

for(i in 1:5)
{

squares[i] <- i^2
}
squares

In this case, it would have been both simpler and computationally faster to compute
the squared values by running (1:5)^2. This is known as a vectorised solution, and
is very important in R. We’ll discuss vectorised solutions in detail in Section 6.5.

When creating the values used for the control variable, we often wish to create differ-
ent sequences of numbers. Two functions that are very useful for this are seq, which
creates sequences, and rep, which repeats patterns:
seq(0, 100)
seq(0, 100, by = 10)
seq(0, 100, length.out = 21)

rep(1, 4)
rep(c(1, 2), 4)
rep(c(1, 2), c(4, 2))

Finally, seq_along can be used to create a sequence of indices for a vector of a data
frame, which is useful if you wish to iterate some code for each element of a vector
or each column of a data frame:
seq_along(airquality) # Gives the indices of all column of the data

# frame
seq_along(airquality$Temp) # Gives the indices of all elements of the

# vector
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Here is an example of how to use seq_along to compute the mean of each column
of a data frame:
# Compute the mean for each column of the airquality data:
means <- vector("double", ncol(airquality))

# Loop over the variables in airquality:
for(i in seq_along(airquality))
{

means[i] <- mean(airquality[[i]], na.rm = TRUE)
}

# Check that the results agree with those from the colMeans function:
means
colMeans(airquality, na.rm = TRUE)

The line inside the loop could have read means[i] <- mean(airquality[,i],
na.rm = TRUE), but that would have caused problems if we’d used it with a
data.table or tibble object; see Section 5.9.4.

Finally, we can also change the values of the data in each iteration of the loop. Some
machine learning methods require that the data is standardised, i.e. that all columns
have mean 0 and standard deviation 1. This is achieved by subtracting the mean
from each variable and then dividing each variable by its standard deviation. We can
write a function for this that uses a loop, changing the values of a column in each
iteration:
standardise <- function(df, ...)
{

for(i in seq_along(df))
{

df[[i]] <- (df[[i]] - mean(df[[i]], ...))/sd(df[[i]], ...)
}
return(df)

}

# Try it out:
aqs <- standardise(airquality, na.rm = TRUE)
colMeans(aqs, na.rm = TRUE) # Non-zero due to floating point

# arithmetics!
sd(aqs$Wind)

∼

Exercise 6.7. Practice writing for loops by doing the following:
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1. Compute the mean temperature for each month in the airquality dataset
using a loop rather than an existing function.

2. Use a for loop to compute the maximum and minimum value of each column
of the airquality data frame, storing the results in a data frame.

3. Make your solution to the previous task reusable by writing a function that
returns the maximum and minimum value of each column of a data frame.

Exercise 6.8. Use rep or seq to create the following vectors:

1. 0.25 0.5 0.75 1

2. 1 1 1 2 2 5

Exercise 6.9. As an alternative to seq_along(airquality) and seq_along(airquality$Temp),
we could create the same sequences using 1:ncol(airquality) and 1:length(airquality$Temp).
Use x <- c() to create a vector of length zero. Then create loops that use
seq_along(x) and 1:length(x) as values for the control variable. How many
iterations are the two loops run? Which solution is preferable?

Exercise 6.10. An alternative to standardisation is normalisation, where all
numeric variables are rescaled so that their smallest value is 0 and their largest
value is 1. Write a function that normalises the variables in a data frame containing
numeric columns.

Exercise 6.11. The function list.files can be used to create a vector containing
the names of all files in a folder. The pattern argument can be used to supply
a regular expression describing a file name pattern. For instance, if pattern =
"\\.csv$" is used, only .csv files will be listed.

Create a loop that goes through all .csv files in a folder and prints the names of the
variables for each file.

6.4.2 Loops within loops
In some situations, you’ll want to put a loop inside another loop. Such loops are said
to be nested. An example is if we want to compute the correlation between all pairs
of variables in airquality, and store the result in a matrix:
cor_mat <- matrix(NA, nrow = ncol(airquality),

ncol = ncol(airquality))
for(i in seq_along(airquality))
{

for(j in seq_along(airquality))
{

cor_mat[i, j] <- cor(airquality[[i]], airquality[[j]],
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use = "pairwise.complete")
}

}

# Element [i, j] of the matrix now contains the correlation between
# variables i and j:
cor_mat

Once again, there is a vectorised solution to this problem, given by cor(airquality,
use = "pairwise.complete"). As we will see in Section 6.6, vectorised solutions
like this can be several times faster than solutions that use nested loops. In general,
solutions involving nested loops tend to be fairly slow - but on the other hand, they
are often easy and straightforward to implement.

6.4.3 Keeping track of what’s happening
Sometimes each iteration of your loop takes a long time to run, and you’ll want to
monitor its progress. This can be done using printed messages or a progress bar in
the Console panel, or sound notifications. We’ll showcase each of these using a loop
containing a call to Sys.sleep, which pauses the execution of R commands for a
short time (determined by the user).

First, we can use cat to print a message describing the progress. Adding \r to
the end of a string allows us to print all messages on the same line, with each new
message replacing the old one:
# Print each message on a new same line:
for(i in 1:5)
{

cat("Step", i, "out of 5\n")
Sys.sleep(1) # Sleep for 1 second

}

# Replace the previous message with the new one:
for(i in 1:5)
{

cat("Step", i, "out of 5\r")
Sys.sleep(1) # Sleep for one second

}

Adding a progress bar is a little more complicated, because we must first start the
bar by using txtProgressBar and the update it using setTxtProgressBar:
sequence <- 1:5
pbar <- txtProgressBar(min = 0, max = max(sequence), style = 3)
for(i in sequence)
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{
Sys.sleep(1) # Sleep for 1 second
setTxtProgressBar(pbar, i)

}
close(pbar)

Finally, the beepr package3 can be used to play sounds, with the function beep:
install.packages("beepr")

library(beepr)
# Play all 11 sounds available in beepr:
for(i in 1:11)
{

beep(sound = i)
Sys.sleep(2) # Sleep for 2 seconds

}

6.4.4 Loops and lists
In our previous examples of loops, it has always been clear from the start how many
iterations the loop should run and what the length of the output vector (or data
frame) should be. This isn’t always the case. To begin with, let’s consider the case
where the length of the output is unknown or difficult to know in advance. Let’s say
that we want to go through the airquality data to find days that are extreme in
the sense that at least one variable attains its maximum on those days. That is, we
wish to find the index of the maximum of each variable, and store them in a vector.
Because several days can have the same temperature or wind speed, there may be
more than one such maximal index for each variable. For that reason, we don’t know
the length of the output vector in advance.

In such cases, it is usually a good idea to store the result from each iteration in a list
(Section 5.2), and then collect the elements from the list once the loop has finished.
We can create an empty list with one element for each variable in airquality using
vector:
# Create an empty list with one element for each variable in
# airquality:
max_list <- vector("list", ncol(airquality))

# Naming the list elements will help us see which variable the maximal
# indices belong to:
names(max_list) <- names(airquality)

3Arguably the best add-on package for R.
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# Loop over the variables to find the maxima:
for(i in seq_along(airquality))
{

# Find indices of maximum values:
max_index <- which(airquality[[i]] == max(airquality[[i]],

na.rm = TRUE))

# Add indices to list:
max_list[[i]] <- max_index

}

# Check results:
max_list

# Collapse to a vector:
extreme_days <- unlist(max_list)

(In this case, only the variables Month and Days have duplicate maximum values.)

6.4.5 while loops
In some situations, we want to run a loop until a certain condition is met, meaning
that we don’t know in advance how many iterations we’ll need. This is more common
in numerical optimisation and simulation, but sometimes also occurs in data analyses.

When we don’t know in advance how many iterations that are needed, we can use
while loops. Unlike for loops, that iterate a fixed number of times, while loops
keep iterating as long as some specified condition is met. Here is an example where
the loop keeps iterating until i squared is greater than 100:
i <- 1

while(i^2 <= 100)
{

cat(i,"squared is", i^2, "\n")
i <- i +1

}

i

The code block inside the loop keeps repeating until the condition i^2 <= 100 no
longer is satisfied. We have to be a little bit careful with this condition - if we set it
in such a way that it is possible that the condition always will be satisfied, the loop
will just keep running and running - creating what is known as an infinite loop. If
you’ve accidentally created an infinite loop, you can break it by pressing the Stop
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button at the top of the Console panel in RStudio.

In Section 5.3.3 we saw how rle can be used to find and compute the lengths of
runs of equal values in a vector. We can use nested while loops to create something
similar. while loops are a good choice here, because we don’t know how many runs
are in the vector in advance. Here is an example, which you’ll study in more detail
in Exercise 6.12:
# Create a vector of 0's and 1's:
x <- rep(c(0, 1, 0, 1, 0), c(5, 1, 4, 2, 7))

# Create empty vectors where the results will be stored:
run_values <- run_lengths <- c()

# Set the initial condition:
i <- 1

# Iterate over the entire vector:
while(i < length(x))
{

# A new run starts:
run_length <- 1
cat("A run starts at i =", i, "\n")

# Check how long the run continues:
while(x[i+1] == x[i] & i < length(x))
{

run_length <- run_length + 1
i <- i + 1

}

i <- i + 1

# Save results:
run_values <- c(run_values, x[i-1])
run_lengths <- c(run_lengths, run_length)

}

# Present the results:
data.frame(run_values, run_lengths)

∼

Exercise 6.12. Consider the nested while loops in the run length example above.
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Go through the code and think about what happens in each step. What happens
when i is 1? When it is 5? When it is 6? Answer the following questions:

1. What does the condition for the outer while loop check? Why is it needed?

2. What does the condition for the inner while loop check? Why is it needed?

3. What does the line run_values <- c(run_values, x[i-1]) do?

Exercise 6.13. The control statements break and next can be used inside both for
and while loops to control their behaviour further. break stops a loop, and next
skips to the next iteration of it. Use these functions to modify the following piece of
code so that the loop skips to the next iteration if x[i] is 0, and breaks if x[i] is
NA:

x <- c(1, 5, 8, 0, 20, 0, 3, NA, 18, 2)

for(i in seq_along(x))
{

cat("Step", i, "- reciprocal is", 1/x[i], "\n")
}

Exercise 6.14. Using the cor_mat computation from Section 6.4.2, write a func-
tion that computes all pairwise correlations in a data frame, and uses next to only
compute correlations for numeric variables. Test your function by applying it to the
msleep data from ggplot2. Could you achieve the same thing without using next?

6.5 Iteration using vectorisation and functionals
Many operators and functions in R take vectors as input and handle them in a highly
efficient way, usually by passing the vector on to an optimised function written in
the C programming language4. So if we want to compute the squares of the numbers
in a vector, we don’t need to write a loop:
squares <- vector("numeric", 5)

for(i in 1:5)
{

squares[i] <- i^2
}
squares

Instead, we can simply apply the ^ operator, which uses fast C code to compute the
squares:

4Unlike R, C is a low-level language that allows the user to write highly specialised (and complex)
code to perform operations very quickly.
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squares <- (1:5)^2

These types of functions and operators are called vectorised. They take a vector as
input and apply a function to all its elements, meaning that we can avoid slower
solutions utilising loops in R5. Try to use vectorised solutions rather than loops
whenever possible - it makes your code both easier to read and faster to run.

A related concept is functionals, which are functions that contain a for loop. Instead
of writing a for loop, you can use a functional, supplying data, a function that
should be applied in each iteration of the loop, and a vector to loop over. This won’t
necessarily make your loop run faster, but it does have other benefits:

• Shorter code: functionals allow you to write more concise code. Some would
argue that they also allow you to write code that is easier to read, but that is
obviously a matter of taste.

• Efficient: functionals handle memory allocation and other small tasks effi-
ciently, meaning that you don’t have to worry about creating a vector of an
appropriate size to store the result.

• No changes to your environment: because all operations now take place in
the local environment of the functional, you don’t run the risk of accidentally
changing variables in your global environment.

• No left-overs: for leaves the control variable (e.g. i) in the environment, func-
tionals do not.

• Easy to use with pipes: because the loop has been wrapped in a function, it
lends itself well to being used in a %>% pipeline.

Explicit loops are preferable when:

• You think that they are easier to read and write.
• Your functions take data frames or other non-vector objects as input.
• Each iteration of your loop depends on the results from previous iterations.

In this section, we’ll see how we can apply functionals to obtain elegant alternatives
to (explicit) loops.

6.5.1 A first example with apply
The prototypical functional is apply, which loops over either the rows or the columns
of a data frame6. The arguments are a dataset, the margin to loop over (1 for rows,
2 for columns) and then the function to be applied.

In Section 6.4.1 we wrote a for loop for computing the mean value of each column
in a data frame:

5The vectorised functions often use loops, but loops written in C, which are much faster.
6Actually, over the rows or columns of a matrix - apply converts the data frame to a matrix

object.
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# Compute the mean for each column of the airquality data:
means <- vector("double", ncol(airquality))

# Loop over the variables in airquality:
for(i in seq_along(airquality))
{

means[i] <- mean(airquality[[i]], na.rm = TRUE)
}

Using apply, we can reduce this to a single line. We wish to use the airquality
data, loop over the columns (margin 2) and apply the function mean to each column:
apply(airquality, 2, mean)

Rather elegant, don’t you think?

Additional arguments can be passed to the function inside apply by adding them to
the end of the function call:
apply(airquality, 2, mean, na.rm = TRUE)

∼

Exercise 6.15. Use apply to compute the maximum and minimum value of each
column of the airquality data frame. Can you write a function that allows you to
compute both with a single call to apply?

6.5.2 Variations on a theme
There are several variations of apply that are tailored to specific problems:

• lapply: takes a function and vector/list as input, and returns a list.
• sapply: takes a function and vector/list as input, and returns a vector or

matrix.
• vapply: a version of sapply with additional checks of the format of the output.
• tapply: for looping over groups, e.g. when computing grouped summaries.
• rapply: a recursive version of tapply.
• mapply: for applying a function to multiple arguments; see Section 6.5.7.
• eapply: for applying a function to all objects in an environment.

We have already seen several ways to compute the mean temperature for different
months in the airquality data (Sections 3.8 and 5.7.7, and Exercise 6.7). The
*apply family offer several more:
# Create a list:
temps <- split(airquality$Temp, airquality$Month)
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lapply(temps, mean)
sapply(temps, mean)
vapply(temps, mean, vector("numeric", 1))
tapply(airquality$Temp, airquality$Month, mean)

There is, as that delightful proverb goes, more than one way to skin a cat.

∼

Exercise 6.16. Use an *apply function to simultaneously compute the monthly
maximum and minimum temperature in the airquality data frame.

Exercise 6.17. Use an *apply function to simultaneously compute the monthly
maximum and minimum temperature and windspeed in the airquality data frame.

Hint: start by writing a function that simultaneously computes the maximum and
minimum temperature and windspeed for a data frame containing data from a single
month.

6.5.3 purrr
If you feel enthusiastic about skinning cats using functionals instead of loops, the
tidyverse package purrr is a great addition to your toolbox. It contains a number of
specialised alternatives to the *apply functions. More importantly, it also contains
certain shortcuts that come in handy when working with functionals. For instance,
it is fairly common to define a short function inside your functional, which is useful
for instance when you don’t want the function to take up space in your environment.
This can be done a little more elegantly with purrr functions using a shortcut denoted
by ~. Let’s say that we want to standardise all variables in airquality. The map
function is the purrr equivalent of lapply. We can use it with or with the shortcut,
and with or without pipes (we mention the use of pipes now because it will be
important in what comes next):
# Base solution:
lapply(airquality, function(x) { (x-mean(x))/sd(x) })

# Base solution with pipe:
library(magrittr)
airquality %>% lapply(function(x) { (x-mean(x))/sd(x) })

# purrr solution:
library(purrr)
map(airquality, function(x) { (x-mean(x))/sd(x) })
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# We can make the purrr solution less verbose using a shortcut:
map(airquality, ~(.-mean(.))/sd(.))

# purr solution with pipe and shortcut:
airquality %>% map(~(.-mean(.))/sd(.))

Where this shortcut really shines is if you need to use multiple functionals. Let’s say
that we want to standardise the airquality variables, compute a summary and then
extract columns 2 and 5 from the summary (which contains the 1st and 3rd quartile
of the data):
# Impenetrable base solution:
lapply(lapply(lapply(airquality,

function(x) { (x-mean(x))/sd(x) }),
summary),

function(x) { x[c(2, 5)] })

# Base solution with pipe:
airquality %>%

lapply(function(x) { (x-mean(x))/sd(x) }) %>%
lapply(summary) %>%
lapply(function(x) { x[c(2, 5)] })

# purrr solution:
airquality %>%

map(~(.-mean(.))/sd(.)) %>%
map(summary) %>%
map(~.[c(2, 5)])

Once you know the meaning of ~, the purrr solution is a lot cleaner than the base
solutions.

6.5.4 Specialised functions
So far, it may seem like map is just like lapply but with a shortcut for defining
functions. Which is more or less true. But purrr contains a lot more functionals
that you can use, each tailored to specific problems.

For instance, if you need to specify that the output should be a vector of a specific
type, you can use:

• map_dbl(data, function) instead of vapply(data, function, vector("numeric",
length)),

• map_int(data, function) instead of vapply(data, function, vector("integer",
length)),
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• map_chr(data, function) instead of vapply(data, function, vector("character",
length)),

• map_lgl(data, function) instead of vapply(data, function, vector("logical",
length)).

If you need to specify that the output should be a data frame, you can use:

• map_dfr(data, function) instead of sapply(data, function).

The ~ shortcut for functions is available for all these map_* functions. In case you
need to pass additional arguments to the function inside the functional, just add
them at the end of the functional call:
airquality %>% map_dbl(max)
airquality %>% map_dbl(max, na.rm = TRUE)

Another specialised function is the walk function. It works just like map, but doesn’t
return anything. This is useful if you want to apply a function with no output, such
as cat or read.csv:
# Returns a list of NULL values:
airquality %>% map(~cat("Maximum:", max(.), "\n"))

# Returns nothing:
airquality %>% walk(~cat("Maximum:", max(.), "\n"))

∼

Exercise 6.18. Use a map_* function to simultaneously compute the monthly max-
imum and minimum temperature in the airquality data frame, returning a vector.

6.5.5 Exploring data with functionals
Functionals are great for creating custom summaries of your data. For instance, if
you want to check the data type and number of unique values of each variable in
your dataset, you can do that with a functional:
library(ggplot2)
diamonds %>% map_dfr(~(data.frame(unique_values = length(unique(.)),

class = class(.))))

You can of course combine purrr functionals with functions from other packages,
e.g. to replace length(unique(.)) with a function from your favourite data manip-
ulation package:
# Using uniqueN from data.table:
library(data.table)
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dia <- as.data.table(diamonds)
dia %>% map_dfr(~(data.frame(unique_values = uniqueN(.),

class = class(.))))

# Using n_distinct from dplyr:
library(dplyr)
diamonds %>% map_dfr(~(data.frame(unique_values = n_distinct(.),

class = class(.))))

When creating summaries it can often be useful to be able to loop over both the
elements of a vector and their indices. In purrr, this is done using the usual map*
functions, but with an i (for index) in the beginning of their names, e.g. imap and
iwalk:
# Returns a list of NULL values:
imap(airquality, ~ cat(.y, ": ", median(.x), "\n", sep = ""))

# Returns nothing:
iwalk(airquality, ~ cat(.y, ": ", median(.x), "\n", sep = ""))

Note that .x is used to denote the variable, and that .y is used to denote the name
of the variable. If i* functions are used on vectors without element names, indices
are used instead. The names of elements of vectors can be set using set_names:
# Without element names:
x <- 1:5
iwalk(x, ~ cat(.y, ": ", exp(.x), "\n", sep = ""))

# Set element names:
x <- set_names(x, c("exp(1)", "exp(2)", "exp(3)", "exp(4)", "exp(5)"))
iwalk(x, ~ cat(.y, ": ", exp(.x), "\n", sep = ""))

∼

Exercise 6.19. Write a function that takes a data frame as input and returns the
following information about each variable in the data frame: variable name, number
of unique values, data type and number of missing values. The function should, as
you will have guessed, use a functional.

Exercise 6.20. In Exercise 6.11 you wrote a function that printed the names and
variables for all .csv files in a folder given by folder_path. Use purrr functionals
to do the same thing.
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6.5.6 Keep calm and carry on
Another neat feature of purrr is the safely function, which can be used to wrap
a function that will be used inside a functional, and makes sure that the functional
returns a result even if there is an error. For instance, let’s say that we want to
compute the logarithm of all variables in the msleep data:
library(ggplot2)
msleep

Note that some columns are character vectors, which will cause log to throw an
error:
log(msleep$name)
log(msleep)
lapply(msleep, log)
map(msleep, log)

Note that the error messages we get from lapply and map here don’t give any infor-
mation about which variable caused the error, making it more difficult to figure out
what’s gone wrong.

If first we wrap log with safely, we get a list containing the correct output for the
numeric variables, and error messages for the non-numeric variables:
safe_log <- safely(log)
lapply(msleep, safe_log)
map(msleep, safe_log)

Not only does this tell us where the errors occur, but it also returns the logarithms
for all variables that log actually could be applied to.

If you’d like your functional to return some default value, e.g. NA, instead of an error
message, you can use possibly instead of safely:
pos_log <- possibly(log, otherwise = NA)
map(msleep, pos_log)

6.5.7 Iterating over multiple variables
A final important case is when you want to iterate over more than one variable. This
is often the case when fitting statistical models that should be used for prediction,
as you’ll see in Section 8.1.11. Another example is when you wish to create plots for
several subsets in your data. For instance, we could create a plot of carat versus
price for each combination of color and cut in the diamonds data. To do this for
a single combination, we’d use something like this:
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library(ggplot2)
library(dplyr)

diamonds %>% filter(cut == "Fair",
color == "D") %>%

ggplot(aes(carat, price)) +
geom_point() +
ggtitle("Fair, D")

To create such a plot for all combinations of color and cut, we must first create a
data frame containing all unique combinations, which can be done using the distinct
function from dplyr:
combos <- diamonds %>% distinct(cut, color)
cuts <- combos$cut
colours <- combos$color

map2 and walk2 from purrr loop over the elements of two vectors, x and y, say. They
combine the first element of x with the first element of y, the second element of x
with the second element of y, and so on - meaning that they won’t automatically loop
over all combinations of elements. That is the reason why we use distinct above to
create two vectors where each pair (x[i], y[i]) correspond to a combination. Apart
from the fact that we add a second vector to the call, map2 and walk2 work just like
map and walk:
# Print all pairs:
walk2(cuts, colours, ~cat(.x, .y, "\n"))

# Create a plot for each pair:
combos_plots <- map2(cuts, colours, ~{

diamonds %>% filter(cut == .x,
color == .y) %>%

ggplot(aes(carat, price)) +
geom_point() +
ggtitle(paste(.x, .y, sep =", "))})

# View some plots:
combos_plots[[1]]
combos_plots[[30]]

# Save all plots in a pdf file, with one plot per page:
pdf("all_combos_plots.pdf", width = 8, height = 8)
combos_plots
dev.off()
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The base function mapply could also have been used here. If you need to iterate over
more than two vectors, you can use pmap or pwalk, which work analogously to map2
and walk2.

∼

Exercise 6.21. Using the gapminder data from the gapminder package, create
scatterplots of pop and lifeExp for each combination of continent and year. Save
each plot as a separate .png file.

6.6 Measuring code performance
There are probably as many ideas about what good code is as there are programmers.
Some prefer readable code; others prefer concise code. Some prefer to work with
separate functions for each task, while others would rather continue to combine a
few basic functions in new ways. Regardless of what you consider to be good code,
there are a few objective measures that can be used to assess the quality of your code.
In addition to writing code that works and is bug-free, you’d like your code to be:

• Fast: meaning that it runs quickly. Some tasks can take anything from second
to weeks, depending on what code you write for them. Speed is particularly
important if you’re going to run your code many times.

• Memory efficient: meaning that it uses as little of your computer’s memory
as possible. Software running on your computer uses its memory - its RAM
- to store data. If you’re not careful with RAM, you may end up with a full
memory and a sluggish or frozen computer. Memory efficiency is critical if
you’re working with big datasets, that take up a lot of RAM to begin with.

In this section we’ll have a look at how you can measure the speed and memory
efficiency of R functions. A caveat is that while speed and memory efficiency are
important, the most important thing is to come up with a solution that works in the
first place. You should almost always start by solving a problem, and then worry
about speed and memory efficiency, not the other way around. The reasons for this
is that efficient code often is more difficult to write, read, and debug, which can slow
down the process of writing it considerably.

Note also, that speed and memory usage is system dependent - the clock frequency
and architecture of your processor and speed and size of your RAM will affect how
your code performs, as will what operating system you use and what other programs
you are running at the same time. That means that if you wish to compare how two
functions perform, you need to compare them on the same system under the same
conditions.

As a side note, a great way to speed up functions that use either loops or functionals
is parallelisation. We cover that topic in Section 10.2.
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6.6.1 Timing functions
To measure how long a piece of code takes to run, we can use system.time as follows:
rtime <- system.time({

x <- rnorm(1e6)
mean(x)
sd(x)

})

# elapsed is the total time it took to execute the code:
rtime

This isn’t the best way of measuring computational time though, and doesn’t allow
us to compare different functions easily. Instead, we’ll use the bench package, which
contains a function called mark that is very useful for measuring the execution time
of functions and blocks of code. Let’s start by installing it:
install.packages("bench")

In Section 6.1.1 we wrote a function for computing the mean of a vector:
average <- function(x)
{

return(sum(x)/length(x))
}

Is this faster or slower than mean? We can use mark to apply both functions to a
vector multiple times, and measure how long each execution takes:
library(bench)
x <- 1:100
bm <- mark(mean(x), average(x))
bm # Or use View(bm) if you don't want to print the results in the

# Console panel.

mark has executed both function n_itr times each, and measured how long each
execution took to perform. The execution time varies - in the output you can see
the shortest (min) and median (median) execution times, as well as the number of
iterations per second (itr/sec). Be a little wary of the units for the execution times
so that you don’t get them confused - a millisecond (ms, 10−3 seconds) is 1,000
microseconds (µs, 1 µs is 10−6 seconds), and 1 microsecond is 1,000 nanoseconds (ns,
1 ns is 10−9 seconds).

The result here may surprise you - it appears that average is faster than mean! The
reason is that mean does a lot of things that average does not: it checks the data type
and gives error messages if the data is of the wrong type (e.g. character), and then
traverses the vector twice to lower the risk of errors due to floating point arithmetics.



242 CHAPTER 6. R PROGRAMMING

All of this takes time, and makes the function slower (but safer to use).

We can plot the results using the ggbeeswarm package:
install.packages("ggbeeswarm")

plot(bm)

It is also possible to place blocks of code inside curly brackets, { }, in mark. Here
is an example comparing a vectorised solution for computing the squares of a vector
with a solution using a loop:
x <- 1:100
bm <- mark(x^2,

{
y <- x
for(i in seq_along(x))
{

y[i] <- x[i]*x[i]
}
y

})
bm
plot(bm)

Although the above code works, it isn’t the prettiest, and the bm table looks a bit
confusing because of the long expression for the code block. I prefer to put the code
block inside a function instead:
squares <- function(x)
{

y <- x
for(i in seq_along(x))
{

y[i] <- x[i]*x[i]
}
return(y)

}

x <- 1:100
bm <- mark(x^2, squares(x))
bm
plot(bm)

Note that squares(x) is faster than the original code block:
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bm <- mark(squares(x),
{

y <- x
for(i in seq_along(x))
{

y[i] <- x[i]*x[i]
}
y

})
bm

Functions in R are compiled the first time they are run, which often makes them
run faster than the same code would have outside of the function. We’ll discuss this
further next.

6.6.2 Measuring memory usage - and a note on compilation
mark also shows us how much memory is allocated when running different code blocks,
in the mem_alloc column of the output7.

Unfortunately, measuring memory usage is a little tricky. To see why, restart R (yes,
really - this is important!), and then run the following code to benchmark x^2 versus
squares(x):
library(bench)

squares <- function(x)
{

y <- x
for(i in seq_along(x))
{

y[i] <- x[i]*x[i]
}
return(y)

}

x <- 1:100
bm <- mark(x^2, squares(x))
bm

Judging from the mem_alloc column, it appears that the squares(x) loop not only
is slower, but also uses more memory. But wait! Let’s run the code again, just to be

7But only if your version of R has been compiled with memory profiling. If you are using a
standard build of R, i.e. have downloaded the base R binary from R-project.org, you should be good
to go. You can check that memory profiling is enabled by checking that capabilities("profmem")
returns TRUE. If not, you may need to reinstall R if you wish to enable memory profiling.
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sure of the result:
bm <- mark(x^2, squares(x))
bm

This time out, both functions use less memory, and squares now uses less memory
than x^2. What’s going on?

Computers can’t read code written in R or most other programming languages di-
rectly. Instead, the code must be translated to machine code that the computer’s
processor uses, in a process known as compilation. R uses just-in-time compilation
of functions and loops8, meaning that it translates the R code for new functions and
loops to machine code during execution. Other languages, such as C, use ahead-
of-time compilation, translating the code prior to execution. The latter can make
the execution much faster, but some flexibility is lost, and the code needs to be run
through a compiler ahead of execution, which also takes time. When doing the just-
in-time compilation, R needs to use some of the computer’s memory, which causes
the memory usage to be greater the first time the function is run. However, if an
R function is run again, it has already been compiled, meaning R doesn’t have to
allocate memory for compilation.

In conclusion, if you want to benchmark the memory usage of functions, make sure
to run them once before benchmarking. Alternatively, if your function takes a long
time to run, you can compile it without running it using the cmpfun function from
the compiler package:
library(compiler)
squares <- cmpfun(squares)
squares(1:10)

∼

Exercise 6.22. Write a function for computing the mean of a vector using a for
loop. How much slower than mean is it? Which function uses more memory?

Exercise 6.23. We have seen three different ways of filtering a data frame to only
keep rows that fulfil a condition: using base R, data.table and dplyr. Suppose
that we want to extract all flights from 1 January from the flights data in the
nycflights13 package:

library(data.table)
library(dplyr)
library(nycflights13)
# Read about the data:

8Since R 3.4.
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?flights

# Make a data.table copy of the data:
flights.dt <- as.data.table(flights)

# Filtering using base R:
flights0101 <- flights[flights$month == 1 & flights$day == 1,]
# Filtering using data.table:
flights0101 <- flights.dt[month == 1 & day == 1,]
# Filtering using dplyr:
flights0101 <- flights %>% filter(month ==1, day == 1)

Compare the speed and memory usage of these three approaches. Which has the
best performance?
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Chapter 7

Modern classical statistics

“Modern classical” may sound like a contradiction, but it is in fact anything but.
Classical statistics covers topics like estimation, quantification of uncertainty, and
hypothesis testing - all of which are at the heart of data analysis. Since the advent
of modern computers, much has happened in this field that has yet to make it to
the standard textbooks of introductory courses in statistics. This chapter attempts
to bridge part of that gap by dealing with those classical topics, but with a modern
approach that uses more recent advances in statistical theory and computational
methods. Particular focus is put on how simulation can be used for analyses and for
evaluating the properties of statistical procedures.

Whenever it is feasible, our aim in this chapter and the next is to:

• Use hypothesis tests that are based on permutations or the bootstrap rather
than tests based on strict assumptions about the distribution of the data or
asymptotic distributions,

• To complement estimates and hypothesis tests with computing confidence in-
tervals based on sound methods (including the bootstrap),

• Offer easy-to-use Bayesian methods as an alternative to frequentist tools.

After reading this chapter, you will be able to use R to:

• Generate random numbers,
• Perform simulations to assess the performance of statistical methods,
• Perform hypothesis tests,
• Compute confidence intervals,
• Make sample size computations,
• Report statistical results.

247
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7.1 Simulation and distributions
A random variable is a variable whose value describes the outcome of a random
phenomenon. A (probability) distribution is a mathematical function that describes
the probability of different outcomes for a random variable. Random variables and
distributions are at the heart of probability theory and most, if not all, statistical
models.

As we shall soon see, they are also invaluable tools when evaluating statistical meth-
ods. A key component of modern statistical work is simulation, in which we generate
artificial data that can be used both in the analysis of real data (e.g. in permutation
tests and bootstrap confidence intervals, topics that we’ll explore in this chapter) and
for assessing different methods. Simulation is possible only because we can generate
random numbers, so let’s begin by having a look at how we can generate random
numbers in R.

7.1.1 Generating random numbers
The function sample can be used to randomly draw a number of elements from a
vector. For instance, we can use it to draw 2 random numbers from the first ten
integers: 1, 2, … , 9, 10:
sample(1:10, 2)

Try running the above code multiple times. You’ll get different results each time,
because each time it runs the random number generator is in a different state. In
most cases, this is desirable (if the results were the same each time we used sample,
it wouldn’t be random), but not if we want to replicate a result at some later stage.

When we are concerned about reproducibility, we can use set.seed to fix the state
of the random number generator:
# Each run generates different results:
sample(1:10, 2); sample(1:10, 2)

# To get the same result each time, set the seed to a
# number of your choice:
set.seed(314); sample(1:10, 2)
set.seed(314); sample(1:10, 2)

We often want to use simulated data from a probability distribution, such as the
normal distribution. The normal distribution is defined by its mean 𝜇 and its vari-
ance 𝜎2 (or, equivalently, its standard deviation 𝜎). There are special functions for
generating data from different distributions - for the normal distribution it is called
rnorm. We specify the number of observations that we want to generate (n) and the
parameters of the distribution (the mean mu and the standard deviation sigma):
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rnorm(n = 10, mu = 2, sigma = 1)

# A shorter version:
rnorm(10, 2, 1)

Similarly, there are functions that can be used compute the quantile function, density
function, and cumulative distribution function (CDF) of the normal distribution.
Here are some examples for a normal distribution with mean 2 and standard deviation
1:
qnorm(0.9, 2, 1) # Upper 90 % quantile of distribution
dnorm(2.5, 2, 1) # Density function f(2.5)
pnorm(2.5, 2, 1) # Cumulative distribution function F(2.5)

∼

Exercise 7.1. Sampling can be done with or without replacement. If replacement
is used, an observation can be drawn more than once. Check the documentation
for sample. How can you change the settings to sample with replacement? Draw 5
random numbers from the first ten integers, with replacement.

7.1.2 Some common distributions
Next, we provide the syntax for random number generation, quantile functions, den-
sity/probability functions and cumulative distribution functions for some of the most
commonly used distributions. This section is mainly intended as a reference, for you
to look up when you need to use one of these distributions - so there is no need to
run all the code chunks below right now.

Normal distribution 𝑁(𝜇, 𝜎2) with mean 𝜇 and variance 𝜎2:
rnorm(n, mu, sigma) # Generate n random numbers
qnorm(0.95, mu, sigma) # Upper 95 % quantile of distribution
dnorm(x, mu, sigma) # Density function f(x)
pnorm(x, mu, sigma) # Cumulative distribution function F(X)

Continuous uniform distribution 𝑈(𝑎, 𝑏) on the interval (𝑎, 𝑏), with mean 𝑎+𝑏
2 and

variance (𝑏−𝑎)2

12 :
runif(n, a, b) # Generate n random numbers
qunif(0.95, a, b) # Upper 95 % quantile of distribution
dunif(x, a, b) # Density function f(x)
punif(x, a, b) # Cumulative distribution function F(X)

Exponential distribution 𝐸𝑥𝑝(𝑚) with mean 𝑚 and variance 𝑚2:
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rexp(n, 1/m) # Generate n random numbers
qexp(0.95, 1/m) # Upper 95 % quantile of distribution
dexp(x, 1/m) # Density function f(x)
pexp(x, 1/m) # Cumulative distribution function F(X)

Gamma distribution Γ(𝛼, 𝛽) with mean 𝛼
𝛽 and variance 𝛼

𝛽2 :
rgamma(n, alpha, beta) # Generate n random numbers
qgamma(0.95, alpha, beta) # Upper 95 % quantile of distribution
dgamma(x, alpha, beta) # Density function f(x)
pgamma(x, alpha, beta) # Cumulative distribution function F(X)

Lognormal distribution 𝐿𝑁(𝜇, 𝜎2) with mean exp(𝜇+𝜎2/2) and variance (exp(𝜎2)−
1) exp(2𝜇 + 𝜎2):
rlnorm(n, mu, sigma) # Generate n random numbers
qlnorm(0.95, mu, sigma) # Upper 95 % quantile of distribution
dlnorm(x, mu, sigma) # Density function f(x)
plnorm(x, mu, sigma) # Cumulative distribution function F(X)

t-distribution 𝑡(𝜈) with mean 0 (for 𝜈 > 1) and variance 𝜈
𝜈−2 (for 𝜈 > 2):

rt(n, nu) # Generate n random numbers
qt(0.95, nu) # Upper 95 % quantile of distribution
dt(x, nu) # Density function f(x)
pt(x, nu) # Cumulative distribution function F(X)

Chi-squared distribution 𝜒2(𝑘) with mean 𝑘 and variance 2𝑘:
rchisq(n, k) # Generate n random numbers
qchisq(0.95, k) # Upper 95 % quantile of distribution
dchisq(x, k) # Density function f(x)
pchisq(x, k) # Cumulative distribution function F(X)

F-distribution 𝐹(𝑑1, 𝑑2) with mean 𝑑2
𝑑2−2 (for 𝑑2 > 2) and variance 2𝑑2

2(𝑑1+𝑑2−2)
𝑑1(𝑑2−2)2(𝑑2−4) (for

𝑑2 > 4):
rf(n, d1, d2) # Generate n random numbers
qf(0.95, d1, d2) # Upper 95 % quantile of distribution
df(x, d1, d2) # Density function f(x)
pf(x, d1, d2) # Cumulative distribution function F(X)

Beta distribution 𝐵𝑒𝑡𝑎(𝛼, 𝛽) with mean 𝛼
𝛼+𝛽 and variance 𝛼𝛽

(𝛼+𝛽)2(𝛼+𝛽+1) :
rbeta(n, alpha, beta) # Generate n random numbers
qbeta(0.95, alpha, beta) # Upper 95 % quantile of distribution
dbeta(x, alpha, beta) # Density function f(x)
pbeta(x, alpha, beta) # Cumulative distribution function F(X)
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Binomial distribution 𝐵𝑖𝑛(𝑛, 𝑝) with mean 𝑛𝑝 and variance 𝑛𝑝(1 − 𝑝):
rbinom(n, n, p) # Generate n random numbers
qbinom(0.95, n, p) # Upper 95 % quantile of distribution
dbinom(x, n, p) # Probability function f(x)
pbinom(x, n, p) # Cumulative distribution function F(X)

Poisson distribution 𝑃𝑜(𝜆) with mean 𝜆 and variance 𝜆:
rpois(n, lambda) # Generate n random numbers
qpois(0.95, lambda) # Upper 95 % quantile of distribution
dpois(x, lambda) # Probability function f(x)
ppois(x, lambda) # Cumulative distribution function F(X)

Negative binomial distribution 𝑁𝑒𝑔𝐵𝑖𝑛(𝑟, 𝑝) with mean 𝑟𝑝
1−𝑝 and variance 𝑟𝑝

(1−𝑝)2 :
rnbinom(n, r, p) # Generate n random numbers
qnbinom(0.95, r, p) # Upper 95 % quantile of distribution
dnbinom(x, r, p) # Probability function f(x)
pnbinom(x, r, p) # Cumulative distribution function F(X)

Multivariate normal distribution with mean vector 𝜇 and covariance matrix Σ:
library(MASS)
mvrnorm(n, mu, Sigma) # Generate n random numbers

∼

Exercise 7.2. Use runif and (at least) one of round, ceiling and floor to generate
observations from a discrete random variable on the integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

7.1.3 Assessing distributional assumptions
So how can we know that the functions for generating random observations from
distributions work? And when working with real data, how can we know what distri-
bution fits the data? One answer is that we can visually compare the distribution of
the generated (or real) data to the target distribution. This can for instance be done
by comparing a histogram of the data to the target distribution’s density function.

To do so, we must add aes(y = ..density..)) to the call to geom_histogram,
which rescales the histogram to have area 1 (just like a density function has). We
can then add the density function using geom_function:
# Generate data from a normal distribution with mean 10 and
# standard deviation 1
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generated_data <- data.frame(normal_data = rnorm(1000, 10, 1))

library(ggplot2)
# Compare to histogram:
ggplot(generated_data, aes(x = normal_data)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = mean(generated_data$normal_data),
sd = sd(generated_data$normal_data)))

Try increasing the number of observations generated. As the number of observations
increase, the histogram should start to look more and more like the density function.

We could also add a density estimate for the generated data, to further aid the eye
here - we’d expect this to be close to the theoretical density function:
# Compare to density estimate:
ggplot(generated_data, aes(x = normal_data)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_density(colour = "blue", size = 2) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = mean(generated_data$normal_data),
sd = sd(generated_data$normal_data)))

If instead we wished to compare the distribution of the data to a 𝜒2 distribution, we
would change the value of fun and args in geom_function accordingly:
# Compare to density estimate:
ggplot(generated_data, aes(x = normal_data)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_density(colour = "blue", size = 2) +
geom_function(fun = dchisq, colour = "red", size = 2,

args = list(df = mean(generated_data$normal_data)))

Note that the values of args have changed. args should always be a list containing
values for the parameters of the distribution: mu and sigma for the normal distribu-
tion and df for the 𝜒2 distribution (the same as in Section 7.1.2).

Another option is to draw a quantile-quantile plot, or Q-Q plot for short, which
compares the theoretical quantiles of a distribution to the empirical quantiles of
the data, showing each observation as a point. If the data follows the theorised
distribution, then the points should lie more or less along a straight line.

To draw a Q-Q plot for a normal distribution, we use the geoms geom_qq and
geom_qq_line:
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# Q-Q plot for normality:
ggplot(generated_data, aes(sample = normal_data)) +

geom_qq() + geom_qq_line()

For all other distributions, we must provide the quantile function of the distribution
(many of which can be found in Section 7.1.2):
# Q-Q plot for the lognormal distribution:
ggplot(generated_data, aes(sample = normal_data)) +

geom_qq(distribution = qlnorm) +
geom_qq_line(distribution = qlnorm)

Q-Q-plots can be a little difficult to read. There will always be points deviating
from the line - in fact, that’s expected. So how much must they deviate before we
rule out a distributional assumption? Particularly when working with real data, I
like to compare the Q-Q-plot of my data to Q-Q-plots of simulated samples from
the assumed distribution, to get a feel for what kind of deviations can appear if the
distributional assumption holds. Here’s an example of how to do this, for the normal
distribution:
# Look at solar radiation data for May from the airquality
# dataset:
May <- airquality[airquality$Month == 5,]

# Create a Q-Q-plot for the solar radiation data, and store
# it in a list:
qqplots <- list(ggplot(May, aes(sample = Solar.R)) +
geom_qq() + geom_qq_line() + ggtitle("Actual data"))

# Compute the sample size n:
n <- sum(!is.na(May$Temp))

# Generate 8 new datasets of size n from a normal distribution.
# Then draw Q-Q-plots for these and store them in the list:
for(i in 2:9)
{

generated_data <- data.frame(normal_data = rnorm(n, 10, 1))
qqplots[[i]] <- ggplot(generated_data, aes(sample = normal_data)) +
geom_qq() + geom_qq_line() + ggtitle("Simulated data")

}

# Plot the resulting Q-Q-plots side-by-side:
library(patchwork)
(qqplots[[1]] + qqplots[[2]] + qqplots[[3]]) /
(qqplots[[4]] + qqplots[[5]] + qqplots[[6]]) /
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(qqplots[[7]] + qqplots[[8]] + qqplots[[9]])

You can run the code several times, to get more examples of what Q-Q-plots can
look like when the distributional assumption holds. In this case, the tail points in
the Q-Q-plot for the solar radiation data deviate from the line more than the tail
points in most simulated examples do, and personally, I’d be reluctant to assume
that the data comes from a normal distribution.

∼

Exercise 7.3. Investigate the sleeping times in the msleep data from the ggplot2
package. Do they appear to follow a normal distribution? A lognormal distribution?

Exercise 7.4. Another approach to assessing distributional assumptions for real
data is to use formal hypothesis tests. One example is the Shapiro-Wilk test for
normality, available in shapiro.test. The null hypothesis is that the data comes
from a normal distribution, and the alternative is that it doesn’t (meaning that a
low p-value is supposed to imply non-normality).

1. Apply shapiro.test to the sleeping times in the msleep dataset. According
to the Shapiro-Wilk test, is the data normally distributed?

2. Generate 2,000 observations from a 𝜒2(100) distribution. Compare the his-
togram of the generated data to the density function of a normal distribution.
Are they similar? What are the results when you apply the Shapiro-Wilk test
to the data?

7.1.4 Monte Carlo integration
In this chapter, we will use simulation to compute p-values and confidence intervals,
to compare different statistical methods, and to perform sample size computations.
Another important use of simulation is in Monte Carlo integration, in which random
numbers are used for numerical integration. It plays an important role in for instance
statistical physics, computational biology, computational linguistics, and Bayesian
statistics; fields that require the computation of complicated integrals.

To create an example of Monte Carlo integration, let’s start by writing a function,
circle, that defines a quarter-circle on the unit square. We will then plot it using
the geom geom_function:
circle <- function(x)
{

return(sqrt(1-x^2))
}
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ggplot(data.frame(x = c(0, 1)), aes(x)) +
geom_function(fun = circle)

Let’s say that we are interest in computing the area under quarter-circle. We can
highlight the area in our plot using geom_area:
ggplot(data.frame(x = seq(0, 1, 1e-4)), aes(x)) +

geom_area(aes(x = x,
y = ifelse(x^2 + circle(x)^2 <= 1, circle(x), 0)),
fill = "pink") +

geom_function(fun = circle)

To find the area, we will generate a large number of random points uniformly in the
unit square. By the law of large numbers, the proportion of points that end up under
the quarter-circle should be close to the area under the quarter-circle1. To do this,
we generate 10,000 random values for the 𝑥 and 𝑦 coordinates of each point using
the 𝑈(0, 1) distribution, that is, using runif:
B <- 1e4
unif_points <- data.frame(x = runif(B), y = runif(B))

Next, we add the points to our plot:
ggplot(unif_points, aes(x, y)) +

geom_area(aes(x = x,
y = ifelse(x^2 + circle(x)^2 <= 1, circle(x), 0)),
fill = "pink") +

geom_point(size = 0.5, alpha = 0.25,
colour = ifelse(unif_points$x^2 + unif_points$y^2 <= 1,

"red", "black")) +
geom_function(fun = circle)

Note the order in which we placed the geoms - we plot the points after the area so
that the pink colour won’t cover the points, and the function after the points so that
the points won’t cover the curve.

To estimate the area, we compute the proportion of points that are below the curve:
mean(unif_points$x^2 + unif_points$y^2 <= 1)

In this case, we can also compute the area exactly: ∫1
0

√
1 − 𝑥2𝑑𝑥 = 𝜋/4 = 0.7853 ….

For more complicated integrals, however, numerical integration methods like Monte
Carlo integration may be required. That being said, there are better numerical inte-
gration methods for low-dimensional integrals like this one. Monte Carlo integration

1In general, the proportion of points that fall below the curve will be proportional to the area
under the curve relative to the area of the sample space. In this case the sample space is the unit
square, which has area 1, meaning that the relative area is the same as the absolute area.
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is primarily used for higher-dimensional integrals, where other techniques fail.

7.2 Student’s t-test revisited
For decades teachers all over the world have been telling the story of William Sealy
Gosset: the head brewer at Guinness who derived the formulas used for the t-test
and, following company policy, published the results under the pseudonym “Student”.

Gosset’s work was hugely important, but the passing of time has rendered at least
parts of it largely obsolete. His distributional formulas were derived out of necessity:
lacking the computer power that we have available to us today, he was forced to
impose the assumption of normality on the data, in order to derive the formulas he
needed to be able to carry out his analyses. Today we can use simulation to carry out
analyses with fewer assumptions. As an added bonus, these simulation techniques
often happen to result in statistical methods with better performance than Student’s
t-test and other similar methods.

7.2.1 The old-school t-test
The really old-school way of performing a t-test - the way statistical pioneers like
Gosset and Fisher would have done it - is to look up p-values using tables covering
several pages. There haven’t really been any excuses for doing that since the advent
of the personal computer though, so let’s not go further into that. The “modern”
version of the old-school t-test uses numerical evaluation of the formulas for Student’s
t-distribution to compute p-values and confidence intervals. Before we delve into
more modern approaches, let’s look at how we can run an old-school t-test in R.

In Section 3.6 we used t.test to run a t-test to see if there is a difference in how
long carnivores and herbivores sleep, using the msleep data from ggplot22. First,
we subtracted a subset of the data corresponding to carnivores and herbivores, and
then we ran the test. There are in fact several different ways of doing this, and it is
probably a good idea to have a look at them.

In the approach used in Section 3.6 we created two vectors, using bracket notation,
and then used those as arguments for t.test:
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
t.test(carnivores$sleep_total, herbivores$sleep_total)

Alternatively, we could have used formula notation, as we e.g. did for the linear model
in Section 3.7. We’d then have to use the data argument in t.test to supply the

2Note that this is not a random sample of mammals, and so one of the fundamental assumptions
behind the t-test isn’t valid in this case. For the purpose of showing how to use the t-test, the data
is good enough though.
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data. By using subset, we can do the subsetting simultaneously:
t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

Unless we are interested in keeping the vectors carnivores and herbivores for other
purposes, this latter approach is arguably more elegant.

Speaking of elegance, the data argument also makes it easy to run a t-test using
pipes. Here is an example, where we use filter from dplyr to do the subsetting:
library(dplyr)
msleep %>% filter(vore == "carni" | vore == "herbi") %>%

t.test(sleep_total ~ vore, data = .)

We could also use the magrittr pipe %$% from Section 6.2 to pass the variables from
the filtered subset of msleep, avoiding the data argument:
library(magrittr)
msleep %>% filter(vore == "carni" | vore == "herbi") %$%

t.test(sleep_total ~ vore)

There are even more options than this - the point that I’m trying to make here is
that like most functions in R, you can use functions for classical statistics in many
different ways. In what follows, I will show you one or two of these, but don’t hesitate
to try out other approaches if they seem better to you.

What we just did above was a two-sided t-test, where the null hypothesis was that
there was no difference in means between the groups, and the alternative hypoth-
esis that there was a difference. We can also perform one-sided tests using the
alternative argument. alternative = "greater" means that the alternative is
that the first group has a greater mean, and alternative = "less" means that the
first group has a smaller mean. Here is an example with the former:
t.test(sleep_total ~ vore,

data = subset(msleep, vore == "carni" | vore == "herbi"),
alternative = "greater")

By default, R uses the Welch two-sample t-test, meaning that it is not assumed that
the groups have equal variances. If you don’t want to make that assumption, you
can add var.equal = TRUE:
t.test(sleep_total ~ vore,

data = subset(msleep, vore == "carni" | vore == "herbi"),
var.equal = TRUE)

In addition to two-sample t-tests, t.test can also be used for one-sample tests and
paired t-tests. To perform a one-sample t-test, all we need to do is to supply a
single vector with observations, along with the value of the mean 𝜇 under the null
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hypothesis. I usually sleep for about 7 hours each night, and so if I want to test
whether that is true for an average mammal, I’d use the following:
t.test(msleep$sleep_total, mu = 7)

As we can see from the output, your average mammal sleeps for 10.4 hours per day.
Moreover, the p-value is quite low - apparently, I sleep unusually little for a mammal!

As for paired t-tests, we can perform them by supplying two vectors (where element
1 of the first vector corresponds to element 1 of the second vector, and so on) and
the argument paired = TRUE. For instance, using the diamonds data from ggplot2,
we could run a test to see if the length x of diamonds with a fair quality of the cut
on average equals the width y:
fair_diamonds <- subset(diamonds, cut == "Fair")
t.test(fair_diamonds$x, fair_diamonds$y, paired = TRUE)

∼

Exercise 7.5. Load the VAS pain data vas.csv from Exercise 3.8. Perform a one-
sided t-test to see test the null hypothesis that the average VAS among the patients
during the time period is less than or equal to 6.

7.2.2 Permutation tests
Maybe it was a little harsh to say that Gosset’s formulas have become obsolete. The
formulas are mathematical approximations to the distribution of the test statistics
under the null hypothesis. The truth is that they work very well as long as your data
is (nearly) normally distributed. The two-sample test also works well for non-normal
data as long as you have balanced sample sizes, that is, equally many observations in
both groups. However, for one-sample tests, and two-sample tests with imbalanced
sample sizes, there are better ways to compute p-values and confidence intervals than
to use Gosset’s traditional formulas.

The first option that we’ll look at is permutation tests. Let’s return to our mammal
sleeping times example, where we wanted to investigate whether there are differences
in how long carnivores and herbivores sleep on average:
t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

There are 19 carnivores and 32 herbivores - 51 animals in total. If there are no
differences between the two groups, the vore labels offer no information about how
long the animals sleep each day. Under the null hypothesis, the assignment of vore
labels to different animals is therefore for all intents and purposes random. To find
the distribution of the test statistic under the null hypothesis, we could look at all
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possible ways to assign 19 animals the label carnivore and 32 animals the label
herbivore. That is, look at all permutations of the labels. The probability of a
result at least as extreme as that obtained in our sample (in the direction of the
alternative), i.e. the p-value, would then be the proportion of permutations that
yield a result at least extreme as that in our sample. This is known as a permutation
test.

Permutation tests were known to the likes of Gosset and Fisher (Fisher’s exact test is
a common example), but because the number of permutations of labels often tend to
become quite large (76,000 billion, in our carnivore-herbivore example), they lacked
the means actually to use them. 76,000 billion permutations may be too many even
today, but we can obtain very good approximations of the p-values of permutation
tests using simulation.

The idea is that we look at a large number of randomly selected permutations, and
check for how many of them we obtain a test statistic that is more extreme than
the sample test statistic. The law of large number guarantees that this proportion
will converge to the permutation test p-value as the number of randomly selected
permutations increases.

Let’s have a go!
# Filter the data, to get carnivores and herbivores:
data <- subset(msleep, vore == "carni" | vore == "herbi")

# Compute the sample test statistic:
sample_t <- t.test(sleep_total ~ vore, data = data)$statistic

# Set the number of random permutations and create a vector to
# store the result in:
B <- 9999
permutation_t <- vector("numeric", B)

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

# Compute the test statistic for B randomly selected permutations
for(i in 1:B)
{

# Draw a permutation of the labels:
data$vore <- sample(data$vore, length(data$vore),

replace = FALSE)

# Compute statistic for permuted sample:
permutation_t[i] <- t.test(sleep_total ~ vore,

data = data)$statistic



260 CHAPTER 7. MODERN CLASSICAL STATISTICS

# Update progress bar
setTxtProgressBar(pbar, i)

}
close(pbar)

# In this case, with a two-sided alternative hypothesis, a
# "more extreme" test statistic is one that has a larger
# absolute value than the sample test statistic.

# Compute approximate permutation test p-value:
mean(abs(permutation_t) > abs(sample_t))

In this particular example, the resulting p-value is pretty close to that from the old-
school t-test. However, we will soon see examples where the two versions of the t-test
differ more.

You may ask why we used 9,999 permutations and not 10,000. The reason is that we
avoid p-values that are equal to traditional significance levels like 0.05 and 0.01 this
way. If we’d used 10,000 permutations, 500 of which yielded a statistics that had
a larger absolute value than the sample statistic, then the p-value would have been
exactly 0.05, which would cause some difficulties in trying to determine whether
or not the result was significant at the 5 % level. This cannot happen when we
use 9,999 permutations instead (500 statistics with a large absolute value yields the
p-value 0.050005 > 0.05, and 499 yields the p-value 0.0499 < 0.05).
Having to write a for loop every time we want to run a t-test seems unnecessarily
complicated. Fortunately, others have tread this path before us. The MKinfer pack-
age contains a function to perform (approximate) permutation t-tests, which also
happens to be faster than our implementation above. Let’s install it:
install.packages("MKinfer")

The function for the permutation t-test, perm.t.test, works exactly like t.test. In
all the examples from Section 7.2.1 we can replace t.test with perm.t.test to run
a permutation t-test instead. Like so:
library(MKinfer)
perm.t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

Note that two p-values and confidence intervals are presented: one set from the
permutations and one from the old-school approach - so make sure that you look at
the right ones!

You may ask how many randomly selected permutations we need to get an accurate
approximation of the permutation test p-value. By default, perm.t.test uses 9,999



7.2. STUDENT’S T-TEST REVISITED 261

permutations (you can change that number using the argument R), which is widely
considered to be a reasonable number. If you are running a permutation test with a
much more complex (and computationally intensive) statistic, you may have to use
a lower number, but avoid that if you can.

7.2.3 The bootstrap
A popular method for computing p-values and confidence intervals that resembles the
permutation approach is the bootstrap. Instead of drawing permuted samples, new
observations are drawn with replacement from the original sample, and then labels
are randomly allocated to them. That means that each randomly drawn sample
will differ not only in the permutation of labels, but also in what observations are
included - some may appear more than once and some not at all.

We will have a closer look at the bootstrap in Section 7.7, where we will learn
how to use it for creating confidence intervals and computing p-values for any test
statistic. For now, we’ll just note that MKinfer offers a bootstrap version of the
t-test, boot.t.test :
library(MKinfer)
boot.t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

Both perm.test and boot.test have a useful argument called symmetric, the details
of which are discussed in depth in Section 12.3.

7.2.4 Saving the output
When we run a t-test, the results are printed in the Console. But we can also store
the results in a variable, which allows us to access e.g. the p-value of the test:
library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
test_result <- t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

test_result

What does the resulting object look like?
str(test_result)

As you can see, test_result is a list containing different parameters and vectors
for the test. To get the p-value, we can run the following:
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test_result$p.value

7.2.5 Multiple testing
Some programming tools from Section 6.4 can be of use if we wish to perform multiple
t-tests. For example, maybe we want to make pairwise comparisons of the sleeping
times of all the different feeding behaviours in msleep: carnivores, herbivores, in-
sectivores and omnivores. To find all possible pairs, we can use a nested for loop
(Section 6.4.2). Note how the indices i and j that we loop over are set so that we
only run the test for each combination once:
library(MKinfer)

# List the different feeding behaviours (ignoring NA's):
vores <- na.omit(unique(msleep$vore))
B <- length(vores)

# Compute the number of pairs, and create an appropriately
# sized data frame to store the p-values in:
n_comb <- choose(B, 2)
p_values <- data.frame(group1 = vector("character", n_comb),

group2 = vector("character", n_comb),
p = vector("numeric", n_comb))

# Loop over all pairs:
k <- 1 # Counter variable
for(i in 1:(B-1))
{

for(j in (i+1):B)
{

# Run a t-test for the current pair:
test_res <- perm.t.test(sleep_total ~ vore,

data = subset(msleep,
vore == vores[i] | vore == vores[j]))

# Store the p-value:
p_values[k, ] <- c(vores[i], vores[j], test_res$p.value)
# Increase the counter variable:
k <- k + 1

}
}

To view the p-values for each pairwise test, we can now run:
p_values
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When we run multiple tests, the risk for a type I error increases, to the point where
we’re virtually guaranteed to get a significant result. We can reduce the risk of
false positive results and adjust the p-values for multiplicity using for instance Bon-
ferroni correction, Holm’s method (an improved version of the standard Bonferroni
approach), or the Benjamini-Hochberg approach (which controls the false discovery
rate and is useful if you for instance are screening a lot of variables for differences),
using p.adjust:
p.adjust(p_values$p, method = "bonferroni")
p.adjust(p_values$p, method = "holm")
p.adjust(p_values$p, method = "BH")

7.2.6 Multivariate testing with Hotelling’s 𝑇 2

If you are interested in comparing the means of several variables for two groups, using
a multivariate test is sometimes a better option than running multiple univariate
t-tests. The multivariate generalisation of the t-test, Hotelling’s 𝑇 2, is available
through the Hotelling package:
install.packages("Hotelling")

As an example, consider the airquality data. Let’s say that we want to test whether
the mean ozone, solar radiation, wind speed, and temperature differ between June
and July. We could use four separate t-tests to test this, but we could also use
Hotelling’s 𝑇 2 to test the null hypothesis that the mean vector, i.e. the vector con-
taining the four means, is the same for both months. The function used for this is
hotelling.test:
# Subset the data:
airquality_t2 <- subset(airquality, Month == 6 | Month == 7)

# Run the test under the assumption of normality:
library(Hotelling)
t2 <- hotelling.test(Ozone + Solar.R + Wind + Temp ~ Month,

data = airquality_t2)
t2

# Run a permutation test instead:
t2 <- hotelling.test(Ozone + Solar.R + Wind + Temp ~ Month,

data = airquality_t2, perm = TRUE)
t2

7.2.7 Sample size computations for the t-test
In any study, it is important to collect enough data for the inference that we wish
to make. If we want to use a t-test for a test about a mean or the difference of two
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means, what constitutes “enough data” is usually measured by the power of the test.
The sample is large enough when the test achieves high enough power. If we are
comfortable assuming normality (and we may well be, especially as the main goal
with sample size computations is to get a ballpark figure), we can use power.t.test
to compute what power our test would achieve under different settings. For a two-
sample test with unequal variances, we can use power.welch.t.test from MKpower
instead. Both functions can be used to either find the sample size required for a
certain power, or to find out what power will be obtained from a given sample size.

First of all, let’s install MKpower:
install.packages("MKpower")

power.t.test and power.welch.t.test both use delta to denote the mean differ-
ence under the alternative hypothesis. In addition, we must supply the standard
deviationsd of the distribution. Here are some examples:
library(MKpower)

# A one-sided one-sample test with 80 % power:
power.t.test(power = 0.8, delta = 1, sd = 1, sig.level = 0.05,

type = "one.sample", alternative = "one.sided")

# A two-sided two-sample test with sample size n = 25 and equal
# variances:
power.t.test(n = 25, delta = 1, sd = 1, sig.level = 0.05,

type = "two.sample", alternative = "two.sided")

# A one-sided two-sample test with 90 % power and equal variances:
power.t.test(power = 0.9, delta = 1, sd = 0.5, sig.level = 0.01,

type = "two.sample", alternative = "one.sided")

# A one-sided two-sample test with 90 % power and unequal variances:
power.welch.t.test(power = 0.9, delta = 1, sd1 = 0.5, sd2 = 1,

sig.level = 0.01,
type = "two.sample", alternative = "one.sided")

You may wonder how to choose delta and sd. If possible, it is good to base these
numbers on a pilot study or related previous work. If no such data is available, your
guess is as good as mine. For delta, some useful terminology comes from medical
statistics, where the concept of clinical significance is used increasingly often. Make
sure that delta is large enough to be clinically significant, that is, large enough to
actually matter in practice.

If we have reason to believe that the data follows a non-normal distribution, another
option is to use simulation to compute the sample size that will be required. We’ll
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do just that in Section 7.6.

Exercise 7.6. Return to the one-sided t-test that you performed in Exercise 7.5.
Assume that delta is 0.5 (i.e. that the true mean is 6.5) and that the standard
deviation is 2. How large does the sample size 𝑛 have to be for the power of the
test to be 95 % at a 5 % significance level? What is the power of the test when the
sample size is 𝑛 = 2, 351?

7.2.8 A Bayesian approach
The Bayesian paradigm differs in many ways from the frequentist approach that
we use in the rest of this chapter. In Bayesian statistics, we first define a prior
distribution for the parameters that we are interested in, representing our beliefs
about them (for instance based on previous studies). Bayes’ theorem is then used
to derive the posterior distribution, i.e. the distribution of the coefficients given the
prior distribution and the data. Philosophically, this is very different from frequentist
estimation, in which we don’t incorporate prior beliefs into our models (except for
through which variables we include).

In many situations, we don’t have access to data that can be used to create an infor-
mative prior distribution. In such cases, we can use a so-called weakly informative
prior instead. These act as a sort of “default priors”, representing large uncertainty
about the values of the coefficients.

The rstanarm package contains methods for using Bayesian estimation to fit some
common statistical models. It takes a while to install, but it is well worth it:
install.packages("rstanarm")

To use a Bayesian model with a weakly informative prior to analyse the difference in
sleeping time between herbivores and carnivores, we load rstanarm and use stan_glm
in complete analogue with how we use t.test:
library(rstanarm)
library(ggplot2)
m <- stan_glm(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

# Print the estimates:
m

There are two estimates here: an “intercept” (the average sleeping time for carni-
vores) and voreherbi (the difference between carnivores and herbivores). To plot
the posterior distribution of the difference, we can use plot:
plot(m, "dens", pars = c("voreherbi"))
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To get a 95 % credible interval (the Bayesian equivalent of a confidence interval) for
the difference, we can use posterior_interval as follows:
posterior_interval(m,

pars = c("voreherbi"),
prob = 0.95)

p-values are not a part of Bayesian statistics, so don’t expect any. It is however
possible to perform a kind of Bayesian test of whether there is a difference by checking
whether the credible interval for the difference contains 0. If not, there is evidence
that there is a difference (Thulin, 2014c). In this case, 0 is contained in the interval,
and there is no evidence of a difference.

In most cases, Bayesian estimation is done using Monte Carlo integration (specifically,
a class of methods known as Markov Chain Monte Carlo, MCMC). To check that the
model fitting has converged, we can use a measure called �̂�. It should be less than
1.1 if the fitting has converged:
plot(m, "rhat")

If the model fitting hasn’t converged, you may need to increase the number of itera-
tions of the MCMC algorithm. You can increase the number of iterations by adding
the argument iter to stan_glm (the default is 2,000).

If you want to use a custom prior for your analysis, that is of course possible too.
See ?priors and ?stan_glm for details about this, and about the default weakly
informative prior.

7.3 Other common hypothesis tests and confidence
intervals

There are thousands of statistical tests in addition to the t-test, and equally many
methods for computing confidence intervals for different parameters. In this section
we will have a look at some useful tools: the nonparametric Wilcoxon-Mann-Whitney
test for location, tests for correlation, 𝜒2-tests for contingency tables, and confidence
intervals for proportions.

7.3.1 Nonparametric tests of location
The Wilcoxon-Mann-Whitney test, wilcox.test in R, is a nonparametric alternative
to the t-test that is based on ranks. wilcox.test can be used in complete analogue
to t.test.

We can use two vectors as input:
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library(ggplot2)
carnivores <- msleep[msleep$vore == "carni",]
herbivores <- msleep[msleep$vore == "herbi",]
wilcox.test(carnivores$sleep_total, herbivores$sleep_total)

Or use a formula:
wilcox.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"))

7.3.2 Tests for correlation
To test the null hypothesis that two numerical variables are correlated, we can use
cor.test. Let’s try it with sleeping times and brain weight, using the msleep data
again:
library(ggplot2)
cor.test(msleep$sleep_total, msleep$brainwt,

use = "pairwise.complete")

The setting use = "pairwise.complete" means that NA values are ignored.

cor.test doesn’t have a data argument, so if you want to use it in a pipeline I
recommend using the %$% pipe (Section 6.2) to pass on the vectors from your data
frame:
library(magrittr)
msleep %$% cor.test(sleep_total, brainwt, use = "pairwise.complete")

The test we just performed uses the Pearson correlation coefficient as its test statistic.
If you prefer, you can use the nonparametric Spearman and Kendall correlation
coefficients in the test instead, by changing the value of method:
# Spearman test of correlation:
cor.test(msleep$sleep_total, msleep$brainwt,

use = "pairwise.complete",
method = "spearman")

These tests are all based on asymptotic approximations, which among other things
causes the Pearson correlation test perform poorly for non-normal data. In Sec-
tion 7.7 we will create a bootstrap version of the correlation test, which has better
performance.

7.3.3 𝜒2-tests
𝜒2 (chi-squared) tests are most commonly used to test whether two categorical vari-
ables are independent. To use it, we must first construct a contingency table, i.e. a
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table showing the counts for different combinations of categories, typically using
table. Here is an example with the diamonds data from ggplot2:
library(ggplot2)
table(diamonds$cut, diamonds$color)

The null hypothesis of our test is that the quality of the cut (cut) and the colour
of the diamond (color) are independent, with the alternative being that they are
dependent. We use chisq.test with the contingency table as input to run the 𝜒2

test of independence:
chisq.test(table(diamonds$cut, diamonds$color))

By default, chisq.test uses an asymptotic approximation of the p-value. For
small sample sizes, it is almost often better to use permutation p-values by setting
simulate.p.value = TRUE (but here the sample is not small, and so the computa-
tion of the permutation test will take a while):
chisq.test(table(diamonds$cut, diamonds$color),

simulate.p.value = TRUE)

As with t.test, we can use pipes to perform the test if we like:
library(magrittr)
diamonds %$% table(cut, color) %>%

chisq.test()

If both of the variables are binary, i.e. only take two values, the power of the test can
be approximated using power.prop.test. Let’s say that we have two variables, 𝑋
and 𝑌 , taking the values 0 and 1. Assume that we collect 𝑛 observations with 𝑋 = 0
and 𝑛 with 𝑋 = 1. Furthermore, let p1 be the probability that 𝑌 = 1 if 𝑋 = 0 and
p2 be the probability that 𝑌 = 1 if 𝑋 = 1. We can then use power.prop.test as
follows:
# Assume that n = 50, p1 = 0.4 and p2 = 0.5 and compute the power:
power.prop.test(n = 50, p1 = 0.4, p2 = 0.5, sig.level = 0.05)

# Assume that p1 = 0.4 and p2 = 0.5 and that we want 85 % power.
# To compute the sample size required:
power.prop.test(power = 0.85, p1 = 0.4, p2 = 0.5, sig.level = 0.05)

7.3.4 Confidence intervals for proportions
The different t-test functions provide confidence intervals for means and differences of
means. But what about proportions? The binomCI function in the MKinfer package
allows us to compute confidence intervals for proportions from binomial experiments
using a number of methods. The input is the number of “successes” x, the sample
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size n, and the method to be used.

Let’s say that we want to compute a confidence interval for the proportion of herbi-
vore mammals that sleep for more than 7 hours a day.
library(ggplot2)
herbivores <- msleep[msleep$vore == "herbi",]

# Compute the number of animals for which we know the sleeping time:
n <- sum(!is.na(herbivores$sleep_total))

# Compute the number of "successes", i.e. the number of animals
# that sleep for more than 7 hours:
x <- sum(herbivores$sleep_total > 7, na.rm = TRUE)

The estimated proportion is x/n, which in this case is 0.625. We’d like to quantify
the uncertainty in this estimate by computing a confidence interval. The standard
Wald method, taught in most introductory courses, can be computed using:
library(MKinfer)
binomCI(x, n, conf.level = 0.95, method = "wald")

Don’t do that though! The Wald interval is known to be severely flawed (Brown et
al., 2001), and much better options are available. If the proportion can be expected
to be close to 0 or 1, the Clopper-Pearson interval is recommended, and otherwise
the Wilson interval is the best choice (Thulin, 2014a):
binomCI(x, n, conf.level = 0.95, method = "clopper-pearson")
binomCI(x, n, conf.level = 0.95, method = "wilson")

An excellent Bayesian credible interval is the Jeffreys interval, which uses the weakly
informative Jeffreys prior:
binomCI(x, n, conf.level = 0.95, method = "jeffreys")

The ssize.propCI function in MKpower can be used to compute the sample size
needed to obtain a confidence interval with a given width3. It relies on asymptotic
formulas that are highly accurate, as you later on will verify in Exercise 7.17.
library(MKpower)
# Compute the sample size required to obtain an interval with
# width 0.1 if the true proportion is 0.4:
ssize.propCI(prop = 0.4, width = 0.1, method = "wilson")
ssize.propCI(prop = 0.4, width = 0.1, method = "clopper-pearson")

3Or rather, a given expected, or average, width. The width of the interval is a function of a
random variable, and is therefore also random.
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∼

Exercise 7.7. The function binomDiffCI from MKinfer can be used to compute
a confidence interval for the difference of two proportions. Using the msleep data,
use it to compute a confidence interval for the difference between the proportion of
herbivores that sleep for more than 7 hours a day and the proportion of carnivores
that sleep for more than 7 hours a day.

7.4 Ethical issues in statistical inference
The use and misuse of statistical inference offer many ethical dilemmas. Some com-
mon issues related to ethics and good statistical practice are discussed below. As
you read them and work with the associated exercises, consider consulting the ASA’s
ethical guidelines, presented in Section 3.11.

7.4.1 p-hacking and the file-drawer problem
Hypothesis tests are easy to misuse. If you run enough tests on your data, you
are almost guaranteed to end up with significant results - either due to chance or
because some of the null hypotheses you test are false. The process of trying lots
of different tests (different methods, different hypotheses, different sub-groups) in
search of significant results is known as p-hacking or data dredging. This greatly
increases the risk of false findings, and can often produce misleading results.

Many practitioners inadvertently resort to p-hacking, by mixing exploratory data
analysis and hypothesis testing, or by coming up with new hypotheses to test as they
work with their data. This can be avoided by planning your analyses in advance, a
practice that in fact is required in medical trials.

On the other end of the spectrum, there is the file-drawer problem, in which studies
with negative (i.e. not statistically significant) results aren’t published or reported,
but instead are stored in the researcher’s file-drawers. There are many reasons for
this, one being that negative results usually are seen as less important and less worthy
of spending time on. Simply put, negative results just aren’t news. If your study
shows that eating kale every day significantly reduces the risk of cancer, then that is
news, something that people are interested in learning, and something that can be
published in a prestigious journal. However, if your study shows that a daily serving
of kale has no impact on the risk of cancer, that’s not news, people aren’t really
interested in hearing it, and it may prove difficult to publish your findings.

But what if 100 different researchers carried out the same study? If eating kale
doesn’t affect the risk of cancer, then we can still expect 5 out of these researchers
to get significant results (using a 5 % significance level). If only those researchers
publish their results, that may give the impressions that there is strong evidence of
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the cancer-preventing effect of kale backed up by several papers, even though the
majority of studies actually indicated that there was no such effect.

∼

Exercise 7.8. Discuss the following. You are helping a research team with statistical
analysis of data that they have collected. You agree on five hypotheses to test.
None of the tests turns out significant. Fearing that all their hard work won’t lead
anywhere, your collaborators then ask you to carry out five new tests. Neither turns
out significant. Your collaborators closely inspect the data and then ask you to carry
out ten more tests, two of which are significant. The team wants to publish these
significant results in a scientific journal. Should you agree to publish them? If so,
what results should be published? Should you have put your foot down and told them
not to run more tests? Does your answer depend on how long it took the research
team to collect the data? What if the team won’t get funding for new projects unless
they publish a paper soon? What if other research teams competing for the same
grants do their analyses like this?

Exercise 7.9. Discuss the following. You are working for a company that is launch-
ing a new product, a hair-loss treatment. In a small study, the product worked for
19 out of 22 participants (86 %). You compute a 95 % Clopper-Pearson confidence
interval (Section 7.3.4) for the proportion of successes and find that it is (0.65, 0.97).
Based on this, the company wants to market the product as being 97 % effective.
Is that acceptable to you? If not, how should it be marketed? Would your answer
change if the product was something else (new running shoes that make you faster,
a plastic film that protects smartphone screens from scratches, or contraceptives)?
What if the company wanted to market it as being 86 % effective instead?

Exercise 7.10. Discuss the following. You have worked long and hard on a project.
In the end, to see if the project was a success, you run a hypothesis test to check if
two variables are correlated. You find that they are not (p = 0.15). However, if you
remove three outliers, the two variables are significantly correlated (p = 0.03). What
should you do? Does your answer change if you only have to remove one outlier to
get a significant result? If you have to remove ten outliers? 100 outliers? What if the
p-value is 0.051 before removing the outliers and 0.049 after removing the outliers?

Exercise 7.11. Discuss the following. You are analysing data from an experiment
to see if there is a difference between two treatments. You estimate4 that given the
sample size and the expected difference in treatment effects, the power of the test
that you’ll be using, i.e. the probability of rejecting the null hypothesis if it is false,
is about 15 %. Should you carry out such an analysis? If not, how high does the
power need to be for the analysis to be meaningful?

4We’ll discuss methods for producing such estimates in Section 7.5.3.
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7.4.2 Reproducibility
An analysis is reproducible if it can be reproduced by someone else. By producing
reproducible analyses, we make it easier for others to scrutinise our work. We also
make all the steps in the data analysis transparent. This can act as a safeguard
against data fabrication and data dredging.

In order to make an analysis reproducible, we need to provide at least two things.
First, the data - all unedited data files in their original format. This also includes
metadata with information required to understand the data (e.g. codebooks explain-
ing variable names and codes used for categorical variables). Second, the computer
code used to prepare and analyse the data. This includes any wrangling and prelimi-
nary testing performed on the data.

As long as we save our data files and code, data wrangling and analyses in R are
inherently reproducible, in contrast to the same tasks carried out in menu-based
software such as Excel. However, if reports are created using a word processor,
there is always a risk that something will be lost along the way. Perhaps numbers
are copied by hand (which may introduce errors), or maybe the wrong version of a
figure is pasted into the document. R Markdown (Section 4.1) is a great tool for
creating completely reproducible reports, as it allows you to integrate R code for
data wrangling, analyses, and graphics in your report-writing. This reduces the risk
of manually inserting errors, and allows you to share your work with others easily.

∼

Exercise 7.12. Discuss the following. You are working on a study at a small-town
hospital. The data involves biomarker measurements for a number of patients, and
you show that patients with a sexually transmittable disease have elevated levels of
some of the biomarkers. The data also includes information about the patients: their
names, ages, ZIP codes, heights, and weights. The research team wants to publish
your results and make the analysis reproducible. Is it ethically acceptable to share
all your data? Can you make the analysis reproducible without violating patient
confidentiality?

7.5 Evaluating statistical methods using simulation
An important use of simulation is in the evaluation of statistical methods. In this
section, we will see how simulation can be used to compare the performance of two
estimators, as well as the type I error rate and power of hypothesis tests.

7.5.1 Comparing estimators
Let’s say that we want to estimate the mean 𝜇 of a normal distribution. We could
come up with several different estimators for 𝜇:
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• The sample mean ̄𝑥,
• The sample median ̃𝑥,
• The average of the largest and smallest value in the sample: 𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛

2 .

In this particular case (under normality), statistical theory tells us that the sample
mean is the best estimator5. But how much better is it, really? And what if we
didn’t know statistical theory - could we use simulation to find out which estimator
to use?

To begin with, let’s write a function that computes the estimate 𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛
2 :

max_min_avg <- function(x)
{

return((max(x)+min(x))/2)
}

Next, we’ll generate some data from a 𝑁(0, 1) distribution and compute the three
estimates:
x <- rnorm(25)

x_mean <- mean(x)
x_median <- median(x)
x_mma <- max_min_avg(x)
x_mean; x_median; x_mma

As you can see, the estimates given by the different approaches differ, so clearly the
choice of estimator matters. We can’t determine which to use based on a single
sample though. Instead, we typically compare the long-run properties of estimators,
such as their bias and variance. The bias is the difference between the mean of the
estimator and the parameter it seeks to estimate. An estimator is unbiased if its bias
is 0, which is considered desirable at least in this setting. Among unbiased estimators,
we prefer the one that has the smallest variance. So how can we use simulation to
compute the bias and variance of estimators?

The key to using simulation here is to realise that x_mean is an observation of the
random variable �̄� = 1

25 (𝑋1 + 𝑋2 + ⋯ + 𝑋25) where each 𝑋𝑖 is 𝑁(0, 1)-distributed.
We can generate observations of 𝑋𝑖 (using rnorm), and can therefore also generate
observations of �̄�. That means that we can obtain an arbitrarily large sample of
observations of �̄�, which we can use to estimate its mean and variance. Here is an
example:
# Set the parameters for the normal distribution:
mu <- 0
sigma <- 1

5At least in terms of mean squared error.
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# We will generate 10,000 observations of the estimators:
B <- 1e4
res <- data.frame(x_mean = vector("numeric", B),

x_median = vector("numeric", B),
x_mma = vector("numeric", B))

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in seq_along(res$x_mean))
{

x <- rnorm(25, mu, sigma)
res$x_mean[i] <- mean(x)
res$x_median[i] <- median(x)
res$x_mma[i] <- max_min_avg(x)

# Update progress bar
setTxtProgressBar(pbar, i)

}
close(pbar)

# Compare the estimators:
colMeans(res-mu) # Bias
apply(res, 2, var) # Variances

All three estimators appear to be unbiased (even if the simulation results aren’t
exactly 0, they are very close). The sample mean has the smallest variance (and
is therefore preferable!), followed by the median. The 𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛

2 estimator has the
worst performance, which is unsurprising as it ignores all information not contained
in the extremes of the dataset.

In Section 7.5.5 we’ll discuss how to choose the number of simulated samples to use
in your simulations. For now, we’ll just note that the estimate of the estimators’
biases becomes more stable as the number of simulated samples increases, as can be
seen from this plot, which utilises cumsum, described in Section 5.3.3:
# Compute estimates of the bias of the sample mean for each
# iteration:
res$iterations <- 1:B
res$x_mean_bias <- cumsum(res$x_mean)/1:B - mu

# Plot the results:
library(ggplot2)
ggplot(res, aes(iterations, x_mean_bias)) +

geom_line() +



7.5. EVALUATING STATISTICAL METHODS USING SIMULATION 275

xlab("Number of iterations") +
ylab("Estimated bias")

# Cut the x-axis to better see the oscillations for smaller
# numbers of iterations:
ggplot(res, aes(iterations, x_mean_bias)) +

geom_line() +
xlab("Number of iterations") +
ylab("Estimated bias") +
xlim(0, 1000)

∼

Exercise 7.13. Repeat the above simulation for different samples sizes 𝑛 between
10 and 100. Plot the resulting variances as a function of 𝑛.

Exercise 7.14. Repeat the simulation in 7.13, but with a 𝑡(3) distribution instead
of the normal distribution. Which estimator is better in this case?

7.5.2 Type I error rate of hypothesis tests
In the same vein that we just compared estimators, we can also compare hypothesis
tests or confidence intervals. Let’s have a look at the former, and evaluate how
well the old-school two-sample t-test fares compared to a permutation t-test and the
Wilcoxon-Mann-Whitney test.

For our first comparison, we will compare the type I error rate of the three tests,
i.e. the risk of rejecting the null hypothesis if the null hypothesis is true. Nominally,
this is the significance level 𝛼, which we set to be 0.05.

We write a function for such a simulation, to which we can pass the sizes n1 and n2
of the two samples, as well as a function distr to generate data:
# Load package used for permutation t-test:
library(MKinfer)

# Create a function for running the simulation:
simulate_type_I <- function(n1, n2, distr, level = 0.05, B = 999,

alternative = "two.sided", ...)
{

# Create a data frame to store the results in:
p_values <- data.frame(p_t_test = vector("numeric", B),

p_perm_t_test = vector("numeric", B),
p_wilcoxon = vector("numeric", B))
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# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in 1:B)
{

# Generate data:
x <- distr(n1, ...)
y <- distr(n2, ...)

# Compute p-values:
p_values[i, 1] <- t.test(x, y,

alternative = alternative)$p.value
p_values[i, 2] <- perm.t.test(x, y,

alternative = alternative,
R = 999)$perm.p.value

p_values[i, 3] <- wilcox.test(x, y,
alternative = alternative)$p.value

# Update progress bar:
setTxtProgressBar(pbar, i)

}

close(pbar)

# Return the type I error rates:
return(colMeans(p_values < level))

}

First, let’s try it with normal data. The simulation takes a little while to run,
primarily because of the permutation t-test, so you may want to take a short break
while you wait.
simulate_type_I(20, 20, rnorm, B = 9999)

Next, let’s try it with a lognormal distribution, both with balanced and imbalanced
sample sizes. Increasing the parameter 𝜎 (sdlog) increases the skewness of the
lognormal distribution (i.e. makes it more asymmetric and therefore less similar to
the normal distribution), so let’s try that to. In case you are in a rush, the results
from my run of this code block can be found below it.
simulate_type_I(20, 20, rlnorm, B = 9999, sdlog = 1)
simulate_type_I(20, 20, rlnorm, B = 9999, sdlog = 3)
simulate_type_I(20, 30, rlnorm, B = 9999, sdlog = 1)
simulate_type_I(20, 30, rlnorm, B = 9999, sdlog = 3)
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My results were:
# Normal distribution, n1 = n2 = 20:

p_t_test p_perm_t_test p_wilcoxon
0.04760476 0.04780478 0.04680468

# Lognormal distribution, n1 = n2 = 20, sigma = 1:
p_t_test p_perm_t_test p_wilcoxon

0.03320332 0.04620462 0.04910491

# Lognormal distribution, n1 = n2 = 20, sigma = 3:
p_t_test p_perm_t_test p_wilcoxon

0.00830083 0.05240524 0.04590459

# Lognormal distribution, n1 = 20, n2 = 30, sigma = 1:
p_t_test p_perm_t_test p_wilcoxon

0.04080408 0.04970497 0.05300530

# Lognormal distribution, n1 = 20, n2 = 30, sigma = 3:
p_t_test p_perm_t_test p_wilcoxon

0.01180118 0.04850485 0.05240524

What’s noticeable here is that the permutation t-test and the Wilcoxon-Mann-
Whitney test have type I error rates that are close to the nominal 0.05 in all five
scenarios, whereas the t-test has too low a type I error rate when the data comes
from a lognormal distribution. This makes the test too conservative in this setting.
Next, let’s compare the power of the tests.

7.5.3 Power of hypothesis tests
The power of a test is the probability of rejecting the null hypothesis if it is false.
To estimate that, we need to generate data under the alternative hypothesis. For
two-sample tests of the mean, the code is similar to what we used for the type I error
simulation above, but we now need two functions for generating data - one for each
group, because the groups differ under the alternative hypothesis. Bear in mind that
the alternative hypothesis for the two-sample test is that the two distributions differ
in location, so the two functions for generating data should reflect that.
# Load package used for permutation t-test:
library(MKinfer)

# Create a function for running the simulation:
simulate_power <- function(n1, n2, distr1, distr2, level = 0.05,

B = 999, alternative = "two.sided")
{

# Create a data frame to store the results in:
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p_values <- data.frame(p_t_test = vector("numeric", B),
p_perm_t_test = vector("numeric", B),
p_wilcoxon = vector("numeric", B))

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in 1:B)
{

# Generate data:
x <- distr1(n1)
y <- distr2(n2)

# Compute p-values:
p_values[i, 1] <- t.test(x, y,

alternative = alternative)$p.value
p_values[i, 2] <- perm.t.test(x, y,

alternative = alternative,
R = 999)$perm.p.value

p_values[i, 3] <- wilcox.test(x, y,
alternative = alternative)$p.value

# Update progress bar:
setTxtProgressBar(pbar, i)

}

close(pbar)

# Return power:
return(colMeans(p_values < level))

}

Let’s try this out with lognormal data, where the difference in the log means is 1:
# Balanced sample sizes:
simulate_power(20, 20, function(n) { rlnorm(n,

meanlog = 2, sdlog = 1) },
function(n) { rlnorm(n,

meanlog = 1, sdlog = 1) },
B = 9999)

# Imbalanced sample sizes:
simulate_power(20, 30, function(n) { rlnorm(n,

meanlog = 2, sdlog = 1) },
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function(n) { rlnorm(n,
meanlog = 1, sdlog = 1) },

B = 9999)

Here are the results from my runs:
# Balanced sample sizes:

p_t_test p_perm_t_test p_wilcoxon
0.6708671 0.7596760 0.8508851

# Imbalanced sample sizes:
p_t_test p_perm_t_test p_wilcoxon

0.6915692 0.7747775 0.9041904

Among the three, the Wilcoxon-Mann-Whitney test appears to be preferable for
lognormal data, as it manages to obtain the correct type I error rate (unlike the old-
school t-test) and has the highest power (although we would have to consider more
scenarios, including different samples sizes, other differences of means, and different
values of 𝜎 to say for sure!).

Remember that both our estimates of power and type I error rates are proportions,
meaning that we can use binomial confidence intervals to quantify the uncertainty
in the estimates from our simulation studies. Let’s do that for the lognormal setting
with balanced sample sizes, using the results from my runs. The number of simulated
samples were 9,999. For the t-test, the estimated type I error rate was 0.03320332,
which corresponds to 0.03320332 ⋅ 9, 999 = 332 “successes”. Similarly, there were
6,708 “successes” in the power study. The confidence intervals become:
library(MKinfer)
binomCI(332, 9999, conf.level = 0.95, method = "clopper-pearson")
binomCI(6708, 9999, conf.level = 0.95, method = "wilson")

∼

Exercise 7.15. Repeat the simulation study of type I error rate and power for the
old school t-test, permutation t-test and the Wilcoxon-Mann-Whitney test with 𝑡(3)-
distributed data. Which test has the best performance? How much lower is the type
I error rate of the old-school t-test compared to the permutation t-test in the case of
balanced sample sizes?

7.5.4 Power of some tests of location
The MKpower package contains functions for quickly performing power simulations
for the old-school t-test and Wilcoxon-Mann-Whitney test in different settings. The
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arguments rx and ry are used to pass functions used to generate the random numbers,
in line with the simulate_power function that we created above.

For the t-test, we can use sim.power.t.test:
library(MKpower)
sim.power.t.test(nx = 25, rx = rnorm, rx.H0 = rnorm,

ny = 25, ry = function(x) { rnorm(x, mean = 0.8) },
ry.H0 = rnorm)

For the Wilcoxon-Mann-Whitney test, we can use sim.power.wilcox.test for power
simulations:
library(MKpower)
sim.power.wilcox.test(nx = 10, rx = rnorm, rx.H0 = rnorm,

ny = 15,
ry = function(x) { rnorm(x, mean = 2) },
ry.H0 = rnorm)

7.5.5 Some advice on simulation studies
There are two things that you need to decide when performing a simulation study:

• How many scenarios to include, i.e. how many different settings for the model
parameters to study, and

• How many iterations to use, i.e. how many simulated samples to create for each
scenario.

The number of scenarios is typically determined by what the purpose of the study
is. If you only are looking to compare two tests for a particular sample size and a
particular difference in means, then maybe you only need that one scenario. On the
other hand, if you want to know which of the two tests that is preferable in general,
or for different sample sizes, or for different types of distributions, then you need to
cover more scenarios. In that case, the number of scenarios may well be determined
by how much time you have available or how many you can fit into your report.

As for the number of iterations to run, that also partially comes down to computa-
tional power. If each iteration takes a long while to run, it may not be feasible to
run tens of thousands of iterations (some advice for speeding up simulations by using
parallelisation can be found in Section 10.2). In the best of all possible worlds, you
have enough computational power available, and can choose the number of iterations
freely. In such cases, it is often a good idea to use confidence intervals to quantify the
uncertainty in your estimate of power, bias, or whatever it is that you are studying.
For instance, the power of a test is estimated as the proportion of simulations in
which the null hypothesis was rejected. This is a binomial experiment, and a confi-
dence interval for the power can be obtained using the methods described in Section
7.3.4. Moreover, the ssize.propCI function described in said section can be used to
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determine the number of simulations that you need to obtain a confidence interval
that is short enough for you to feel that you have a good idea about the actual power
of the test.

As an example, if a small pilot simulation indicates that the power is about 0.8 and
you want a confidence interval with width 0.01, the number of simulations needed
can be computed as follows:
library(MKpower)
ssize.propCI(prop = 0.8, width = 0.01, method = "wilson")

In this case, you’d need 24,592 iterations to obtain the desired accuracy.

7.6 Sample size computations using simulation
Using simulation to compare statistical methods is a key tool in methodological
statistical research and when assessing new methods. In applied statistics, a use of
simulation that is just as important is sample size computations. In this section we’ll
have a look at how simulations can be useful in determining sample sizes.

7.6.1 Writing your own simulation
Suppose that we want to perform a correlation test and want to know how many
observations we need to collect. As in the previous section, we can write a function
to compute the power of the test:
simulate_power <- function(n, distr, level = 0.05, B = 999, ...)
{

p_values <- vector("numeric", B)

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in 1:B)
{

# Generate bivariate data:
x <- distr(n)

# Compute p-values:
p_values[i] <- cor.test(x[,1], x[,2], ...)$p.value

# Update progress bar:
setTxtProgressBar(pbar, i)

}



282 CHAPTER 7. MODERN CLASSICAL STATISTICS

close(pbar)

return(mean(p_values < level))
}

Under the null hypothesis of no correlation, the correlation coefficient is 0. We want
to find a sample size that will give us 90 % power at the 5 % significance level, for
different hypothesised correlations. We will generate data from a bivariate normal
distribution, because it allows us to easily set the correlation of the generated data.
Note that the mean and variance of the marginal normal distributions are nuisance
variables, which can be set to 0 and 1, respectively, without loss of generality (because
the correlation test is invariant under scaling and shifts in location).

First, let’s try our power simulation function:
library(MASS) # Contains mvrnorm function for generating data
rho <- 0.5 # The correlation between the variables
mu <- c(0, 0)
Sigma <- matrix(c(1, rho, rho, 1), 2, 2)

simulate_power(50, function(n) { mvrnorm(n, mu, Sigma) }, B = 999)

To find the sample size we need, we will write a new function containing a while
loop (see Section 6.4.5), that performs the simulation for increasing values of 𝑛 until
the test has achieved the desired power:
library(MASS)

power.cor.test <- function(n_start = 10, rho, n_incr = 5, power = 0.9,
B = 999, ...)

{
# Set parameters for the multivariate normal distribution:
mu <- c(0, 0)
Sigma <- matrix(c(1, rho, rho, 1), 2, 2)

# Set initial values
n <- n_start
power_cor <- 0

# Check power for different sample sizes:
while(power_cor < power)
{

power_cor <- simulate_power(n,
function(n) { mvrnorm(n, mu, Sigma) },
B = B, ...)
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cat("n =", n, " - Power:", power_cor, "\n")
n <- n + n_incr

}

# Return the result:
cat("\nWhen n =", n, "the power is", round(power_cor, 2), "\n")
return(n)

}

Let’s try it out with different settings:
power.cor.test(n_start = 10, rho = 0.5, power = 0.9)
power.cor.test(n_start = 10, rho = 0.2, power = 0.8)

As expected, larger sample sizes are required to detect smaller correlations.

7.6.2 The Wilcoxon-Mann-Whitney test
The sim.ssize.wilcox.test in MKpower can be used to quickly perform sample
size computations for the Wilcoxon-Mann-Whitney test, analogously to how we used
sim.power.wilcox.test in Section 7.5.4:
library(MKpower)
sim.ssize.wilcox.test(rx = rnorm, ry = function(x) rnorm(x, mean = 2),

power = 0.8, n.min = 3, n.max = 10,
step.size = 1)

∼

Exercise 7.16. Modify the functions we used to compute the sample sizes for the
Pearson correlation test to instead compute sample sizes for the Spearman correlation
tests. For bivariate normal data, are the required sample sizes lower or higher than
those of the Pearson correlation test?

Exercise 7.17. In Section 7.3.4 we had a look at some confidence intervals for
proportions, and saw how ssize.propCI can be used to compute sample sizes for such
intervals using asymptotic approximations. Write a function to compute the exact
sample size needed for the Clopper-Pearson interval to achieve a desired expected
(average) width. Compare your results to those from the asymptotic approximations.
Are the approximations good enough to be useful?
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7.7 Bootstrapping
The bootstrap can be used formany things, most notably for constructing confidence
intervals and running hypothesis tests. These tend to perform better than traditional
parametric methods, such as the old-school t-test and its associated confidence inter-
val, when the distributional assumptions of the parametric methods aren’t met.

Confidence intervals and hypothesis tests are always based on a statistic, i.e. a quan-
tity that we compute from the samples. The statistic could be the sample mean,
a proportion, the Pearson correlation coefficient, or something else. In traditional
parametric methods, we start by assuming that our data follows some distribution.
For different reasons, including mathematical tractability, a common assumption is
that the data is normally distributed. Under that assumption, we can then derive
the distribution of the statistic that we are interested in analytically, like Gosset did
for the t-test. That distribution can then be used to compute confidence intervals
and p-values.

When using a bootstrap method, we follow the same steps, but use the observed data
and simulation instead. Rather than making assumptions about the distribution6,
we use the empirical distribution of the data. Instead of analytically deriving a
formula that describes the statistic’s distribution, we find a good approximation of
the distribution of the statistic by using simulation. We can then use that distribution
to obtain confidence intervals and p-values, just as in the parametric case.

The simulation step is important. We use a process known as resampling, where
we repeatedly draw new observations with replacement from the original sample.
We draw 𝐵 samples this way, each with the same size 𝑛 as the original sample.
Each randomly drawn sample - called a bootstrap sample - will include different
observations. Some observations from the original sample may appear more than
once in a specific bootstrap sample, and some not at all. For each bootstrap sample,
we compute the statistic in which we are interested. This gives us 𝐵 observations
of this statistic, which together form what is called the bootstrap distribution of the
statistic. I recommend using 𝐵 = 9, 999 or greater, but we’ll use smaller 𝐵 in some
examples, to speed up the computations.

7.7.1 A general approach
The Pearson correlation test is known to be sensitive to deviations from normality.
We can construct a more robust version of it using the bootstrap. To illustrate the
procedure, we will use the sleep_total and brainwt variables from the msleep data.
Here is the result from the traditional parametric Pearson correlation test:
library(ggplot2)

6Well, sometimes we make assumptions about the distribution and use the bootstrap. This is
known as the parametric bootstrap, and is discussed in Section 7.7.4.
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msleep %$% cor.test(sleep_total, brainwt, use = "pairwise.complete")

To find the bootstrap distribution of the Pearson correlation coefficient, we can use
resampling with a for loop (Section 6.4.1):
# Extract the data that we are interested in:
mydata <- na.omit(msleep[,c("sleep_total", "brainwt")])

# Resampling using a for loop:
B <- 999 # Number of bootstrap samples
statistic <- vector("numeric", B)
for(i in 1:B)
{

# Draw row numbers for the bootstrap sample:
row_numbers <- sample(1:nrow(mydata), nrow(mydata),

replace = TRUE)

# Obtain the bootstrap sample:
sample <- mydata[row_numbers,]

# Compute the statistic for the bootstrap sample:
statistic[i] <- cor(sample[, 1], sample[, 2])

}

# Plot the bootstrap distribution of the statistic:
ggplot(data.frame(statistic), aes(statistic)) +

geom_histogram(colour = "black")

Because this is such a common procedure, there are R packages that let’s us do
resampling without having to write a for loop. In the remainder of the section, we
will use the boot package to draw bootstrap samples. It also contains convenience
functions that allows us to get confidence intervals from the bootstrap distribution
quickly. Let’s install it:
install.packages("boot")

The most important function in this package is boot, which does the resampling. As
input, it takes the original data, the number 𝐵 of bootstrap samples to draw (called
R here), and a function that computes the statistic of interest. This function should
take the original data (mydata in our example above) and the row numbers of the
sampled observation for a particular bootstrap sample (row_numbers in our example)
as input.

For the correlation coefficient, the function that we input can look like this:
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cor_boot <- function(data, row_numbers, method = "pearson")
{

# Obtain the bootstrap sample:
sample <- data[row_numbers,]

# Compute and return the statistic for the bootstrap sample:
return(cor(sample[, 1], sample[, 2], method = method))

}

To get the bootstrap distribution of the Pearson correlation coefficient for our data,
we can now use boot as follows:
library(boot)

# Base solution:
boot_res <- boot(na.omit(msleep[,c("sleep_total", "brainwt")]),

cor_boot,
999)

Next, we can plot the bootstrap distribution of the statistic computed in cor_boot:
plot(boot_res)

If you prefer, you can of course use a pipeline for the resampling instead:
library(boot)
library(dplyr)

# With pipes:
msleep %>% select(sleep_total, brainwt) %>%

drop_na %>%
boot(cor_boot, 999) -> boot_res

7.7.2 Bootstrap confidence intervals
The next step is to use boot.ci to compute bootstrap confidence intervals. This is
as simple as running:
boot.ci(boot_res)

Four intervals are presented: normal, basic, percentile and BCa. The details con-
cerning how these are computed based on the bootstrap distribution are presented in
Section 12.1. It is generally agreed that the percentile and BCa intervals are prefer-
able to the normal and basic intervals; see e.g. Davison & Hinkley (1997) and Hall
(1992); but which performs the best varies.

We also receive a warning message:
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Warning message:
In boot.ci(boot_res) : bootstrap variances needed for studentized
intervals

A fifth type of confidence interval, the studentised interval, requires bootstrap esti-
mates of the standard error of the test statistic. These are obtained by running an
inner bootstrap, i.e. by bootstrapping each bootstrap sample to get estimates of the
variance of the test statistic. Let’s create a new function that does this, and then
compute the bootstrap confidence intervals:
cor_boot_student <- function(data, i, method = "pearson")
{

sample <- data[i,]

correlation <- cor(sample[, 1], sample[, 2], method = method)

inner_boot <- boot(sample, cor_boot, 100)
variance <- var(inner_boot$t)

return(c(correlation, variance))
}

library(ggplot2)
library(boot)

boot_res <- boot(na.omit(msleep[,c("sleep_total", "brainwt")]),
cor_boot_student,
999)

# Show bootstrap distribution:
plot(boot_res)

# Compute confidence intervals - including studentised:
boot.ci(boot_res)

While theoretically appealing (Hall, 1992), studentised intervals can be a little erratic
in practice. I prefer to use percentile and BCa intervals instead.

For two-sample problems, we need to make sure that the number of observations
drawn from each sample is the same as in the original data. The strata argument
in boot is used to achieve this. Let’s return to the example studied in Section 7.2,
concerning the difference in how long carnivores and herbivores sleep. Let’s say that
we want a confidence interval for the difference of two means, using the msleep data.
The simplest approach is to create a Welch-type interval, where we allow the two
populations to have different variances. We can then resample from each population
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separately:
# Function that computes the mean for each group:
mean_diff_msleep <- function(data, i)
{

sample1 <- subset(data[i, 1], data[i, 2] == "carni")
sample2 <- subset(data[i, 1], data[i, 2] == "herbi")
return(mean(sample1[[1]]) - mean(sample2[[1]]))

}

library(ggplot2) # Load the data
library(boot) # Load bootstrap functions

# Create the data set to resample from:
boot_data <- na.omit(subset(msleep,

vore == "carni" | vore == "herbi")[,c("sleep_total",
"vore")])

# Do the resampling - we specify that we want resampling from two
# populations by using strata:
boot_res <- boot(boot_data,

mean_diff_msleep,
999,
strata = factor(boot_data$vore))

# Compute confidence intervals:
boot.ci(boot_res, type = c("perc", "bca"))

∼

Exercise 7.18. Let’s continue the example with a confidence interval for the differ-
ence in how long carnivores and herbivores sleep. How can you create a confidence
interval under the assumption that the two groups have equal variances?

7.7.3 Bootstrap hypothesis tests
Writing code for bootstrap hypothesis tests can be a little tricky, because the re-
sampling must be done under the null hypothesis. The process is greatly simplified
by computing p-values using confidence interval inversion instead. This approach
exploits the equivalence between confidence intervals and hypothesis tests, detailed
in Section 12.2. It relies on the fact that:

• The p-value of the test for the parameter 𝜃 is the smallest 𝛼 such that 𝜃 is not
contained in the corresponding 1 − 𝛼 confidence interval.
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• For a test for the parameter 𝜃 with significance level 𝛼, the set of values of 𝜃
that aren’t rejected by the test (when used as the null hypothesis) is a 1 − 𝛼
confidence interval for 𝜃.

Here is an example of how we can use a while loop (Section 6.4.5) for confidence
interval inversion, in order to test the null hypothesis that the Pearson correlation be-
tween sleeping time and brain weight is 𝜌 = −0.2. It uses the studentised confidence
interval that we created in the previous section:
# Compute the studentised confidence interval:
cor_boot_student <- function(data, i, method = "pearson")
{

sample <- data[i,]

correlation <- cor(sample[, 1], sample[, 2], method = method)

inner_boot <- boot(sample, cor_boot, 100)
variance <- var(inner_boot$t)

return(c(correlation, variance))
}

library(ggplot2)
library(boot)

boot_res <- boot(na.omit(msleep[,c("sleep_total", "brainwt")]),
cor_boot_student,
999)

# Now, a hypothesis test:
# The null hypothesis:
rho_null <- -0.2

# Set initial conditions:
in_interval <- TRUE
alpha <- 0

# Find the lowest alpha for which rho_null is in the interval:
while(in_interval)
{

# Increase alpha a small step:
alpha <- alpha + 0.001

# Compute the 1-alpha confidence interval, and extract
# its bounds:
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interval <- boot.ci(boot_res,
conf = 1 - alpha,
type = "stud")$student[4:5]

# Check if the null value for rho is greater than the lower
# interval bound and smaller than the upper interval bound,
# i.e. if it is contained in the interval:
in_interval <- rho_null > interval[1] & rho_null < interval[2]

}
# The loop will finish as soon as it reaches a value of alpha such
# that rho_null is not contained in the interval.

# Print the p-value:
alpha

The boot.pval package contains a function computing p-values through inversion of
bootstrap confidence intervals. We can use it to obtain a bootstrap p-value without
having to write a while loop. It works more or less analogously to boot.ci. The
arguments to the boot.pval function is the boot object (boot_res), the type of
interval to use ("stud"), and the value of the parameter under the null hypothesis
(-0.2):
install.packages("boot.pval")
library(boot.pval)
boot.pval(boot_res, type = "stud", theta_null = -0.2)

Confidence interval inversion fails in spectacular ways for certain tests for parameters
of discrete distributions (Thulin & Zwanzig, 2017), so be careful if you plan on using
this approach with count data.

∼

Exercise 7.19. With the data from Exercise 7.18, invert a percentile confidence
interval to compute the p-value of the corresponding test of the null hypothesis that
there is no difference in means. What are the results?

7.7.4 The parametric bootstrap
In some cases, we may be willing to make distributional assumptions about our data.
We can then use the parametric bootstrap, in which the resampling is done not from
the original sample, but the theorised distribution (with parameters estimated from
the original sample). Here is an example for the bootstrap correlation test, where
we assume a multivariate normal distribution for the data. Note that we no longer
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include an index as an argument in the function cor_boot, because the bootstrap
samples won’t be drawn directly from the original data:
cor_boot <- function(data, method = "pearson")
{

return(cor(data[, 1], data[, 2], method = method))
}

library(MASS)
generate_data <- function(data, mle)
{

return(mvrnorm(nrow(data), mle[[1]], mle[[2]]))
}

library(ggplot2)
library(boot)

filtered_data <- na.omit(msleep[,c("sleep_total", "brainwt")])
boot_res <- boot(filtered_data,

cor_boot,
R = 999,
sim = "parametric",
ran.gen = generate_data,
mle = list(colMeans(filtered_data),

cov(filtered_data)))

# Show bootstrap distribution:
plot(boot_res)

# Compute bootstrap percentile confidence interval:
boot.ci(boot_res, type = "perc")

The BCa interval implemented in boot.ci is not valid for parametric bootstrap
samples, so running boot.ci(boot_res) without specifying the interval type will
render an error7. Percentile intervals work just fine, though.

7.8 Reporting statistical results
Carrying out a statistical analysis is only the first step. After that, you probably
need to communicate your results to others: your boss, your colleagues, your clients,
the public… This section contains some tips for how best to do that.

7If you really need a BCa interval for the parametric bootstrap, you can find the formulas for it
in Davison & Hinkley (1997).
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7.8.1 What should you include?
When reporting your results, it should always be clear:

• How the data was collected,
• If, how, and why any observations were removed from the data prior to the

analysis,
• What method was used for the analysis (including a reference unless it is a

routine method),
• If any other analyses were performed/attempted on the data, and if you don’t

report their results, why.

Let’s say that you’ve estimate some parameter, for instance the mean sleeping time
of mammals, and want to report the results. The first thing to think about is that
you shouldn’t include too many decimals: don’t give the mean with 5 decimals if
sleeping times only were measured with one decimal.

BAD: The mean sleeping time of mammals was found to be 10.43373.

GOOD: The mean sleeping time of mammals was found to be 10.4.

It is common to see estimates reported with standard errors or standard deviations:

BAD: The mean sleeping time of mammals was found to be 10.3 (𝜎 =
4.5).

or

BAD: The mean sleeping time of mammals was found to be 10.3 (stan-
dard error 0.49).

or

BAD: The mean sleeping time of mammals was found to be 10.3 ± 0.49.
Although common, this isn’t a very good practice. Standard errors/deviations are
included to give some indication of the uncertainty of the estimate, but are very
difficult to interpret. In most cases, they will probably cause the reader to either
overestimate or underestimate the uncertainty in your estimate. A much better
option is to present the estimate with a confidence interval, which quantifies the
uncertainty in the estimate in an interpretable manner:

GOOD: The mean sleeping time of mammals was found to be 10.3 (95
% percentile bootstrap confidence interval: 9.5-11.4).

Similarly, it is common to include error bars representing standard deviations and
standard errors e.g. in bar charts. This questionable practice becomes even more
troublesome because a lot of people fail to indicate what the error bars represent. If
you wish to include error bars in your figures, they should always represent confidence
intervals, unless you have a very strong reason for them to represent something else.
In the latter case, make sure that you clearly explain what the error bars represent.
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If the purpose of your study is to describe differences between groups, you should
present a confidence interval for the difference between the groups, rather than one
confidence interval (or error bar) for each group. It is possible for the individual
confidence intervals to overlap even if there is a significant difference between the
two groups, so reporting group-wise confidence intervals will only lead to confusion.
If you are interested in the difference, then of course the difference is what you should
report a confidence interval for.

BAD: There was no significant difference between the sleeping times
of carnivores (mean 10.4, 95 % percentile bootstrap confidence interval:
8.4-12.5) and herbivores (mean 9.5, 95 % percentile bootstrap confidence
interval: 8.1-12.6).

GOOD: There was no significant difference between the sleeping times
of carnivores (mean 10.4) and herbivores (mean 9.5), with the 95 % per-
centile bootstrap confidence interval for the difference being (-1.8, 3.5).

7.8.2 Citing R packages
In statistical reports, it is often a good idea to specify what version of a software or a
package that you used, for the sake of reproducibility (indeed, this is a requirement
in some scientific journals). To get the citation information for the version of R that
you are running, simply type citation(). To get the version number, you can use
R.Version as follows:
citation()
R.Version()$version.string

To get the citation and version information for a package, use citation and
packageVersion as follows:
citation("ggplot2")
packageVersion("ggplot2")
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Chapter 8

Regression models

Regression models, in which explanatory variables are used to model the behaviour
of a response variable, is without a doubt the most commonly used class of models
in the statistical toolbox. In this chapter, we will have a look at different types of
regression models tailored to many different sorts of data and applications.

After reading this chapter, you will be able to use R to:

• Fit and evaluate linear and generalised linear models,
• Fit and evaluate mixed models,
• Fit survival analysis models,
• Analyse data with left-censored observations,
• Create matched samples.

8.1 Linear models
Being flexible enough to handle different types of data, yet simple enough to be useful
and interpretable, linear models are among the most important tools in the statistics
toolbox. In this section, we’ll discuss how to fit and evaluate linear models in R.

8.1.1 Fitting linear models
We had a quick glance at linear models in Section 3.7. There we used the mtcars
data:
?mtcars
View(mtcars)

First, we plotted fuel consumption (mpg) against gross horsepower (hp):

295
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library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) +

geom_point()

Given 𝑛 observations of 𝑝 explanatory variables (also known as predictors, covariates,
independent variables, and features), the linear model is:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖, 𝑖 = 1, … , 𝑛
where 𝜖𝑖 is a random error with mean 0, meaning that the model also can be written
as:

𝐸(𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝, 𝑖 = 1, … , 𝑛
We fitted a linear model using lm, with mpg as the response variable and hp as the
explanatory variable:
m <- lm(mpg ~ hp, data = mtcars)
summary(m)

We added the fitted line to the scatterplot by using geom_abline:
# Check model coefficients:
coef(m)

# Add regression line to plot:
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),

colour = "red")

We had a look at some diagnostic plots given by applying plot to our fitted model
m:
plot(m)

Finally, we added another variable, the car weight wt, to the model:
m <- lm(mpg ~ hp + wt, data = mtcars)
summary(m)

Next, we’ll look at what more R has to offer when it comes to regression. Before
that though, it’s a good idea to do a quick exercise to make sure that you remember
how to fit linear models.

∼
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Exercise 8.1. The sales-weather.csv data from Section 5.12 describes the
weather in a region during the first quarter of 2020. Download the file from the
book’s web page. Fit a linear regression model with TEMPERATURE as the response
variable and SUN_HOURS as an explanatory variable. Plot the results. Is there a
connection?

You’ll return to and expand this model in the next few exercises, so make sure to
save your code.

Exercise 8.2. Fit a linear model to the mtcars data using the formula mpg ~ ..
What happens? What is ~ . a shorthand for?

8.1.2 Interactions and polynomial terms
It seems plausible that there could be an interaction between gross horsepower and
weight. We can include an interaction term by adding hp:wt to the formula:
m <- lm(mpg ~ hp + wt + hp:wt, data = mtcars)
summary(m)

Alternatively, to include the main effects of hp and wt along with the interaction
effect, we can use hp*wt as a shorthand for hp + wt + hp:wt to write the model
formula more concisely:
m <- lm(mpg ~ hp*wt, data = mtcars)
summary(m)

It is often recommended to centre the explanatory variables in regression models,
i.e. to shift them so that they all have mean 0. There are a number of benefits to
this: for instance that the intercept then can be interpreted as the expected value of
the response variable when all explanatory variables are equal to their means, i.e. in
an average case1. It can also reduce any multicollinearity in the data, particularly
when including interactions or polynomial terms in the model. Finally, it can reduce
problems with numerical instability that may arise due to floating point arithmetics.
Note however, that there is no need to centre the response variable2.

Centring the explanatory variables can be done using scale:
# Create a new data frame, leaving the response variable mpg
# unchanged, while centring the explanatory variables:
mtcars_scaled <- data.frame(mpg = mtcars[,1],

scale(mtcars[,-1], center = TRUE,
scale = FALSE))

1If the variables aren’t centred, the intercept is the expected value of the response variable when
all explanatory variables are 0. This isn’t always realistic or meaningful.

2On the contrary, doing so will usually only serve to make interpretation more difficult.

http://www.modernstatisticswithr.com/data.zip
http://www.modernstatisticswithr.com/data.zip
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m <- lm(mpg ~ hp*wt, data = mtcars_scaled)
summary(m)

If we wish to add a polynomial term to the model, we can do so by wrapping the
polynomial in I(). For instance, to add a quadratic effect in the form of the square
weight of a vehicle to the model, we’d use:
m <- lm(mpg ~ hp*wt + I(wt^2), data = mtcars_scaled)
summary(m)

8.1.3 Dummy variables
Categorical variables can be included in regression models by using dummy variables.
A dummy variable takes the values 0 and 1, indicating that an observation either
belongs to a category (1) or not (0). If the original categorical variable has more
than two categories, 𝑐 categories, say, the number of dummy variables included in
the regression model should be 𝑐 − 1 (with the last category corresponding to all
dummy variables being 0). R does this automatically for us if we include a factor
variable in a regression model:
# Make cyl a categorical variable:
mtcars$cyl <- factor(mtcars$cyl)

m <- lm(mpg ~ hp*wt + cyl, data = mtcars)
summary(m)

Note how only two categories, 6 cylinders and 8 cylinders, are shown in the summary
table. The third category, 4 cylinders, corresponds to both those dummy variables
being 0. Therefore, the coefficient estimates for cyl6 and cyl8 are relative to the
remaining reference category cyl4. For instance, compared to cyl4 cars, cyl6 cars
have a higher fuel consumption, with their mpg being 1.26 lower.

We can control which category is used as the reference category by setting the order
of the factor variable, as in Section 5.4. The first factor level is always used as the
reference, so if for instance we want to use cyl6 as our reference category, we’d do
the following:
# Make cyl a categorical variable with cyl6 as
# reference variable:
mtcars$cyl <- factor(mtcars$cyl, levels =

c(6, 4, 8))

m <- lm(mpg ~ hp*wt + cyl, data = mtcars)
summary(m)

Dummy variables are frequently used for modelling differences between different



8.1. LINEAR MODELS 299

groups. Including only the dummy variable corresponds to using different inter-
cepts for different groups. If we also include an interaction with the dummy variable,
we can get different slopes for different groups. Consider the model

𝐸(𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽12𝑥𝑖1𝑥𝑖2, 𝑖 = 1, … , 𝑛

where 𝑥1 is numeric and 𝑥2 is a dummy variable. Then the intercept and slope
changes depending on the value of 𝑥2 as follows:

𝐸(𝑦𝑖) = 𝛽0 + 𝛽1𝑥𝑖1, if 𝑥2 = 0,
𝐸(𝑦𝑖) = (𝛽0 + 𝛽2) + (𝛽1 + 𝛽12)𝑥𝑖1, if 𝑥2 = 1.

This yields a model where the intercept and slope differs between the two groups
that 𝑥2 represents.

∼

Exercise 8.3. Return to the weather model from Exercise 8.1. Create a dummy
variable for precipitation (zero precipitation or non-zero precipitation) and add it to
your model. Also include an interaction term between the precipitation dummy and
the number of sun hours. Are any of the coefficients significantly non-zero?

8.1.4 Model diagnostics
There are a few different ways in which we can plot the fitted model. First, we can
of course make a scatterplot of the data and add a curve showing the fitted values
corresponding to the different points. These can be obtained by running predict(m)
with our fitted model m.
# Fit two models:
mtcars$cyl <- factor(mtcars$cyl)
m1 <- lm(mpg ~ hp + wt, data = mtcars) # Simple model
m2 <- lm(mpg ~ hp*wt + cyl, data = mtcars) # Complex model

# Create data frames with fitted values:
m1_pred <- data.frame(hp = mtcars$hp, mpg_pred = predict(m1))
m2_pred <- data.frame(hp = mtcars$hp, mpg_pred = predict(m2))

# Plot fitted values:
library(ggplot2)
ggplot(mtcars, aes(hp, mpg)) +

geom_point() +
geom_line(data = m1_pred, aes(x = hp, y = mpg_pred),

colour = "red") +
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geom_line(data = m2_pred, aes(x = hp, y = mpg_pred),
colour = "blue")

We could also plot the observed values against the fitted values:
n <- nrow(mtcars)
models <- data.frame(Observed = rep(mtcars$mpg, 2),

Fitted = c(predict(m1), predict(m2)),
Model = rep(c("Model 1", "Model 2"), c(n, n)))

ggplot(models, aes(Fitted, Observed)) +
geom_point(colour = "blue") +
facet_wrap(~ Model, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

Linear models are fitted and analysed using a number of assumptions, most of which
are assessed by looking at plots of the model residuals, 𝑦𝑖 − ̂𝑦𝑖, where ̂𝑦𝑖 is the fitted
value for observation 𝑖. Some important assumptions are:

• The model is linear in the parameters: we check this by looking for non-linear
patterns in the residuals, or in the plot of observed against fitted values.

• The observations are independent: which can be difficult to assess visually.
We’ll look at models that are designed to handle correlated observations in
Sections 8.4 and 9.6.

• Homoscedasticity: that the random errors all have the same variance. We
check this by looking for non-constant variance in the residuals. The opposite
of homoscedasticity is heteroscedasticity.

• Normally distributed random errors: this assumption is important if we want
to use the traditional parametric p-values, confidence intervals and prediction
intervals. If we use permutation p-values or bootstrap intervals (as we will later
in this chapter), we no longer need this assumption.

Additionally, residual plots can be used to find influential points that (possibly) have
a large impact on the model coefficients (influence is measured using Cook’s distance
and potential influence using leverage). We’ve already seen that we can use plot(m)
to create some diagnostic plots. To get more and better-looking plots, we can use
the autoplot function for lm objects from the ggfortify package:
library(ggfortify)
autoplot(m1, which = 1:6, ncol = 2, label.size = 3)

In each of the plots, we look for the following:

• Residuals versus fitted: look for patterns that can indicate non-linearity,
e.g. that the residuals all are high in some areas and low in others. The
blue line is there to aid the eye - it should ideally be relatively close to a
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straight line (in this case, it isn’t perfectly straight, which could indicate a
mild non-linearity).

• Normal Q-Q: see if the points follow the line, which would indicate that the
residuals (which we for this purpose can think of as estimates of the random
errors) follow a normal distribution.

• Scale-Location: similar to the residuals versus fitted plot, this plot shows
whether the residuals are evenly spread for different values of the fitted val-
ues. Look for patterns in how much the residuals vary - if they e.g. vary more
for large fitted values, then that is a sign of heteroscedasticity. A horizontal
blue line is a sign of homoscedasticity.

• Cook’s distance: look for points with high values. A commonly-cited rule-of-
thumb (Cook & Weisberg, 1982) says that values above 1 indicate points with
a high influence.

• Residuals versus leverage: look for points with a high residual and high leverage.
Observations with a high residual but low leverage deviate from the fitted model
but don’t affect it much. Observations with a high residual and a high leverage
likely have a strong influence on the model fit, meaning that the fitted model
could be quite different if these points were removed from the dataset.

• Cook’s distance versus leverage: look for observations with a high Cook’s dis-
tance and a high leverage, which are likely to have a strong influence on the
model fit.

A formal test for heteroscedasticity, the Breusch-Pagan test, is available in the car
package as a complement to graphical inspection. A low p-value indicates statistical
evidence for heteroscedasticity. To run the test, we use ncvTest (where “ncv” stands
for non-constant variance):
install.packages("car")
library(car)
ncvTest(m1)

A common problem in linear regression models is multicollinearity, i.e. explanatory
variables that are strongly correlated. Multicollinearity can cause your 𝛽 coefficients
and p-values to change greatly if there are small changes in the data, rendering them
unreliable. To check if you have multicollinearity in your data, you can create a
scatterplot matrix of your explanatory variables, as in Section 4.8.1:
library(GGally)
ggpairs(mtcars[, -1])

In this case, there are some highly correlated pairs, hp and disp among them. As a
numerical measure of collinearity, we can use the generalised variance inflation factor
(GVIF), given by the vif function in the car package:
library(car)
m <- lm(mpg ~ ., data = mtcars)
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vif(m)

A high GVIF indicates that a variable is highly correlated with other explanatory
variables in the dataset. Recommendations for what a “high GVIF” is varies, from
2.5 to 10 or more.

You can mitigate problems related to multicollinearity by:

• Removing one or more of the correlated variables from the model (because they
are strongly correlated, they measure almost the same thing anyway!),

• Centring your explanatory variables (particularly if you include polynomial
terms),

• Using a regularised regression model (which we’ll do in Section 9.4).

∼

Exercise 8.4. Below are two simulated datasets. One exhibits a nonlinear depen-
dence between the variables, and the other exhibits heteroscedasticity. Fit a model
with y as the response variable and x as the explanatory variable for each dataset,
and make some residual plots. Which dataset suffers from which problem?

exdata1 <- data.frame(
x = c(2.99, 5.01, 8.84, 6.18, 8.57, 8.23, 8.48, 0.04, 6.80,

7.62, 7.94, 6.30, 4.21, 3.61, 7.08, 3.50, 9.05, 1.06,
0.65, 8.66, 0.08, 1.48, 2.96, 2.54, 4.45),

y = c(5.25, -0.80, 4.38, -0.75, 9.93, 13.79, 19.75, 24.65,
6.84, 11.95, 12.24, 7.97, -1.20, -1.76, 10.36, 1.17,
15.41, 15.83, 18.78, 12.75, 24.17, 12.49, 4.58, 6.76,
-2.92))

exdata2 <- data.frame(
x = c(5.70, 8.03, 8.86, 0.82, 1.23, 2.96, 0.13, 8.53, 8.18,

6.88, 4.02, 9.11, 0.19, 6.91, 0.34, 4.19, 0.25, 9.72,
9.83, 6.77, 4.40, 4.70, 6.03, 5.87, 7.49),

y = c(21.66, 26.23, 19.82, 2.46, 2.83, 8.86, 0.25, 16.08,
17.67, 24.86, 8.19, 28.45, 0.52, 19.88, 0.71, 12.19,
0.64, 25.29, 26.72, 18.06, 10.70, 8.27, 15.49, 15.58,
19.17))

Exercise 8.5. We continue our investigation of the weather models from Exercises
8.1 and 8.3.

1. Plot the observed values against the fitted values for the two models that you’ve
fitted. Does either model seem to have a better fit?
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2. Create residual plots for the second model from Exercise 8.3. Are there any
influential points? Any patterns? Any signs of heteroscedasticity?

8.1.5 Transformations
If your data displays signs of heteroscedasticity or non-normal residuals, you can
sometimes use a Box-Cox transformation (Box & Cox, 1964) to mitigate those prob-
lems. The Box-Cox transformation is applied to your dependent variable 𝑦. What
it looks like is determined by a parameter 𝜆. The transformation is defined as 𝑦𝜆

𝑖 −1
𝜆

if 𝜆 ≠ 0 and ln(𝑦𝑖) if 𝜆 = 0. 𝜆 = 1 corresponds to no transformation at all. The
boxcox function in MASS is useful for finding an appropriate choice of 𝜆. Choose a 𝜆
that is close to the peak (inside the interval indicated by the outer dotted lines) of
the curve plotted by boxcox:
m <- lm(mpg ~ hp + wt, data = mtcars)

library(MASS)
boxcox(m)

In this case, the curve indicates that 𝜆 = 0, which corresponds to a log-
transformation, could be a good choice. Let’s give it a go:
mtcars$logmpg <- log(mtcars$mpg)
m_bc <- lm(logmpg ~ hp + wt, data = mtcars)
summary(m_bc)

library(ggfortify)
autoplot(m_bc, which = 1:6, ncol = 2, label.size = 3)

The model fit seems to have improved after the transformation. The downside is
that we now are modelling the log-mpg rather than mpg, which make the model
coefficients a little difficult to interpret.

∼

Exercise 8.6. Run boxcox with your model from Exercise 8.3. Does it indicate that
a transformation can be useful for your model?

8.1.6 Alternatives to lm
Non-normal regression errors can sometimes be an indication that you need to trans-
form your data, that your model is missing an important explanatory variable, that
there are interaction effects that aren’t accounted for, or that the relationship be-
tween the variables is non-linear. But sometimes, you get non-normal errors simply
because the errors are non-normal.
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The p-values reported by summary are computed under the assumption of normally
distributed regression errors, and can be sensitive to deviations from normality. An
alternative is to use the lmp function from the lmPerm package, which provides per-
mutation test p-values instead. This doesn’t affect the model fitting in any way - the
only difference is how the p-values are computed. Moreover, the syntax for lmp is
identical to that of lm:
# First, install lmPerm:
install.packages("lmPerm")

# Get summary table with permutation p-values:
library(lmPerm)
m <- lmp(mpg ~ hp + wt, data = mtcars)
summary(m)

In some cases, you need to change the arguments of lmp to get reliable p-values.
We’ll have a look at that in Exercise 8.12. Relatedly, in Section 8.1.7 we’ll see how
to construct bootstrap confidence intervals for the parameter estimates.

Another option that does affect the model fitting is to use a robust regression model
based on M-estimators. Such models tend to be less sensitive to outliers, and can be
useful if you are concerned about the influence of deviating points. The rlm function
in MASS is used for this. As was the case for lmp, the syntax for rlm is identical to
that of lm:
library(MASS)
m <- rlm(mpg ~ hp + wt, data = mtcars)
summary(m)

Another option is to use Bayesian estimation, which we’ll discuss in Section 8.1.13.

∼

Exercise 8.7. Refit your model from Exercise 8.3 using lmp. Are the two main
effects still significant?

8.1.7 Bootstrap confidence intervals for regression coefficients
Assuming normality, we can obtain parametric confidence intervals for the model
coefficients using confint:
m <- lm(mpg ~ hp + wt, data = mtcars)

confint(m)

I usually prefer to use bootstrap confidence intervals, which we can obtain using boot
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and boot.ci, as we’ll do next. Note that the only random part in the linear model

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖, 𝑖 = 1, … , 𝑛

is the error term 𝜖𝑖. In most cases, it is therefore this term (and this term only) that
we wish to resample. The explanatory variables should remain constant throughout
the resampling process; the inference is conditioned on the values of the explanatory
variables.

To achieve this, we’ll resample from the model residuals, and add those to the values
predicted by the fitted function, which creates new bootstrap values of the response
variable. We’ll then fit a linear model to these values, from which we obtain obser-
vations from the bootstrap distribution of the model coefficients.

It turns out that the bootstrap performs better if we resample not from the original
residuals 𝑒1, … , 𝑒𝑛, but from scaled and centred residuals 𝑟𝑖 − ̄𝑟, where each 𝑟𝑖 is a
scaled version of residual 𝑒𝑖, scaled by the leverage ℎ𝑖:

𝑟𝑖 = 𝑒𝑖
√1 − ℎ𝑖

,

see Chapter 6 of Davison & Hinkley (1997) for details. The leverages can be computed
using lm.influence.

We implement this procedure in the code below (and will then have a look at conve-
nience functions that help us achieve the same thing more easily). It makes use of
formula, which can be used to extract the model formula from regression models:
library(boot)

coefficients <- function(formula, data, i, predictions, residuals) {
# Create the bootstrap value of response variable by
# adding a randomly drawn scaled residual to the value of
# the fitted function for each observation:
data[,all.vars(formula)[1]] <- predictions + residuals[i]

# Fit a new model with the bootstrap value of the response
# variable and the original explanatory variables:
m <- lm(formula, data = data)
return(coef(m))

}

# Fit the linear model:
m <- lm(mpg ~ hp + wt, data = mtcars)

# Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
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res <- res - mean(res)

# Run the bootstrap, extracting the model formula and the
# fitted function from the model m:
boot_res <- boot(data = mtcars, statistic = coefficients,

R = 999, formula = formula(m),
predictions = predict(m),
residuals = res)

# Compute 95 % confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # hp
boot.ci(boot_res, type = "perc", index = 3) # wt

The argument index in boot.ci should be the row number of the parameter in the
table given by summary. The intercept is on the first row, and so its index is 1, hp
is on the second row and its index is 2, and so on.

Clearly, the above code is a little unwieldy. Fortunately, the car package contains
a function called Boot that can be used to bootstrap regression models in the exact
same way:
library(car)

boot_res <- Boot(m, method = "residual", R = 9999)

# Compute 95 % confidence intervals:
confint(boot_res, type = "perc")

Finally, the most convenient approach is to use boot_summary from the boot.pval
package. It provides a data frame with estimates, bootstrap confidence intervals,
and bootstrap p-values (computed using interval inversion) for the model coefficients.
The arguments specify what interval type and resampling strategy to use (more on
the latter in Exercise 8.9):
library(boot.pval)
boot_summary(m, type = "perc", method = "residual", R = 9999)

∼

Exercise 8.8. Refit your model from Exercise 8.3 using a robust regression estimator
with rlm. Compute confidence intervals for the coefficients of the robust regression
model.
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Exercise 8.9. In an alternative bootstrap scheme for regression models, often re-
ferred to as case resampling, the observations (or cases) (𝑦𝑖, 𝑥𝑖1, … , 𝑥𝑖𝑝) are resampled
instead of the residuals. This approach can be applied when the explanatory vari-
ables can be treated as being random (but measured without error) rather than fixed.
It can also be useful for models with heteroscedasticity, as it doesn’t rely on assump-
tions about constant variance (which, on the other hand, makes it less efficient if the
errors actually are homoscedastic).

Read the documentation for boot_summary to see how you can compute confidence in-
tervals for the coefficients in the model m <- lm(mpg ~ hp + wt, data = mtcars)
using case resampling. Do they differ substantially from those obtained using residual
resampling in this case?

8.1.8 Alternative summaries with broom
The broom package contains some useful functions when working with linear models
(and many other common models), which allow us to get various summaries of the
model fit in useful formats. Let’s install it:
install.packages("broom")

A model fitted with m is stored as a list with lots of elements:
m <- lm(mpg ~ hp + wt, data = mtcars)
str(m)

How can we access the information about the model? For instance, we may want to
get the summary table from summary, but as a data frame rather than as printed
text. Here are two ways of doing this, using summary and the tidy function from
broom:
# Using base R:
summary(m)$coefficients

# Using broom:
library(broom)
tidy(m)

tidy is the better option if you want to retrieve the table as part of a pipeline.
For instance, if you want to adjust the p-values for multiplicity using Bonferroni
correction (Section 7.2.5), you could do as follows:
library(magrittr)
mtcars %>%

lm(mpg ~ hp + wt, data = .) %>%
tidy() %$%
p.adjust(p.value, method = "bonferroni")
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If you prefer bootstrap p-values, you can use boot_summary from boot.pval similarly.
That function also includes an argument for adjusting the p-values for multiplicity:
library(boot.pval)
lm(mpg ~ hp + wt, data = mtcars) %>%

boot_summary(adjust.method = "bonferroni")

Another useful function in broom is glance, which lets us get some summary statistics
about the model:
glance(m)

Finally, augment can be used to add predicted values, residuals, and Cook’s distances
to the dataset used for fitting the model, which of course can be very useful for model
diagnostics:
# To get the data frame with predictions and residuals added:
augment(m)

# To plot the observed values against the fitted values:
library(ggplot2)
mtcars %>%

lm(mpg ~ hp + wt, data = .) %>%
augment() %>%
ggplot(aes(.fitted, mpg)) +
geom_point() +
xlab("Fitted values") + ylab("Observed values")

8.1.9 Variable selection
A common question when working with linear models is what variables to include
in your model. Common practices for variable selection include stepwise regression
methods, where variables are added to or removed from the model depending on
p-values, 𝑅2 values, or information criteria like AIC or BIC.

Don’t ever do this if your main interest is p-values. Stepwise regression
increases the risk of type I errors, renders the p-values of your final model invalid,
and can lead to over-fitting; see e.g. Smith (2018). Instead, you should let your
research hypothesis guide your choice of variables, or base your choice on a pilot
study.

If your main interest is prediction, then that is a completely different story. For
predictive models, it is usually recommended that variable selection and model fitting
should be done simultaneously. This can be done using regularised regression models,
to which Section 9.4 is devoted.
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8.1.10 Prediction
An important use of linear models is prediction. In R, this is done using predict.
By providing a fitted model and a new dataset, we can get predictions.

Let’s use one of the models that we fitted to the mtcars data to make predictions for
two cars that aren’t from the 1970’s. Below, we create a data frame with data for a
2009 Volvo XC90 D3 AWD (with a fuel consumption of 29 mpg) and a 2019 Ferrari
Roma (15.4 mpg):
new_cars <- data.frame(hp = c(161, 612), wt = c(4.473, 3.462),

row.names = c("Volvo XC90", "Ferrari Roma"))

To get the model predictions for these new cars, we run the following:
predict(m, new_cars)

predict also lets us obtain prediction intervals for our prediction, under the as-
sumption of normality3. To get 90 % prediction intervals, we add interval =
"prediction" and level = 0.9:
m <- lm(mpg ~ hp + wt, data = mtcars)
predict(m, new_cars,

interval = "prediction",
level = 0.9)

If we were using a transformed 𝑦-variable, we’d probably have to transform the
predictions back to the original scale for them to be useful:
mtcars$logmpg <- log(mtcars$mpg)
m_bc <- lm(logmpg ~ hp + wt, data = mtcars)

preds <- predict(m_bc, new_cars,
interval = "prediction",
level = 0.9)

# Predictions for log-mpg:
preds
# Transform back to original scale:
exp(preds)

The lmp function that we used to compute permutation p-values does not offer con-
fidence intervals. We can however compute bootstrap prediction intervals using the
code below. Prediction intervals try to capture two sources of uncertainty:

3Prediction intervals provide interval estimates for the new observations. They incorporate both
the uncertainty associated with our model estimates, and the fact that the new observation is likely
to deviate slightly from its expected value.
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• Model uncertainty, which we will capture by resampling the data and make
predictions for the expected value of the observation,

• Random noise, i.e. that almost all observations deviate from their expected
value. We will capture this by resampling residuals from the fitted bootstrap
models.

Consequently, the value that we generate in each bootstrap replication will be the
sum of a prediction and a resampled residual (see Davison & Hinkley (1997), Section
6.3, for further details):
boot_pred <- function(data, new_data, model, i,

formula, predictions, residuals){
# Resample residuals and fit new model:
data[,all.vars(formula)[1]] <- predictions + residuals[i]
m_boot <- lm(formula, data = data)

# We use predict to get an estimate of the
# expectation of new observations, and then
# add resampled residuals to also include the
# natural variation around the expectation:
predict(m_boot, newdata = new_data) +

sample(residuals, nrow(new_data))
}

library(boot)

m <- lm(mpg ~ hp + wt, data = mtcars)

# Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
res <- res - mean(res)

boot_res <- boot(data = m$model,
statistic = boot_pred,
R = 999,
model = m,
new_data = new_cars,
formula = formula(m),
predictions = predict(m),
residuals = res)

# 90 % bootstrap prediction intervals:
boot.ci(boot_res, type = "perc", index = 1, conf = 0.9) # Volvo
boot.ci(boot_res, type = "perc", index = 2, conf = 0.9) # Ferrari
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∼

Exercise 8.10. Use your model from Exercise 8.3 to compute a bootstrap prediction
interval for the temperature on a day with precipitation but no sun hours.

8.1.11 Prediction for multiple datasets
In certain cases, we wish to fit different models to different subsets of the data.
Functionals like apply and map (Section 6.5) are handy when you want to fit several
models at once. Below is an example of how we can use split (Section 5.2.1) and
tools from the purrr package (Section 6.5.3) to fit the models simultaneously, as well
as for computing the fitted values in a single line of code:
# Split the dataset into three groups depending on the
# number of cylinders:
library(magrittr)
mtcars_by_cyl <- mtcars %>% split(.$cyl)

# Fit a linear model to each subgroup:
library(purrr)
models <- mtcars_by_cyl %>% map(~ lm(mpg ~ hp + wt, data = .))

# Compute the fitted values for each model:
map2(models, mtcars_by_cyl, predict)

We’ll make use of this approach when we study linear mixed models in Section 8.4.

8.1.12 ANOVA
Linear models are also used for analysis of variance (ANOVA) models to test whether
there are differences among the means of different groups. We’ll use the mtcars data
to give some examples of this. Let’s say that we want to investigate whether the mean
fuel consumption (mpg) of cars differs depending on the number of cylinders (cyl),
and that we want to include the type of transmission (am) as a blocking variable.

To get an ANOVA table for this problem, we must first convert the explanatory
variables to factor variables, as the variables in mtcars all numeric (despite some
of them being categorical). We can then use aov to fit the model, and then summary:
# Convert variables to factors:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)

# Fit model and print ANOVA table:
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m <- aov(mpg ~ cyl + am, data = mtcars)
summary(m)

(aov actually uses lm to fit the model, but by using aov we specify that we want an
ANOVA table to be printed by summary.)

When there are different numbers of observations in the groups in an ANOVA, so
that we have an unbalanced design, the sums of squares used to compute the test
statistics can be computed in at least three different ways, commonly called type I,
II and III. See Herr (1986) for an overview and discussion of this.

summary prints a type I ANOVA table, which isn’t the best choice for unbalanced
designs. We can however get type II or III tables by instead using Anova from the
car package to print the table:
library(car)
Anova(m, type = "II")
Anova(m, type = "III") # Default in SAS and SPSS.

As a guideline, for unbalanced designs, you should use type II tables if there are no
interactions, and type III tables if there are interactions. To look for interactions, we
can use interaction.plot to create a two-way interaction plot:
interaction.plot(mtcars$am, mtcars$cyl, response = mtcars$mpg)

In this case, there is no sign of an interaction between the two variables, as the lines
are more or less parallel. A type II table is therefore probably the best choice here.

We can obtain diagnostic plots the same way we did for other linear models:
library(ggfortify)
autoplot(m, which = 1:6, ncol = 2, label.size = 3)

To find which groups that have significantly different means, we can use a post hoc
test like Tukey’s HSD, available through the TukeyHSD function:
TukeyHSD(m)

We can visualise the results of Tukey’s HSD with plot, which shows 95 % confidence
intervals for the mean differences:
# When the difference isn't significant, the dashed line indicating
# "no differences" falls within the confidence interval for
# the difference:
plot(TukeyHSD(m, "am"))

# When the difference is significant, the dashed line does not
# fall within the confidence interval:
plot(TukeyHSD(m, "cyl"))



8.1. LINEAR MODELS 313

∼

Exercise 8.11. Return to the residual plots that you created with autoplot. Figure
out how you can plot points belonging to different cyl groups in different colours.

Exercise 8.12. The aovp function in the lmPerm package can be utilised to perform
permutation tests instead of the classical parametric ANOVA tests. Rerun the anal-
ysis in the example above, using aovp instead. Do the conclusions change? What
happens if you run your code multiple times? Does using summary on a model fitted
using aovp generate a type I, II or III table by default? Can you change what type
of table it produces?

Exercise 8.13. In the case of a one-way ANOVA (i.e. ANOVA with a single explana-
tory variable), the Kruskal-Wallis test can be used as a nonparametric option. It is
available in kruskal.test. Use the Kruskal-Wallis test to run a one-way ANOVA
for the mtcars data, with mpg as the response variable and cyl as an explanatory
variable.

8.1.13 Bayesian estimation of linear models
We can fit Bayesian linear models using the rstanarm package. To fit a model to the
mtcars data using all explanatory variables, we can use stan_glm in place of lm as
follows:
library(rstanarm)
m <- stan_glm(mpg ~ ., data = mtcars)

# Print the estimates:
coef(m)

Next, we can plot the posterior distributions of the effects:
plot(m, "dens", pars = names(coef(m)))

To get 95 % credible intervals for the effects, we can use posterior_interval:
posterior_interval(m,

pars = names(coef(m)),
prob = 0.95)

We can also plot them using plot:
plot(m, "intervals",

pars = names(coef(m)),
prob = 0.95)
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Finally, we can use �̂� to check model convergence. It should be less than 1.1 if the
fitting has converged:
plot(m, "rhat")

Like for lm, residuals(m) provides the model residuals, which can be used for diag-
nostics. For instance, we can plot the residuals against the fitted values to look for
signs of non-linearity, adding a curve to aid the eye:
model_diag <- data.frame(Fitted = predict(m),

Residual = residuals(m))

library(ggplot2)
ggplot(model_diag, aes(Fitted, Residual)) +

geom_point() +
geom_smooth(se = FALSE)

For fitting ANOVA models, we can instead use stan_aov with the argument prior
= R2(location = 0.5) to fit the model.

8.2 Ethical issues in regression modelling
The p-hacking problem, discussed in Section 7.4, is perhaps particularly prevalent
in regression modelling. Regression analysis often involves a large number of ex-
planatory variables, and practitioners often try out several different models (e.g. by
performing stepwise variable selection; see Section 8.1.9). Because so many hypothe-
ses are tested, often in many different but similar models, there is a large risk of false
discoveries.

In any regression analysis, there is a risk of finding spurious relationships. These are
dependencies between the response variable and an explanatory variable that either
are non-causal or are purely coincidental. As an example of the former, consider
the number of deaths by drowning, which is strongly correlated with ice cream sales.
Not because ice cream cause people to drown, but because both are affected by the
weather: we are more likely to go swimming or buy ice cream on hot days. Lurking
variables, like the temperature in the ice cream-drowning example, are commonly
referred to as confounding factors. An effect may be statistically significant, but that
does not necessarily mean that it is meaningful.

∼

Exercise 8.14. Discuss the following. You are tasked with analysing a study on
whether Vitamin D protects against the flu. One group of patients are given Vi-
tamin D supplements, and one group is given a placebo. You plan on fitting a
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regression model to estimate the effect of the vitamin supplements, but note that
some confounding factors that you have reason to believe are of importance, such as
age and ethnicity, are missing from the data. You can therefore not include them as
explanatory variables in the model. Should you still fit the model?

Exercise 8.15. Discuss the following. You are fitting a linear regression model to a
dataset from a medical study on a new drug which potentially can have serious side
effects. The test subjects take a risk by participating in the study. Each observation
in the dataset corresponds to a test subject. Like all ordinary linear regression
models, your model gives more weight to observations that deviate from the average
(and have a high leverage or Cook’s distance). Given the risks involved for the test
subjects, is it fair to give different weight to data from different individuals? Is it
OK to remove outliers because they influence the results too much, meaning that the
risk that the subject took was for nought?

8.3 Generalised linear models
Generalised linear models, abbreviated GLM, are (yes) a generalisation of the linear
model, that can be used when your response variable has a non-normal error distri-
bution. Typical examples are when your response variable is binary (only takes two
values, e.g. 0 or 1), or a count of something. Fitting GLM’s is more or less entirely
analogous to fitting linear models in R, but model diagnostics are very different. In
this section we will look at some examples of how it can be done.

8.3.1 Modelling proportions: Logistic regression
As the first example of binary data, we will consider the wine quality dataset wine
from Cortez et al. (2009), which is available in the UCI Machine Learning Repository
at http://archive.ics.uci.edu/ml/datasets/Wine+Quality. It contains measurements
on white and red vinho verde wine samples from northern Portugal.

We start by loading the data. It is divided into two separate .csv files, one for white
wines and one for red, which we have to merge:
# Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1",

sep = ";")
red <- read.csv("https://tinyurl.com/winedata2",

sep = ";")

# Add a type variable:
white$type <- "white"
red$type <- "red"

# Merge the datasets:

http://archive.ics.uci.edu/ml/datasets/Wine+Quality
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wine <- rbind(white, red)
wine$type <- factor(wine$type)

# Check the result:
summary(wine)

We are interested in seeing if measurements like pH (pH) and alcohol content
(alcohol) can be used to determine the colours of the wine. The colour is
represented by the type variable, which is binary.

Our model is that the type of a randomly selected wine is binomial 𝐵𝑖𝑛(1, 𝜋𝑖)-
distributed (Bernoulli distributed), where 𝜋𝑖 depends on explanatory variables like
pH and alcohol content. A common model for this situation is a logistic regression
model. Given 𝑛 observations of 𝑝 explanatory variables, the model is:

log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝, 𝑖 = 1, … , 𝑛

Where we in linear regression models model the expected value of the response vari-
able as a linear function of the explanatory variables, we now model the expected
value of a function of the expected value of the response variable (that is, a function
of 𝜋𝑖). In GLM terminology, this function is known as a link function.

Logistic regression models can be fitted using the glm function. To specify what our
model is, we use the argument family = binomial:
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
summary(m)

The p-values presented in the summary table are based on a Wald test known to
have poor performance unless the sample size is very large (Agresti, 2013). In this
case, with a sample size of 6,497, it is probably safe to use, but for smaller sample
sizes, it is preferable to use a bootstrap test instead, which you will do in Exercise
8.18.

The coefficients of a logistic regression model aren’t as straightforward to interpret
as those in a linear model. If we let 𝛽 denote a coefficient corresponding to an
explanatory variable 𝑥, then:

• If 𝛽 is positive, then 𝜋𝑖 increases when 𝑥𝑖 increases.
• If 𝛽 is negative, then 𝜋𝑖 decreases when 𝑥𝑖 increases.
• 𝑒𝛽 is the odds ratio, which shows how much the odds 𝜋𝑖

1−𝜋1
change when 𝑥𝑖 is

increased 1 step.

We can extract the coefficients and odds ratios using coef:
coef(m) # Coefficients, beta
exp(coef(m)) # Odds ratios
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To find the fitted probability that an observation belongs to the second class we can
use predict(m, type = "response"):
# Check which class is the second one:
levels(wine$type)
# "white" is the second class!

# Get fitted probabilities:
probs <- predict(m, type = "response")

# Check what the average prediction is for
# the two groups:
mean(probs[wine$type == "red"])
mean(probs[wine$type == "white"])

It turns out that the model predicts that most wines are white - even the red ones!
The reason may be that we have more white wines (4,898) than red wines (1,599)
in the dataset. Adding more explanatory variables could perhaps solve this problem.
We’ll give that a try in the next section.

∼

Exercise 8.16. Download sharks.csv file from the book’s web page. It contains
information about shark attacks in South Africa. Using data on attacks that occurred
in 2000 or later, fit a logistic regression model to investigate whether the age and sex
of the individual that was attacked affect the probability of the attack being fatal.

Note: save the code for your model, as you will return to it in the subsequent
exercises.

Exercise 8.17. In Section 8.1.8 we saw how some functions from the broom package
could be used to get summaries of linear models. Try using them with the wine data
model that we created above. Do the broom functions work for generalised linear
models as well?

8.3.2 Bootstrap confidence intervals
In a logistic regression, the response variable 𝑦𝑖 is a binomial (or Bernoulli) random
variable with success probability 𝜋𝑖. In this case, we don’t want to resample residuals
to create confidence intervals, as it turns out that this can lead to predicted probabil-
ities outside the range (0, 1). Instead, we can either use the case resampling strategy
described in Exercise 8.9 or use a parametric bootstrap approach where we generate
new binomial variables (Section 7.1.2) to construct bootstrap confidence intervals.

To use case resampling, we can use boot_summary from boot.pval:

http://www.modernstatisticswithr.com/data.zip
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library(boot.pval)

m <- glm(type ~ pH + alcohol, data = wine, family = binomial)

boot_summary(m, type = "perc", method = "case")

In the parametric approach, for each observation, the fitted success probability from
the logistic model will be used to sample new observations of the response variable.
This method can work well if the model is well-specified but tends to perform poorly
for misspecified models, so make sure to carefully perform model diagnostics (as
described in the next section) before applying it. To use the parametric approach,
we can do as follows:
library(boot)

coefficients <- function(formula, data, predictions, ...) {
# Check whether the response variable is a factor or
# numeric, and then resample:
if(is.factor(data[,all.vars(formula)[1]])) {

# If the response variable is a factor:
data[,all.vars(formula)[1]] <-

factor(levels(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data),
1, predictions)]) } else {

# If the response variable is numeric:
data[,all.vars(formula)[1]] <-

unique(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data),
1, predictions)] }

m <- glm(formula, data = data, family = binomial)
return(coef(m))

}

m <- glm(type ~ pH + alcohol, data = wine, family = binomial)

boot_res <- boot(data = wine, statistic = coefficients,
R = 999,
formula = formula(m),
predictions = predict(m, type = "response"))

# Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # pH
boot.ci(boot_res, type = "perc", index = 3) # Alcohol
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∼

Exercise 8.18. Use the model that you fitted to the sharks.csv data in Exercise
8.16 for the following:

1. When the MASS package is loaded, you can use confint to obtain (asymptotic)
confidence intervals for the parameters of a GLM. Use it to compute confidence
intervals for the parameters of your model for the sharks.csv data.

2. Compute parametric bootstrap confidence intervals and p-values for the pa-
rameters of your logistic regression model for the sharks.csv data. Do they
differ from the intervals obtained using confint? Note that there are a lot of
missing values for the response variable. Think about how that will affect your
bootstrap intervals and adjust your code accordingly.

3. Use the confidence interval inversion method of Section 7.7.3 to compute boot-
strap p-values for the effect of age.

8.3.3 Model diagnostics
It is notoriously difficult to assess model fit for GLM’s, because the behaviour of the
residuals is very different from residuals in ordinary linear models. In the case of
logistic regression, the response variable is always 0 or 1, meaning that there will be
two bands of residuals:
# Store deviance residuals:
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
res <- data.frame(Predicted <- predict(m),

Residuals <- residuals(m, type ="deviance"),
Index = 1:nrow(m$data),
CooksDistance = cooks.distance(m))

# Plot fitted values against the deviance residuals:
library(ggplot2)
ggplot(res, aes(Predicted, Residuals)) +

geom_point()

# Plot index against the deviance residuals:
ggplot(res, aes(Index, Residuals)) +

geom_point()

Plots of raw residuals are of little use in logistic regression models. A better option is
to use a binned residual plot, in which the observations are grouped into bins based
on their fitted value. The average residual in each bin can then be computed, which
will tell us if which parts of the model have a poor fit. A function for this is available
in the arm package:
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install.packages("arm")

library(arm)
binnedplot(predict(m, type = "response"),

residuals(m, type = "response"))

The grey lines show confidence bounds which are supposed to contain about 95 %
of the bins. If too many points fall outside these bounds, it’s a sign that we have
a poor model fit. In this case, there are a few points outside the bounds. Most
notably, the average residuals are fairly large for the observations with the lowest
fitted values, i.e. among the observations with the lowest predicted probability of
being white wines.

Let’s compare the above plot to that for a model with more explanatory variables:
m2 <- glm(type ~ pH + alcohol + fixed.acidity + residual.sugar,

data = wine, family = binomial)

binnedplot(predict(m2, type = "response"),
residuals(m2, type = "response"))

This looks much better - adding more explanatory variable appears to have improved
the model fit.

It’s worth repeating that if your main interest is hypothesis testing, you shouldn’t fit
multiple models and then pick the one that gives the best results. However, if you’re
doing an exploratory analysis or are interested in predictive modelling, you can and
should try different models. It can then be useful to do a formal hypothesis test of
the null hypothesis that m and m2 fit the data equally well, against the alternative
that m2 has a better fit. If both fit the data equally well, we’d prefer m, since it is
a simpler model. We can use anova to perform a likelihood ratio deviance test (see
Section 12.4 for details), which tests this:
anova(m, m2, test = "LRT")

The p-value is very low, and we conclude that m2 has a better model fit.

Another useful function is cooks.distance, which can be used to compute the Cook’s
distance for each observation, which is useful for finding influential observations. In
this case, I’ve chosen to print the row numbers for the observations with a Cook’s
distance greater than 0.004 - this number has been arbitrarily chosen in order only
to highlight the observations with the highest Cook’s distance.
res <- data.frame(Index = 1:length(cooks.distance(m)),

CooksDistance = cooks.distance(m))

# Plot index against the Cook's distance to find
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# influential points:
ggplot(res, aes(Index, CooksDistance)) +

geom_point() +
geom_text(aes(label = ifelse(CooksDistance > 0.004,

rownames(res), "")),
hjust = 1.1)

∼

Exercise 8.19. Investigate the residuals for your sharks.csv model. Are there any
problems with the model fit? Any influential points?

8.3.4 Prediction
Just as for linear models, we can use predict to make predictions for new obser-
vations using a GLM. To begin with, let’s randomly sample 10 rows from the wine
data and fit a model using all data except those ten observations:
# Randomly select 10 rows from the wine data:
rows <- sample(1:nrow(wine), 10)

m <- glm(type ~ pH + alcohol, data = wine[-rows,], family = binomial)

We can now use predict to make predictions for the ten observations:
preds <- predict(m, wine[rows,])
preds

Those predictions look a bit strange though - what are they? By default, predict
returns predictions on the scale of the link function. That’s not really what we want
in most cases - instead, we are interested in the predicted probabilities. To get those,
we have to add the argument type = "response" to the call:
preds <- predict(m, wine[rows,], type = "response")
preds

Logistic regression models are often used for prediction, in what is known as classifi-
cation. Section 9.1.7 is concerned with how to evaluate the predictive performance
of logistic regression and other classification models.

8.3.5 Modelling count data
Logistic regression is but one of many types of GLM’s used in practice. One important
example is Cox regression, which is used for survival data. We’ll return to that model
in Section 8.5. For now, we’ll consider count data instead. Let’s have a look at the
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shark attack data in sharks.csv, available on the book’s website. It contains data
about shark attacks in South Africa, downloaded from The Global Shark Attack File
(http://www.sharkattackfile.net/incidentlog.htm). To load it, we download the file
and set file_path to the path of sharks.csv:
sharks <- read.csv(file_path, sep =";")

# Compute number of attacks per year:
attacks <- aggregate(Type ~ Year, data = sharks, FUN = length)

# Keep data for 1960-2019:
attacks <- subset(attacks, Year >= 1960)

The number of attacks in a year is not binary but a count that, in principle, can take
any non-negative integer as its value. Are there any trends over time for the number
of reported attacks?
# Plot data from 1960-2019:
library(ggplot2)
ggplot(attacks, aes(Year, Type)) +

geom_point() +
ylab("Number of attacks")

No trend is evident. To confirm this, let’s fit a regression model with Type (the
number of attacks) as the response variable and Year as an explanatory variable.
For count data like this, a good first model to use is Poisson regression. Let 𝜇𝑖
denote the expected value of the response variable given the explanatory variables.
Given 𝑛 observations of 𝑝 explanatory variables, the Poisson regression model is:

log(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝, 𝑖 = 1, … , 𝑛

To fit it, we use glm as before, but this time with family = poisson:
m <- glm(Type ~ Year, data = attacks, family = poisson)
summary(m)

We can add the curve corresponding to the fitted model to our scatterplot as follows:
attacks_pred <- data.frame(Year = attacks$Year, at_pred =

predict(m, type = "response"))

ggplot(attacks, aes(Year, Type)) +
geom_point() +
ylab("Number of attacks") +
geom_line(data = attacks_pred, aes(x = Year, y = at_pred),

colour = "red")

http://www.sharkattackfile.net/incidentlog.htm
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The fitted model seems to confirm our view that there is no trend over time in the
number of attacks.

For model diagnostics, we can use a binned residual plot and a plot of Cook’s distance
to find influential points:
# Binned residual plot:
library(arm)
binnedplot(predict(m, type = "response"),

residuals(m, type = "response"))

# Plot index against the Cook's distance to find
# influential points:
res <- data.frame(Index = 1:nrow(m$data),

CooksDistance = cooks.distance(m))
ggplot(res, aes(Index, CooksDistance)) +

geom_point() +
geom_text(aes(label = ifelse(CooksDistance > 0.1,

rownames(res), "")),
hjust = 1.1)

A common problem in Poisson regression models is excess zeros, i.e. more observations
with value 0 than what is predicted by the model. To check the distribution of counts
in the data, we can draw a histogram:
ggplot(attacks, aes(Type)) +

geom_histogram(binwidth = 1, colour = "black")

If there are a lot of zeroes in the data, we should consider using another model, such
as a hurdle model or a zero-inflated Poisson regression. Both of these are available
in the pscl package.

Another common problem is overdispersion, which occurs when there is more variabil-
ity in the data than what is predicted by the GLM. A formal test of overdispersion
(Cameron & Trivedi, 1990) is provided by dispersiontest in the AER package. The
null hypothesis is that there is no overdispersion, and the alternative that there is
overdispersion:
install.packages("AER")

library(AER)
dispersiontest(m, trafo = 1)

There are several alternative models that can be considered in the case of overdisper-
sion. One of them is negative binomial regression, which uses the same link function
as Poisson regression. We can fit it using the glm.nb function from MASS:
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library(MASS)
m_nb <- glm.nb(Type ~ Year, data = attacks)

summary(m_nb)

For the shark attack data, the predictions from the two models are virtually identical,
meaning that both are equally applicable in this case:
attacks_pred <- data.frame(Year = attacks$Year, at_pred =

predict(m, type = "response"))
attacks_pred_nb <- data.frame(Year = attacks$Year, at_pred =

predict(m_nb, type = "response"))

ggplot(attacks, aes(Year, Type)) +
geom_point() +
ylab("Number of attacks") +
geom_line(data = attacks_pred, aes(x = Year, y = at_pred),

colour = "red") +
geom_line(data = attacks_pred_nb, aes(x = Year, y = at_pred),

colour = "blue", linetype = "dashed")

Finally, we can obtain bootstrap confidence intervals e.g. using case resampling, using
boot_summary:
library(boot.pval)
boot_summary(m_nb, type = "perc", method = "case")

∼

Exercise 8.20. The quakes dataset, available in base R, contains information about
seismic events off Fiji. Fit a Poisson regression model with stations as the response
variable and mag as an explanatory variable. Are there signs of overdispersion? Does
using a negative binomial model improve the model fit?

8.3.6 Modelling rates
Poisson regression models, and related models like negative binomial regression, can
not only be used to model count data. They can also be used to model rate data,
such as the number of cases per capita or the number of cases per unit area. In that
case, we need to include an exposure variable 𝑁 that describes e.g. the population
size or area corresponding to each observation. The model will be that:

log(𝜇𝑖/𝑁𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝, 𝑖 = 1, … , 𝑛.
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Because log(𝜇𝑖/𝑁𝑖) = log(𝜇𝑖) − log(𝑁𝑖), this can be rewritten as:

log(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + log(𝑁𝑖), 𝑖 = 1, … , 𝑛.

In other words, we should include log(𝑁𝑖) on the right-hand side of our model, with
a known coefficient equal to 1. In regression, such a term is known as an offset. We
can add it to our model using the offset function.

As an example, we’ll consider the ships data from the MASS package. It describes
the number of damage incidents for different ship types operating in the 1960’s and
1970’s, and includes information about how many months each ship type was in
service (i.e. each ship type’s exposure):
library(MASS)
?ships
View(ships)

For our example, we’ll use ship type as the explanatory variable, incidents as the
response variable and service as the exposure variable. First, we remove observa-
tions with 0 exposure (by definition, these can’t be involved in incidents, and so there
is no point in including them in the analysis). Then, we fit the model using glm and
offset:
ships <- ships[ships$service != 0,]

m <- glm(incidents ~ type + offset(log(service)),
data = ships,
family = poisson)

summary(m)

Model diagnostics can be performed as in the previous sections.

Rate models are usually interpreted in terms of the rate ratios 𝑒𝛽𝑗 , which describe
the multiplicative increases of the intensity of rates when 𝑥𝑗 is increased by one unit.
To compute the rate ratios for our model, we use exp:
exp(coef(m))

∼

Exercise 8.21. Compute bootstrap confidence intervals for the rate ratios in the
model for the ships data.
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8.3.7 Bayesian estimation of generalised linear models

We can fit a Bayesian GLM with the rstanarm package, using stan_glm in the same
way we did for linear models. Let’s look at an example with the wine data. First,
we load and prepare the data:
# Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1",

sep = ";")
red <- read.csv("https://tinyurl.com/winedata2",

sep = ";")
white$type <- "white"
red$type <- "red"
wine <- rbind(white, red)
wine$type <- factor(wine$type)

Now, we fit a Bayesian logistic regression model:
library(rstanarm)
m <- stan_glm(type ~ pH + alcohol, data = wine, family = binomial)

# Print the estimates:
coef(m)

Next, we can plot the posterior distributions of the effects:
plot(m, "dens", pars = names(coef(m)))

To get 95 % credible intervals for the effects, we can use posterior_interval. We
can also use plot to visualise them:
posterior_interval(m,

pars = names(coef(m)),
prob = 0.95)

plot(m, "intervals",
pars = names(coef(m)),
prob = 0.95)

Finally, we can use �̂� to check model convergence. It should be less than 1.1 if the
fitting has converged:
plot(m, "rhat")
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8.4 Mixed models
Mixed models are used in regression problems where measurements have been made
on clusters of related units. As the first example of this, we’ll use a dataset from
the lme4 package, which also happens to contain useful methods for mixed models.
Let’s install it:
install.packages("lme4")

The sleepstudy dataset from lme4 contains data from a study on reaction times in
a sleep deprivation study. The participants were restricted to 3 hours of sleep per
night, and their average reaction time on a series of tests were measured each day
during the 9 days that the study lasted:
library(lme4)
?sleepstudy
str(sleepstudy)

Let’s start our analysis by making boxplots showing reaction times for each subject.
We’ll also superimpose the observations for each participant on top of their boxplots:
library(ggplot2)
ggplot(sleepstudy, aes(Subject, Reaction)) +

geom_boxplot() +
geom_jitter(aes(colour = Subject),

position = position_jitter(0.1))

We are interested in finding out if the reaction times increase when the participants
have been starved for sleep for a longer period. Let’s try plotting reaction times
against days, adding a regression line:
ggplot(sleepstudy, aes(Days, Reaction, colour = Subject)) +

geom_point() +
geom_smooth(method = "lm", colour = "black", se = FALSE)

As we saw in the boxplots, and can see in this plot too, some participants always have
comparatively high reaction times, whereas others always have low values. There are
clear differences between individuals, and the measurements for each individual will
be correlated. This violates a fundamental assumption of the traditional linear model,
namely that all observations are independent.

In addition to this, it also seems that the reaction times change in different ways for
different participants, as can be seen if we facet the plot by test subject:
ggplot(sleepstudy, aes(Days, Reaction, colour = Subject)) +

geom_point() +
theme(legend.position = "none") +
facet_wrap(~ Subject, nrow = 3) +
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geom_smooth(method = "lm", colour = "black", se = FALSE)

Both the intercept and the slope of the average reaction time differs between individ-
uals. Because of this, the fit given by the single model can be misleading. Moreover,
the fact that the observations are correlated will cause problems for the traditional
intervals and tests. We need to take this into account when we estimate the overall
intercept and slope.

One approach could be to fit a single model for each subject. That doesn’t seem very
useful though. We’re not really interested in these particular test subjects, but in
how sleep deprivation affects reaction times in an average person. It would be much
better to have a single model that somehow incorporates the correlation between
measurements made on the same individual. That is precisely what a linear mixed
regression model does.

8.4.1 Fitting a linear mixed model
A linear mixed model (LMM) has two types of effects (explanatory variables):

• Fixed effects, which are non-random. These are usually the variables of primary
interest in the data. In the sleepstudy example, Days is a fixed effect.

• Random effects, which represent nuisance variables that cause measurements
to be correlated. These are usually not of interest in and of themselves, but
are something that we need to include in the model to account for correlations
between measurements. In the sleepstudy example, Subject is a random
effect.

Linear mixed models can be fitted using lmer from the lme4 package. The syntax
is the same as for lm, with the addition of random effects. These can be included in
different ways. Let’s have a look at them.

First, we can include a random intercept, which gives us a model where the intercept
(but not the slope) varies between test subjects. In our example, the formula for this
is:
library(lme4)
m1 <- lmer(Reaction ~ Days + (1|Subject), data = sleepstudy)

Alternatively, we could include a random slope in the model, in which case the slope
(but not the intercept) varies between test subjects. The formula would be:
m2 <- lmer(Reaction ~ Days + (0 + Days|Subject), data = sleepstudy)

Finally, we can include both a random intercept and random slope in the model.
This can be done in two different ways, as we can model the intercept and slope as
being correlated or uncorrelated:
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# Correlated random intercept and slope:
m3 <- lmer(Reaction ~ Days + (1 + Days|Subject), data = sleepstudy)

# Uncorrelated random intercept and slope:
m4 <- lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),

data = sleepstudy)

Which model should we choose? Are the intercepts and slopes correlated? It could
of course be the case that individuals with a high intercept have a smaller slope - or
a greater slope! To find out, we can fit different linear models to each subject, and
then make a scatterplot of their intercepts and slopes. To fit a model to each subject,
we use split and map as in Section 8.1.11:
# Collect the coefficients from each linear model:
library(purrr)
sleepstudy %>% split(.$Subject) %>%

map(~ lm(Reaction ~ Days, data = .)) %>%
map(coef) -> coefficients

# Convert to a data frame:
coefficients <- data.frame(matrix(unlist(coefficients),

nrow = length(coefficients),
byrow = TRUE),
row.names = names(coefficients))

names(coefficients) <- c("Intercept", "Days")

# Plot the coefficients:
ggplot(coefficients, aes(Intercept, Days,

colour = row.names(coefficients))) +
geom_point() +
geom_smooth(method = "lm", colour = "black", se = FALSE) +
labs(fill = "Subject")

# Test the correlation:
cor.test(coefficients$Intercept, coefficients$Days)

The correlation test is not significant, and judging from the plot, there is little in-
dication that the intercept and slope are correlated. We saw earlier that both the
intercept and the slope seem to differ between subjects, and so m4 seems like the best
choice here. Let’s stick with that, and look at a summary table for the model.
summary(m4, correlation = FALSE)

I like to add correlation = FALSE here, which suppresses some superfluous output
from summary.
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You’ll notice that unlike the summary table for linear models, there are no p-values!
This is a deliberate design choice from the lme4 developers, who argue that the
approximate test available aren’t good enough for small sample sizes (Bates et al.,
2015).

Using the bootstrap, as we will do in Section 8.4.3, is usually the best approach for
mixed models. If you really want some quick p-values, you can load the lmerTest
package, which adds p-values computed using the Satterthwaite approximation
(Kuznetsova et al., 2017). This is better than the usual approximate test, but still
not perfect.
install.packages("lmerTest")

library(lmerTest)
m4 <- lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),

data = sleepstudy)
summary(m4, correlation = FALSE)

If we need to extract the model coefficients, we can do so using fixef (for the fixed
effects) and ranef (for the random effects):
fixef(m4)
ranef(m4)

If we want to extract the variance components from the model, we can use VarCorr:
VarCorr(m4)

Let’s add the lines from the fitted model to our facetted plot, to compare the results
of our mixed model to the lines that were fitted separately for each individual:
mixed_mod <- coef(m4)$Subject
mixed_mod$Subject <- row.names(mixed_mod)

ggplot(sleepstudy, aes(Days, Reaction)) +
geom_point() +
theme(legend.position = "none") +
facet_wrap(~ Subject, nrow = 3) +
geom_smooth(method = "lm", colour = "cyan", se = FALSE,

size = 0.8) +
geom_abline(aes(intercept = `(Intercept)`, slope = Days,

color = "magenta"),
data = mixed_mod, size = 0.8)

Notice that the lines differ. The intercept and slopes have been shrunk toward the
global effects, i.e. toward the average of all lines.
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∼

Exercise 8.22. Consider the Oxboys data from the nlme package. Does a mixed
model seem appropriate here? If so, is the intercept and slope for different subjects
correlated? Fit a suitable model, with height as the response variable.

Save the code for your model, as you will return to it in the next few exercises.

Exercise 8.23. The broom.mixed package allows you to get summaries of mixed
models as data frames, just as broom does for linear and generalised linear models.
Install it and use it to get the summary table for the model for the Oxboys data that
you created in the previous exercise. How are fixed and random effects included in
the table?

8.4.2 Model diagnostics
As for any linear model, residual plots are useful for diagnostics for linear mixed
models. Of particular interest are signs of heteroscedasticity, as homoscedasticity is
assumed in the mixed model. We’ll use fortify.merMod to turn the model into an
object that can be used with ggplot2, and then create some residual plots:
library(ggplot2)
fm4 <- fortify.merMod(m4)

# Plot residuals:
ggplot(fm4, aes(.fitted, .resid)) +

geom_point() +
geom_hline(yintercept = 0) +
xlab("Fitted values") + ylab("Residuals")

# Compare the residuals of different subjects:
ggplot(fm4, aes(Subject, .resid)) +

geom_boxplot() +
coord_flip() +
ylab("Residuals")

# Observed values versus fitted values:
ggplot(fm4, aes(.fitted, Reaction)) +

geom_point(colour = "blue") +
facet_wrap(~ Subject, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

## Q-Q plot of residuals:
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ggplot(fm4, aes(sample = .resid)) +
geom_qq() + geom_qq_line()

## Q-Q plot of random effects:
ggplot(ranef(m4)$Subject, aes(sample = `(Intercept)`)) +

geom_qq() + geom_qq_line()
ggplot(ranef(m4)$Subject, aes(sample = `Days`)) +

geom_qq() + geom_qq_line()

The normality assumption appears to be satisfied, but there are some signs of het-
eroscedasticity in the boxplots of the residuals for the different subjects.

∼

Exercise 8.24. Return to your mixed model for the Oxboys data from Exercise
8.22. Make diagnostic plots for the model. Are there any signs of heteroscedasticity
or non-normality?

8.4.3 Bootstrapping
Summary tables, including p-values, for the fixed effects are available through
boot_summary:
library(boot.pval)
boot_summary(m4, type = "perc")

boot_summary calls a function called bootMer, which performs parametric resampling
from the model. In case you want to call it directly, you can do as follows:
boot_res <- bootMer(m4, fixef, nsim = 999)

library(boot)
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Days

8.4.4 Nested random effects and multilevel/hierarchical mod-
els

In many cases, a random factor is nested within another. To see an example of this,
consider the Pastes data from lme4:
library(lme4)
?Pastes
str(Pastes)
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We are interested in the strength of a chemical product. There are ten delivery
batches (batch), and three casks within each delivery (cask). Because of variations in
manufacturing, transportation, storage, and so on, it makes sense to include random
effects for both batch and cask in a linear mixed model. However, each cask only
appears within a single batch, which makes the cask effect nested within batch.

Models that use nested random factors are commonly known as multilevel models
(the random factors exist at different “levels”), or hierarchical models (there is a
hierarchy between the random factors). These aren’t really any different from other
mixed models, but depending on how the data is structured, we may have to be a
bit careful to get the nesting right when we fit the model with lmer.

If the two effects weren’t nested, we could fit a model using:
# Incorrect model:
m1 <- lmer(strength ~ (1|batch) + (1|cask),

data = Pastes)
summary(m1, correlation = FALSE)

However, because the casks are labelled a, b, and c within each batch, we’ve now
fitted a model where casks from different batches are treated as being equal! To
clarify that the labels a, b, and c belong to different casks in different batches, we
need to include the nesting in our formula. This is done as follows:
# Cask in nested within batch:
m2 <- lmer(strength ~ (1|batch/cask),

data = Pastes)
summary(m2, correlation = FALSE)

Equivalently, we can also use:
m3 <- lmer(strength ~ (1|batch) + (1|batch:cask),

data = Pastes)
summary(m3, correlation = FALSE)

8.4.5 ANOVA with random effects
The lmerTest package provides ANOVA tables that allow us to use random effects
in ANOVA models. To use it, simply load lmerTest before fitting a model with lmer,
and then run anova(m, type = "III") (or replace III with II or I if you want a
type II or type I ANOVA table instead).

As an example, consider the TVbo data from lmerTest. 3 types of TV sets were
compared by 8 assessors for 4 different pictures. To see if there is a difference in the
mean score for the colour balance of the TV sets, we can fit a mixed model. We’ll
include a random intercept for the assessor. This is a balanced design (in which case
the results from all three types of tables coincide):
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library(lmerTest)

# TV data:
?TVbo

# Fit model with both fixed and random effects:
m <- lmer(Colourbalance ~ TVset*Picture + (1|Assessor),

data = TVbo)

# View fitted model:
m

# All three types of ANOVA table give the same results here:
anova(m, type = "III")
anova(m, type = "II")
anova(m, type = "I")

The interaction effect is significant at the 5 % level. As for other ANOVA models,
we can visualise this with an interaction plot:
interaction.plot(TVbo$TVset, TVbo$Picture,

response = TVbo$Colourbalance)

∼

Exercise 8.25. Fit a mixed effects ANOVA to the TVbo data, using Coloursaturation
as the response variable, TVset and Picture as fixed effects, and Assessor as a
random effect. Does there appear to be a need to include the interaction between
Assessor and TVset as a random effect? If so, do it.

8.4.6 Generalised linear mixed models
Everything that we have just done for the linear mixed models carries over to gener-
alised linear mixed models (GLMM), which are GLM’s with both fixed and random
effects.

A common example is the item response model, which plays an important role in
psychometrics. This model is frequently used in psychological tests containing mul-
tiple questions or sets of questions (“items”), where both the subject the item are
considered random effects. As an example, consider the VerbAgg data from lme4:
library(lme4)
?VerbAgg
View(VerbAgg)
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We’ll use the binary version of the response, r2, and fit a logistic mixed regression
model to the data, to see if it can be used to explain the subjects’ responses. The
formula syntax is the same as for linear mixed models, but now we’ll use glmer to fit
a GLMM. We’ll include Anger and Gender as fixed effects (we are interested in seeing
how these affect the response) and item and id as random effects with random slopes
(we believe that answers to the same item and answers from the same individual may
be correlated):
m <- glmer(r2 ~ Anger + Gender + (1|item) + (1|id),

data = VerbAgg, family = binomial)
summary(m, correlation = FALSE)

We can plot the fitted random effects for item to verify that there appear to be
differences between the different items:
mixed_mod <- coef(m)$item
mixed_mod$item <- row.names(mixed_mod)

ggplot(mixed_mod, aes(`(Intercept)`, item)) +
geom_point() +
xlab("Random intercept")

The situ variable, describing situation type, also appears interesting. Let’s include
it as a fixed effect. Let’s also allow different situational (random) effects for different
respondents. It seems reasonable that such responses are random rather than fixed
(as in the solution to Exercise 8.25), and we do have repeated measurements of these
responses. We’ll therefore also include situ as a random effect nested within id:
m <- glmer(r2 ~ Anger + Gender + situ + (1|item) + (1|id/situ),

data = VerbAgg, family = binomial)
summary(m, correlation = FALSE)

Finally, we’d like to obtain bootstrap confidence intervals for fixed effects. Because
this is a fairly large dataset (𝑛 = 7, 584) this can take a looong time to run, so stretch
your legs and grab a cup of coffee or two while you wait:
library(boot.pval)
boot_summary(m, type = "perc", R = 100)
# Ideally, R should be greater, but for the sake of
# this example, we'll use a low number.

∼

Exercise 8.26. Consider the grouseticks data from the lme4 package (Elston et
al., 2001). Fit a mixed Poisson regression model to the data, with TICKS as the
response variable and YEAR and HEIGHT as fixed effects. What variables are suitable
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to use for random effects? Compute a bootstrap confidence interval for the effect of
HEIGHT.

8.4.7 Bayesian estimation of mixed models

From a numerical point of view, using Bayesian modelling with rstanarm is preferable
to frequentist modelling with lme4 if you have complex models with many random
effects. Indeed, for some models, lme4 will return a warning message about a singular
fit, basically meaning that the model is too complex, whereas rstanarm, powered
by the use of a prior distribution, always will return a fitted model regardless of
complexity.

After loading rstanarm, fitting a Bayesian linear mixed model with a weakly infor-
mative prior is as simple as substituting lmer with stan_lmer:
library(lme4)
library(rstanarm)
m4 <- stan_lmer(Reaction ~ Days + (1|Subject) + (0 + Days|Subject),

data = sleepstudy)

# Print the results:
m4

To plot the posterior distributions for the coefficients of the fixed effects, we can use
plot, specifying which effects we are interested in using pars:
plot(m4, "dens", pars = c("(Intercept)", "Days"))

To get 95 % credible intervals for the fixed effects, we can use posterior_interval
as follows:
posterior_interval(m4,

pars = c("(Intercept)", "Days"),
prob = 0.95)

We can also plot them using plot:
plot(m4, "intervals",

pars = c("(Intercept)", "Days"),
prob = 0.95)

Finally, we’ll check that the model fitting has converged:
plot(m4, "rhat")
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8.5 Survival analysis
Many studies are concerned with the duration of time until an event happens: time
until a machine fails, time until a patient diagnosed with a disease dies, and so on.
In this section we will consider some methods for survival analysis (also known as
reliability analysis in engineering and duration analysis in economics), which is used
for analysing such data. The main difficulty here is that studies often end before
all participants have had events, meaning that some observations are right-censored
- for these observations, we don’t know when the event happened, but only that it
happened after the end of the study.

The survival package contains a number of useful methods for survival analysis.
Let’s install it:
install.packages("survival")

We will study the lung cancer data in lung:
library(survival)
?lung
View(lung)

The survival times of the patients consist of two parts: time (the time from diagnosis
until either death or the end of the study) and status (1 if the observations is
censored, 2 if the patient died before the end of the study). To combine these so that
they can be used in a survival analysis, we must create a Surv object:
Surv(lung$time, lung$status)

Here, a + sign after a value indicates right-censoring.

8.5.1 Comparing groups
Survival times are best visualised using Kaplan-Meier curves that show the propor-
tion of surviving patients. Let’s compare the survival times of women and men. We
first fit a survival model using survfit, and then draw the Kaplan-Meier curve (with
parametric confidence intervals) using autoplot from ggfortify:
library(ggfortify)
library(survival)
m <- survfit(Surv(time, status) ~ sex, data = lung)
autoplot(m)

To print the values for the survival curves at different time points, we can use
summary:
summary(m)
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To test for differences between two groups, we can use the logrank test (also known
as the Mantel-Cox test), given by survfit:
survdiff(Surv(time, status) ~ sex, data = lung)

Another option is the Peto-Peto test, which puts more weight on early events (deaths,
in the case of the lung data), and therefore is suitable when such events are of greater
interest. In contrast, the logrank test puts equal weights on all events regardless of
when they occur. The Peto-Peto test is obtained by adding the argument rho = 1:
survdiff(Surv(time, status) ~ sex, rho = 1, data = lung)

The Hmisc package contains a function for obtaining confidence intervals based on the
Kaplan-Meier estimator, called bootkm. This allows us to get confidence intervals for
the quantiles (including the median) of the survival distribution for different groups,
as well as for differences between the quantiles of different groups. First, let’s install
it:
install.packages("Hmisc")

We can now use bootkm to compute bootstrap confidence intervals for survival times
based on the lung data. We’ll compute an interval for the median survival time
for females, and one for the difference in median survival time between females and
males:
library(Hmisc)

# Create a survival object:
survobj <- Surv(lung$time, lung$status)

# Get bootstrap replicates of the median survival time for
# the two groups:
median_surv_time_female <- bootkm(survobj[lung$sex == 2],

q = 0.5, B = 999)
median_surv_time_male <- bootkm(survobj[lung$sex == 1],

q = 0.5, B = 999)

# 95 % bootstrap confidence interval for the median survival time
# for females:
quantile(median_surv_time_female,

c(.025,.975), na.rm=TRUE)

# 95 % bootstrap confidence interval for the difference in median
# survival time:
quantile(median_surv_time_female - median_surv_time_male,

c(.025,.975), na.rm=TRUE)
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To obtain confidence intervals for other quantiles, we simply change the argument q
in bootkm.

∼

Exercise 8.27. Consider the ovarian data from the survival package. Plot
Kaplan-Meier curves comparing the two treatment groups. Compute a bootstrap
confidence interval for the difference in the 75 % quantile for the survival time for
the two groups.

8.5.2 The Cox proportional hazards model
The hazard function, or hazard rate, is the rate of events at time 𝑡 if a subject has
survived until time 𝑡. The higher the hazard, the greater the probability of an event.
Hazard rates play an integral part in survival analysis, particularly in regression mod-
els. To model how the survival times are affected by different explanatory variables,
we can use a Cox proportional hazards model (Cox, 1972), fitted using coxph:
m <- coxph(Surv(time, status) ~ age + sex, data = lung)
summary(m)

The exponentiated coefficients show the hazard ratios, i.e. the relative increases (val-
ues greater than 1) or decreases (values below 1) of the hazard rate when a covariate
is increased one step while all others are kept fixed:
exp(coef(m))

In this case, the hazard increases with age (multiply the hazard by 1.017 for each
additional year that the person has lived), and is lower for women (sex=2) than for
men (sex=1).

The censboot_summary function from boot.pval provides a table of estimates, boot-
strap confidence intervals, and bootstrap p-values for the model coefficients. The
coef argument can be used to specify whether to print confidence intervals for the
coefficients or for the exponentiated coeffientes (i.e. the hazard ratios):
# censboot_summary requires us to use model = TRUE
# when fitting our regression model:
m <- coxph(Surv(time, status) ~ age + sex,

data = lung, model = TRUE)

library(boot.pval)
# Original coefficients:
censboot_summary(m, type = "perc", coef = "raw")
# Exponentiated coefficients:
censboot_summary(m, type = "perc", coef = "exp")
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To manually obtain bootstrap confidence intervals for the exponentiated coefficients,
we can use the censboot function from boot as follows:
# Function to get the bootstrap replicates of the exponentiated
# coefficients:
boot_fun <- function(data, formula) {

m_boot <- coxph(formula, data = data)
return(exp(coef(m_boot)))

}

# Run the resampling:
library(boot)
boot_res <- censboot(lung[,c("time", "status", "age", "sex")],

boot_fun, R = 999,
formula =
formula(Surv(time, status) ~ age + sex))

# Compute the percentile bootstrap confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Age
boot.ci(boot_res, type = "perc", index = 2) # Sex

As the name implies, the Cox proportional hazards model relies on the assumption
of proportional hazards, which essentially means that the effect of the explanatory
variables is constant over time. This can be assessed visually by plotting the model
residuals, using cox.zph and the ggcoxzph function from the survminer package.
Specifically, we will plot the scaled Schoenfeld (1982) residuals, which measure the
difference between the observed covariates and the expected covariates given the risk
at the time of an event. If the proportional hazards assumption holds, then there
should be no trend over time for these residuals. Use the trend line to aid the eye:
install.packages("survminer")
library(survminer)

ggcoxzph(cox.zph(m), var = 1) # age
ggcoxzph(cox.zph(m), var = 2) # sex

# Formal p-values for a test of proportional
# hazards, for each variable:
cox.zph(m)

In this case, there are no apparent trends over time (which is in line with the cor-
responding formal hypothesis tests), indicating that the proportional hazards model
could be applicable here.

∼
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Exercise 8.28. Consider the ovarian data from the survival package.

1. Use a Cox proportional hazards regression to test whether there is a difference
between the two treatment groups, adjusted for age.

2. Compute bootstrap confidence interval for the hazard ratio of age.

Exercise 8.29. Consider the retinopathy data from the survival package. We
are interested in a mixed survival model, where id is used to identify patients and
type, trtand age are fixed effects. Fit a mixed Cox proportional hazards regression
(add cluster = id to the call to coxph to include this as a random effect). Is the
assumption of proportional hazards fulfilled?

8.5.3 Accelerated failure time models
In many cases, the proportional hazards assumption does not hold. In such cases
we can turn to accelerated failure time models (Wei, 1992), for which the effect of
covariates is to accelerate or decelerate the life course of a subject.

While the proportional hazards model is semiparametric, accelerated failure time
models are typically fully parametric, and thus involve stronger assumptions about
an underlying distribution. When fitting such a model using the survreg function, we
must therefore specify what distribution to use. Two common choices are the Weibull
distribution and the log-logistic distribution. The Weibull distribution is commonly
used in engineering, e.g. in reliability studies. The hazard function of Weibull models
is always monotonic, i.e. either always increasing or always decreasing. In contrast,
the log-logistic distribution allows the hazard function to be non-monotonic, making
it more flexible, and often more appropriate for biological studies. Let’s fit both
types of models to the lung data and have a look at the results:
library(survival)

# Fit Weibull model:
m_w <- survreg(Surv(time, status) ~ age + sex, data = lung,

dist = "weibull", model = TRUE)
summary(m_w)

# Fit log-logistic model:
m_ll <- survreg(Surv(time, status) ~ age + sex, data = lung,

dist = "loglogistic", model = TRUE)
summary(m_ll)

Interpreting the coefficients of accelerated failure time models is easier than inter-
preting coefficients from proportional hazards models. The exponentiated coefficients
show the relative increase or decrease in the expected survival times when a covariate
is increased one step while all others are kept fixed:
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exp(coef(m_ll))

In this case, according to the log-logistic model, the expected survival time decreases
by 1.4 % (i.e. multiply by 0.986) for each additional year that the patient has lived.
The expected survival time for females (sex=2) is 61.2 % higher than for males
(multiply by 1.612).
To obtain bootstrap confidence intervals and p-values for the effects, we follow the
same procedure as for the Cox model, using censboot_summary. Here is an example
for the log-logistic accelerated failure time model:
library(boot.pval)
# Original coefficients:
censboot_summary(m_ll, type = "perc", coef = "raw")
# Exponentiated coefficients:
censboot_summary(m_ll, type = "perc", coef = "exp")

We can also use censboot:
# Function to get the bootstrap replicates of the exponentiated
# coefficients:
boot_fun <- function(data, formula, distr) {

m_boot <- survreg(formula, data = data, dist = distr)
return(exp(coef(m_boot)))

}

# Run the resampling:
library(boot)
boot_res <- censboot(lung[,c("time", "status", "age", "sex")],

boot_fun, R = 999,
formula =
formula(Surv(time, status) ~ age + sex),

distr = "loglogistic")

# Compute the percentile bootstrap confidence intervals:
boot.ci(boot_res, type = "perc", index = 2) # Age
boot.ci(boot_res, type = "perc", index = 3) # Sex

∼

Exercise 8.30. Consider the ovarian data from the survival package. Fit a log-
logistic accelerated failure time model to the data, using all available explanatory
variables. What is the estimated difference in survival times between the two treat-
ment groups?
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8.5.4 Bayesian survival analysis
At the time of this writing, the latest release of rstanarm does not contain functions
for fitting survival analysis models. You can check whether this still is the case by
running ?stan_surv in the Console. If you don’t find the documentation for the
stan_surv function, you will have to install the development version of the package
from GitHub (which contains such functions), using the following code:
# Check if the devtools package is installed, and start
# by installing it otherwise:
if (!require(devtools)) {

install.packages("devtools")
}
library(devtools)
# Download and install the development version of the package:
install_github("stan-dev/rstanarm", build_vignettes = FALSE)

Now, let’s have a look at how to fit a Bayesian model to the lung data from survival:
library(survival)
library(rstanarm)

# Fit proportional hazards model using cubic M-splines (similar
# but not identical to the Cox model!):
m <- stan_surv(Surv(time, status) ~ age + sex, data = lung)
m

Fitting a survival model with a random effect works similarly, and uses the same
syntax as lme4. Here is an example with the retinopathy data:
m <- stan_surv(Surv(futime, status) ~ age + type + trt + (1|id),

data = retinopathy)
m

8.5.5 Multivariate survival analysis
Some trials involve multiple time-to-event outcomes that need to be assessed simul-
taneously in a multivariate analysis. Examples includes studies of the time until
each of several correlated symptoms or comorbidities occur. This is analogous to the
multivariate testing problem of Section 7.2.6, but with right-censored data. To test
for group differences for a vector of right-censored outcomes, a multivariate version
of the logrank test described in Persson et al. (2019) can be used. It is available
through the MultSurvTests package:
install.packages("MultSurvTests")

As an example, we’ll use the diabetes dataset from MultSurvTest. It contains two
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time-to-event outcomes: time until blindness in a treated eye and in an untreated
eye.
library(MultSurvTests)
# Diabetes data:
?diabetes

We’ll compare two groups that received two different treatments. The survival times
(time until blindness) and censoring statuses of the two groups are put in a matrices
called z and z.delta, which are used as input for the test function perm_mvlogrank:
# Survival times for the two groups:
x <- as.matrix(subset(diabetes, LASER==1)[,c(6,8)])
y <- as.matrix(subset(diabetes, LASER==2)[,c(6,8)])

# Censoring status for the two groups:
delta.x <- as.matrix(subset(diabetes, LASER==1)[,c(7,9)])
delta.y <- as.matrix(subset(diabetes, LASER==2)[,c(7,9)])

# Create the input for the test:
z <- rbind(x, y)
delta.z <- rbind(delta.x, delta.y)

# Run the test with 499 permutations:
perm_mvlogrank(B = 499, z, delta.z, n1 = nrow(x))

8.5.6 Power estimates for the logrank test
The spower function in Hmisc can be used to compute the power of the univariate
logrank test in different scenarios using simulation. The helper functions Weibull2,
Lognorm2, and Gompertz2 can be used to define Weibull, lognormal and Gomperts
distributions to sample from, using survival probabilities at different time points
rather than the traditional parameters of those distributions. We’ll look at an exam-
ple involving the Weibull distribution here. Additional examples can be found in the
function’s documentation (?spower).

Let’s simulate the power of a 3-year follow-up study with two arms (i.e. two groups,
control and intervention). First, we define a Weibull distribution for (compliant)
control patients. Let’s say that their 1-year survival is 0.9 and their 3-year survival
is 0.6. To define a Weibull distribution that corresponds to these numbers, we use
Weibull2 as follows:
weib_dist <- Weibull2(c(1, 3), c(.9, .6))

We’ll assume that the treatment has no effect for the first 6 months, and that it then
has a constant effect, leading to a hazard ratio of 0.75 (so the hazard ratio is 1 if
the time in years is less than or equal to 0.5, and 0.75 otherwise). Moreover, we’ll
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assume that there is a constant drop-out rate, such that 20 % of the patients can be
expected to drop out during the three years. Finally, there is no drop-in. We define
a function to simulate survival times under these conditions:
# In the functions used to define the hazard ratio, drop-out
# and drop-in, t denotes time in years:
sim_func <- Quantile2(weib_dist,

hratio = function(t) { ifelse(t <= 0.5, 1, 0.75) },
dropout = function(t) { 0.2*t/3 },
dropin = function(t) { 0 })

Next, we define a function for the censoring distribution, which is assumed to be the
same for both groups. Let’s say that each follow-up is done at a random time point
between 2 and 3 years. We’ll therefore use a uniform distribution on the interval
(2, 3) for the censoring distribution:
rcens <- function(n)
{

runif(n, 2, 3)
}

Finally, we define two helper functions required by spower and then run the simu-
lation study. The output is the simulated power using the settings that we’ve just
created.
# Define helper functions:
rcontrol <- function(n) { sim_func(n, "control") }
rinterv <- function(n) { sim_func(n, "intervention") }

# Simulate power when both groups have sample size 300:
spower(rcontrol, rinterv, rcens, nc = 300, ni = 300,

test = logrank, nsim = 999)

# Simulate power when both groups have sample size 450:
spower(rcontrol, rinterv, rcens, nc = 450, ni = 450,

test = logrank, nsim = 999)

# Simulate power when the control group has size 100
# and the intervention group has size 300:
spower(rcontrol, rinterv, rcens, nc = 100, ni = 300,

test = logrank, nsim = 999)
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8.6 Left-censored data and nondetects
Survival data is typically right-censored. Left-censored data, on the other hand, is
common in medical research (e.g. in biomarker studies) and environmental chemistry
(e.g. measurements of chemicals in water), where some measurements fall below the
laboratory’s detection limits (or limit of detection, LoD). Such data also occur in
studies in economics. A measurement below the detection limit, a nondetect, is still
more informative than having no measurement at all - we may not know the exact
value, but we know that the measurement is below a given threshold.

In principle, all methods that are applicable to survival analysis can also be used for
left-censored data (although the interpretation of coefficients and parameters may
differ), but in practice the distributions of lab measurements and economic variables
often differ from those that typically describe survival times. In this section we’ll look
at methods tailored to the kind of left-censored data that appears in applications in
the aforementioned fields.

8.6.1 Estimation
The EnvStats package contains a number of functions that can be used to com-
pute descriptive statistics and estimating parameters of distributions from data with
nondetects. Let’s install it:
install.packages("EnvStats")

Estimates of the mean and standard deviation of a normal distribution that take the
censoring into account in the right way can be obtained with enormCensored, which
allows us to use several different estimators (the details surrounding the available es-
timators can be found using ?enormCensored). Analogous functions are available for
other distributions, for instance elnormAltCensored for the lognormal distribution,
egammaCensored for the gamma distribution, and epoisCensored for the Poisson
distribution.

To illustrate the use of enormCensored, we will generate data from a normal distri-
bution. We know the true mean and standard deviation of the distribution, and can
compute the estimates for the generated sample. We will then pretend that there
is a detection limit for this data, and artificially left-censor about 20 % of it. This
allows us to compare the estimates for the full sample and the censored sample, to
see how the censoring affects the estimates. Try running the code below a few times:
# Generate 50 observations from a N(10, 9)-distribution:
x <- rnorm(50, 10, 3)

# Estimate the mean and standard deviation:
mean_full <- mean(x)
sd_full <- sd(x)
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# Censor all observations below the "detection limit" 8
# and replace their values by 8:
censored <- x<8
x[censored] <- 8

# The proportion of censored observations is:
mean(censored)

# Estimate the mean and standard deviation in a naive
# manner, using the ordinary estimators with all
# nondetects replaced by 8:
mean_cens_naive <- mean(x)
sd_cens_naive <- sd(x)

# Estimate the mean and standard deviation using
# different estimators that take the censoring
# into account:

library(EnvStats)
# Maximum likelihood estimate:
estimates_mle <- enormCensored(x, censored,

method = "mle")
# Biased-corrected maximum likelihood estimate:
estimates_bcmle <- enormCensored(x, censored,

method = "bcmle")
# Regression on order statistics, ROS, estimate:
estimates_ros <- enormCensored(x, censored,

method = "ROS")

# Compare the different estimates:
mean_full; sd_full
mean_cens_naive; sd_cens_naive
estimates_mle$parameters
estimates_bcmle$parameters
estimates_ros$parameters

The naive estimators tend to be biased for data with nondetects (sometimes very
biased!). Your mileage may vary depending on e.g. the sample size and the amount
of censoring, but in general, the estimators that take censoring into account will fare
much better.

After we have obtained estimates for the parameters of the normal distribution, we
can plot the data against the fitted distribution to check the assumption of normality:
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library(ggplot2)
# Compare to histogram, including a bar for nondetects:
ggplot(data.frame(x), aes(x)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = estimates_mle$parameters[1],
sd = estimates_mle$parameters[2]))

# Compare to histogram, excluding nondetects:
x_noncens <- x[!censored]
ggplot(data.frame(x_noncens), aes(x_noncens)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = estimates_mle$parameters[1],
sd = estimates_mle$parameters[2]))

To obtain percentile and BCa bootstrap confidence intervals for the mean, we can
add the options ci = TRUE and ci.method = "bootstrap":
# Using 999 bootstrap replicates:
enormCensored(x, censored, method = "mle",

ci = TRUE, ci.method = "bootstrap",
n.bootstraps = 999)$interval$limits

∼

Exercise 8.31. Download the il2rb.csv data from the book’s web page. It contains
measurements of the biomarker IL-2RB made in serum samples from two groups of
patients. The values that are missing are in fact nondetects, with detection limit
0.25.

Under the assumption that the biomarker levels follow a lognormal distribution, com-
pute bootstrap confidence intervals for the mean of the distribution for the control
group. What proportion of the data is left-censored?

8.6.2 Tests of means
When testing the difference between two groups’ means, nonparametric tests like
the Wilcoxon-Mann-Whitney test often perform very well for data with nondetects,
unlike the t-test (Zhang et al., 2009). For data with a high degree of censoring
(e.g. more than 50 %), most tests perform poorly. For multivariate tests of mean
vectors the situation is the opposite, with Hotelling’s 𝑇 2 (Section 7.2.6) being a
much better option than nonparametric tests (Thulin, 2016).

http://www.modernstatisticswithr.com/data.zip
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∼

Exercise 8.32. Return to the il2rb.csv data from Exercise 8.32. Test the hypoth-
esis that there is no difference in location between the two groups.

8.6.3 Censored regression
Censored regression models can be used when the response variable is censored. A
common model in economics is the Tobit regression model (Tobin, 1958), which is a
linear regression model with normal errors, tailored to left-censored data. It can be
fitted using survreg.

As an example, consider the EPA.92c.zinc.df dataset available in EnvStats. It
contains measurements of zinc concentrations from five wells, made on 8 samples from
each well, half of which are nondetects. Let’s say that we are interested in comparing
these five wells (so that the wells aren’t random effects). Let’s also assume that the
8 samples were collected at different time points, and that we want to investigate
whether the concentrations change over time. Such changes could be non-linear, so
we’ll include the sample number as a factor. To fit a Tobit model to this data, we
use survreg as follows.
library(EnvStats)
?EPA.92c.zinc.df

# Note that in Surv, in the vector describing censoring 0 means
# censoring and 1 no censoring. This is the opposite of the
# definition used in EPA.92c.zinc.df$Censored, so we use the !
# operator to change 0's to 1's and vice versa.
library(survival)
m <- survreg(Surv(Zinc, !Censored, type = "left") ~ Sample + Well,

data = EPA.92c.zinc.df, dist = "gaussian")
summary(m)

Similarly, we can fit a model under the assumption of lognormality:
m <- survreg(Surv(Zinc, !Censored, type = "left") ~ Sample + Well,

data = EPA.92c.zinc.df, dist = "lognormal")
summary(m)

Fitting regression models where the explanatory variables are censored is more chal-
lenging. For prediction, a good option is models based on decision trees, studied in
Section 9.5. For testing whether there is a trend over time, tests based on Kendall’s
correlation coefficient can be useful. EnvStats provides two functions for this -
kendallTrendTest for testing a monotonic trend, and kendallSeasonalTrendTest
for testing a monotonic trend within seasons.
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8.7 Creating matched samples
Matching is used to balance the distribution of explanatory variables in the groups
that are being compared. This is often required in observational studies, where
the treatment variable is not randomly assigned, but determined by some external
factor(s) that may be related to the treatment. For instance, if you wish to study the
effect of smoking on mortality, you can recruit a group of smokers and non-smokers
and follow them for a few years. But both mortality and smoking are related to
confounding variables such as age and gender, meaning that imbalances in the age
and gender distributions of smokers and non-smokers can bias the results. There are
several methods for creating balanced or matched samples that seek to mitigate this
bias, including propensity score matching, which we’ll use here. The MatchIt and
optmatch packages contain the functions that we need for this.

To begin with, let’s install the two packages:
install.packages(c("MatchIt", "optmatch"))

We will illustrate the use of the packages using the lalonde dataset, that is shipped
with the MatchIt package:
library(MatchIt)
data(lalonde)
?lalonde
View(lalonde)

Note that the data has row names, which are useful e.g. for identifying which indi-
viduals have been paired - we can access them using rownames(lalonde).

8.7.1 Propensity score matching
To perform automated propensity score matching, we will use the matchit function,
which computes propensity scores and then matches participants from the treatment
and control groups using these. Matches can be found in several ways. We’ll consider
two of them here. As input, the matchit function takes a formula describing the
treatment variable and potential confounders, what datasets to use, which method
to use and what ratio of control to treatment participants to use.

A common method is nearest neighbour matching, where each participant is matched
to the participant in the other group with the most similar propensity score. By
default, it starts by finding a match for the participant in the treatment group that
has the largest propensity score, then finds a match for the participant in the treat-
ment groups with the second largest score, and so on. Two participants cannot be
matched with the same participant in the control group. The nearest neighbour
match is locally optimal in the sense that it find the best (still) available match for
each participant in the treatment group, ignoring if that match in fact would be even
better for another participant in the treatment group.
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To perform propensity score matching using nearest neighbour matching with 1
match each, evaluate the results and then extract the matched samples we can use
matchit as follows:
matches <- matchit(treat ~ re74 + re75 + age + educ + married,

data = lalonde, method = "nearest", ratio = 1)

summary(matches)
plot(matches)
plot(matches, type = "hist")

matched_data <- match.data(matches)
summary(matched_data)

To view the matched pairs, you can use:
matches$match.matrix

To view the values of the re78 variable of the matched pairs, use:
varName <- "re78"
resMatrix <- lalonde[row.names(matches$match.matrix), varName]
for(i in 1:ncol(matches$match.matrix))
{

resMatrix <- cbind(resMatrix, lalonde[matches$match.matrix[,i],
varName])

}
rownames(resMatrix) <- row.names(matches$match.matrix)
View(resMatrix)

As an alternative to nearest neighbour-matching, optimal matching can be used.
This is similar to nearest neighbour-matching, but strives to obtain globally optimal
matches rather than locally optimal. This means that each participant in the treat-
ment group is paired with a participant in the control group, while also taking into
account how similar the latter participant is to other participants in the treatment
group.

To perform propensity score matching using optimal matching with 2 matches each:
matches <- matchit(treat ~ re74 + re75 + age + educ + married,

data = lalonde, method = "optimal", ratio = 2)

summary(matches)
plot(matches)
plot(matches, type = "hist")

matched_data <- match.data(matches)
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summary(matched_data)

You may also want to find all controls that match participants in the treatment group
exactly. This is called exact matching:
matches <- matchit(treat ~ re74 + re75 + age + educ + married,

data = lalonde, method = "exact")

summary(matches)
plot(matches)
plot(matches, type = "hist")

matched_data <- match.data(matches)
summary(matched_data)

Participants with no exact matches won’t be included in matched_data.

8.7.2 Stepwise matching
At times you will want to combine the above approaches. For instance, you may want
to have an exact match for age, and then an approximate match using the propensity
scores for other variables. This is also achievable but requires the matching to be
done in several steps. To first match the participant exactly on age and then 1-to-2
via nearest-neighbour propensity score matching on re74 and re75 we can use a
loop:
# Match exactly one age:
matches <- matchit(treat ~ age, data = lalonde, method = "exact")
matched_data <- match.data(matches)

# Match the first subclass 1-to-2 via nearest-neighbour propensity
# score matching:
matches2 <- matchit(treat ~ re74 + re75,

data = matched_data[matched_data$subclass == 1,],
method = "nearest", ratio = 2)

matched_data2 <- match.data(matches2, weights = "weights2",
subclass = "subclass2")

matchlist <- matches2$match.matrix

# Match the remaining subclasses in the same way:
for(i in 2:max(matched_data$subclass))
{

matches2 <- matchit(treat ~ re74 + re75,
data = matched_data[matched_data$subclass == i,],
method = "nearest", ratio = 2)
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matched_data2 <- rbind(matched_data2, match.data(matches2,
weights = "weights2",
subclass = "subclass2"))

matchlist <- rbind(matchlist, matches2$match.matrix)
}

# Check results:
View(matchlist)
View(matched_data2)
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Chapter 9

Predictive modelling and
machine learning

In predictive modelling, we fit statistical models that use historical data to make
predictions about future (or unknown) outcomes. This practice is a cornerstone
of modern statistics, and includes methods ranging from classical parametric linear
regression to black-box machine learning models.

After reading this chapter, you will be able to use R to:

• Fit predictive models for regression and classification,
• Evaluate predictive models,
• Use cross-validation and the bootstrap for out-of-sample evaluations,
• Handle imbalanced classes in classification problems,
• Fit regularised (and possibly also generalised) linear models, e.g. using the

lasso,
• Fit a number of machine learning models, including kNN, decision trees, ran-

dom forests, and boosted trees.
• Make forecasts based on time series data.

9.1 Evaluating predictive models
In many ways, modern predictive modelling differs from the more traditional in-
ference problems that we studied in the previous chapter. The goal of predictive
modelling is (usually) not to test whether some variable affects another or to study
causal relationships. Instead, our only goal is to make good predictions. It is little
surprise then that the tools we use to evaluate predictive models differ from those
used to evaluate models used for other purposes, like hypothesis testing. In this
section, we will have a look at how to evaluate predictive models.

355



356 CHAPTER 9. PREDICTIVE MODELLING AND MACHINE LEARNING

The terminology used in predictive modelling differs a little from that used in tra-
ditional statistics. For instance, explanatory variables are often called features or
predictors, and predictive modelling is often referred to as supervised learning. We
will stick with the terms used in Section 7, to keep the terminology consistent within
the book.

Predictive models can be divided into two categories:

• Regression, where we want to make predictions for a numeric variable,
• Classification, where we want to make predictions for a categorical variable.

There are many similarities between these two, but we need to use different measures
when evaluating their predictive performance. Let’s start with models for numeric
predictions, i.e. regression models.

9.1.1 Evaluating regression models
Let’s return to the mtcars data that we studied in Section 8.1. There, we fitted a
linear model to explain the fuel consumption of cars:
m <- lm(mpg ~ ., data = mtcars)

(Recall that the formula mpg ~ . means that all variables in the dataset, except mpg,
are used as explanatory variables in the model.)

A number of measures of how well the model fits the data have been proposed.
Without going into details (it will soon be apparent why), we can mention examples
like the coefficient of determination 𝑅2, and information criteria like 𝐴𝐼𝐶 and 𝐵𝐼𝐶.
All of these are straightforward to compute for our model:
summary(m)$r.squared # R^2
summary(m)$adj.r.squared # Adjusted R^2
AIC(m) # AIC
BIC(m) # BIC

𝑅2 is a popular tool for assessing model fit, with values close to 1 indicating a good
fit and values close to 0 indicating a poor fit (i.e. that most of the variation in the
data isn’t accounted for).

It is nice if our model fits the data well, but what really matters in predictive mod-
elling is how close the predictions from the model are to the truth. We therefore
need ways to measure the distance between predicted values and observed values -
ways to measure the size of the average prediction error. A common measure is the
root-mean-square error (RMSE). Given 𝑛 observations 𝑦1, 𝑦2, … , 𝑦𝑛 for which our
model makes the predictions ̂𝑦1, … , ̂𝑦𝑛, this is defined as

𝑅𝑀𝑆𝐸 = √∑𝑛
𝑖=1( ̂𝑦𝑖 − 𝑦𝑖)2

𝑛 ,
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that is, as the named implies, the square root of the mean of the squared errors
( ̂𝑦𝑖 − 𝑦𝑖)2.

Another common measure is the mean absolute error (MAE):

𝑀𝐴𝐸 = ∑𝑛
𝑖=1 | ̂𝑦𝑖 − 𝑦𝑖|

𝑛 .

Let’s compare the predicted values ̂𝑦𝑖 to the observed values 𝑦𝑖 for our mtcars model
m:
rmse <- sqrt(mean((predict(m) - mtcars$mpg)^2))
mae <- mean(abs(predict(m) - mtcars$mpg))
rmse; mae

There is a problem with this computation, and it is a big one. What we just computed
was the difference between predicted values and observed values for the sample that
was used to fit the model. This doesn’t necessarily tell us anything about how well
the model will fare when used to make predictions about new observations. It is, for
instance, entirely possible that our model has overfitted to the sample, and essentially
has learned the examples therein by heart, ignoring the general patterns that we were
trying to model. This would lead to a small 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸, and a high 𝑅2, but
would render the model useless for predictive purposes.

All the computations that we’ve just done - 𝑅2, 𝐴𝐼𝐶, 𝐵𝐼𝐶, 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 - were
examples of in-sample evaluations of our model. There are a number of problems
associated with in-sample evaluations, all of which have been known for a long time
- see e.g. Picard & Cook (1984). In general, they tend to be overly optimistic and
overestimate how well the model will perform for new data. It is about time that we
got rid of them for good.

A fundamental principle of predictive modelling is that the model chiefly should be
judged on how well it makes predictions for new data. To evaluate its performance,
we therefore need to carry out some form of out-of-sample evaluation, i.e. to use the
model to make predictions for new data (that weren’t used to fit the model). We
can then compare those predictions to the actual observed values for those data, and
e.g. compute the 𝑅𝑀𝑆𝐸 or 𝑀𝐴𝐸 to measure the size of the average prediction error.
Out-of-sample evaluations, when done right, are less overoptimistic than in-sample
evaluations, and are also better in the sense that they actually measure the right
thing.

∼

Exercise 9.1. To see that a high 𝑅2 and low p-values say very little about the
predictive performance of a model, consider the following dataset with 30 randomly
generated observations of four variables:
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exdata <- data.frame(x1 = c(0.87, -1.03, 0.02, -0.25, -1.09, 0.74,
0.09, -1.64, -0.32, -0.33, 1.40, 0.29, -0.71, 1.36, 0.64,
-0.78, -0.58, 0.67, -0.90, -1.52, -0.11, -0.65, 0.04,
-0.72, 1.71, -1.58, -1.76, 2.10, 0.81, -0.30),
x2 = c(1.38, 0.14, 1.46, 0.27, -1.02, -1.94, 0.12, -0.64,
0.64, -0.39, 0.28, 0.50, -1.29, 0.52, 0.28, 0.23, 0.05,
3.10, 0.84, -0.66, -1.35, -0.06, -0.66, 0.40, -0.23,
-0.97, -0.78, 0.38, 0.49, 0.21),
x3 = c(1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1),
y = c(3.47, -0.80, 4.57, 0.16, -1.77, -6.84, 1.28, -0.52,
1.00, -2.50, -1.99, 1.13, -4.26, 1.16, -0.69, 0.89, -1.01,
7.56, 2.33, 0.36, -1.11, -0.53, -1.44, -0.43, 0.69, -2.30,
-3.55, 0.99, -0.50, -1.67))

1. The true relationship between the variables, used to generate the y variables,
is 𝑦 = 2𝑥1 − 𝑥2 + 𝑥3 ⋅ 𝑥2. Plot the y values in the data against this expected
value. Does a linear model seem appropriate?

2. Fit a linear regression model with x1, x2 and x3 as explanatory variables (with-
out any interactions) using the first 20 observations of the data. Do the p-values
and 𝑅2 indicate a good fit?

3. Make predictions for the remaining 10 observations. Are the predictions accu-
rate?

4. A common (mal)practice is to remove explanatory variables that aren’t signifi-
cant from a linear model (see Section 8.1.9 for some comments on this). Remove
any variables from the regression model with a p-value above 0.05, and refit
the model using the first 20 observations. Do the p-values and 𝑅2 indicate a
good fit? Do the predictions for the remaining 10 observations improve?

5. Finally, fit a model with x1, x2 and x3*x2 as explanatory variables (i.e. a
correctly specified model) to the first 20 observations. Do the predictions for
the remaining 10 observations improve?

9.1.2 Test-training splits
In some cases, our data is naturally separated into two sets, one of which can be used
to fit a model and the other to evaluate it. A common example of this is when data
has been collected during two distinct time periods, and the older data is used to fit
a model that is evaluated on the newer data, to see if historical data can be used to
predict the future.

In most cases though, we don’t have that luxury. A popular alternative is to artifi-
cially create two sets by randomly withdrawing a part of the data, 10 % or 20 % say,
which can be used for evaluation. In machine learning lingo, model fitting is known
as training and model evaluation as testing. The set used for training (fitting) the
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model is therefore often referred to as the training data, and the set used for testing
(evaluating) the model is known as the test data.

Let’s try this out with the mtcars data. We’ll use 80 % of the data for fitting our
model and 20 % for evaluating it.
# Set the sizes of the test and training samples.
# We use 20 % of the data for testing:
n <- nrow(mtcars)
ntest <- round(0.2*n)
ntrain <- n - ntest

# Split the data into two sets:
train_rows <- sample(1:n, ntrain)
mtcars_train <- mtcars[train_rows,]
mtcars_test <- mtcars[-train_rows,]

In this case, our training set consists of 26 observations and our test set of 6 obser-
vations. Let’s fit the model using the training set and use the test set for evaluation:
# Fit model to training set:
m <- lm(mpg ~ ., data = mtcars_train)

# Evaluate on test set:
rmse <- sqrt(mean((predict(m, mtcars_test) - mtcars_test$mpg)^2))
mae <- mean(abs(predict(m, mtcars_test) - mtcars_test$mpg))
rmse; mae

Because of the small sample sizes here, the results can vary a lot if you rerun the two
code chunks above several times (try it!). When I ran them ten times, the 𝑅𝑀𝑆𝐸
varied between 1.8 and 7.6 - quite a difference on the scale of mpg! This problem is
usually not as pronounced if you have larger sample sizes, but even for fairly large
datasets, there can be a lot of variability depending on how the data happens to
be split. It is not uncommon to get a “lucky” or “unlucky” test set that either
overestimates or underestimates the model’s performance.

In general, I’d therefore recommend that you only use test-training splits of your data
as a last resort (and only use it with sample sizes of 10,000 or more). Better tools
are available in the form of the bootstrap and its darling cousin, cross-validation.

9.1.3 Leave-one-out cross-validation and caret
The idea behind cross-validation is similar to that behind test-training splitting of
the data. We partition the data into several sets, and use one of them for evaluation.
The key difference is that we in a cross-validation partition the data into more than
two sets, and use all of them (one-by-one) for evaluation.
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To begin with, we split the data into 𝑘 sets, where 𝑘 is equal to or less than the
number of observations 𝑛. We then put the first set aside, to use for evaluation, and
fit the model to the remaining 𝑘 − 1 sets. The model predictions are then evaluated
on the first set. Next, we put the first set back among the others and remove the
second set to use that for evaluation. And so on. This means that we fit 𝑘 models
to 𝑘 different (albeit similar) training sets, and evaluate them on 𝑘 test sets (none of
which are used for fitting the model that is evaluated on them).

The most basic form of cross-validation is leave-one-out cross-validation (LOOCV),
where 𝑘 = 𝑛 so that each observation is its own set. For each observation, we fit a
model using all other observations, and then compare the prediction of that model to
the actual value of the observation. We can do this using a for loop (Section 6.4.1)
as follows:
# Leave-one-out cross-validation:
pred <- vector("numeric", nrow(mtcars))
for(i in 1:nrow(mtcars))
{

# Fit model to all observations except observation i:
m <- lm(mpg ~ ., data = mtcars[-i,])

# Make a prediction for observation i:
pred[i] <- predict(m, mtcars[i,])

}

# Evaluate predictions:
rmse <- sqrt(mean((pred - mtcars$mpg)^2))
mae <- mean(abs(pred - mtcars$mpg))
rmse; mae

We will use cross-validation a lot, and so it is nice not to have to write a lot of code
each time we want to do it. To that end, we’ll install the caret package, which not
only lets us do cross-validation, but also acts as a wrapper for a large number of
packages for predictive models. That means that we won’t have to learn a ton of
functions to be able to fit different types of models. Instead, we just have to learn
a few functions from caret. Let’s install the package and some of the packages it
needs to function fully:
install.packages("caret", dependencies = TRUE)

Now, let’s see how we can use caret to fit a linear regression model and evaluate
it using cross-validation. The two main functions used for this are trainControl,
which we use to say that we want to perform a leave-one-out cross-validation (method
= "LOOCV") and train, where we state the model formula and specify that we want
to use lm for fitting the model:
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library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

train has now done several things in parallel. First of all, it has fitted a linear model
to the entire dataset. To see the results of the linear model we can use summary, just
as if we’d fitted it with lm:
summary(m)

Many, but not all, functions that we would apply to an object fitted using lm still
work fine with a linear model fitted using train, including predict. Others, like
coef and confint no longer work (or work differently) - but that is not that big a
problem. We only use train when we are fitting a linear regression model with the
intent of using it for prediction - and in such cases, we are typically not interested
in the values of the model coefficients or their confidence intervals. If we need them,
we can always refit the model using lm.

What makes train great is that m also contains information about the predictive per-
formance of the model, computed, in this case, using leave-one-out cross-validation:
# Print a summary of the cross-validation:
m

# Extract the measures:
m$results

∼

Exercise 9.2. Download the estates.xlsx data from the book’s web page. It
describes the selling prices (in thousands of SEK) of houses in and near Uppsala,
Sweden, along with a number of variables describing the location, size, and standard
of the house.

Fit a linear regression model to the data, with selling_price as the response vari-
able and the remaining variables as explanatory variables. Perform an out-of-sample
evaluation of your model. What are the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸? Do the prediction errors
seem acceptable?

9.1.4 k-fold cross-validation
LOOCV is a very good way of performing out-of-sample evaluation of your model.
It can however become overoptimistic if you have “twinned” or duplicated data in

http://www.modernstatisticswithr.com/data.zip
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your sample, i.e. observations that are identical or nearly identical (in which case the
model for all intents and purposes already has “seen” the observation for which it is
making a prediction). It can also be quite slow if you have a large dataset, as you
need to fit 𝑛 different models, each using a lot of data.

A much faster option is 𝑘-fold cross-validation, which is the name for cross-validation
where 𝑘 is lower than 𝑛 - usually much lower, with 𝑘 = 10 being a common choice. To
run a 10 fold cross-validation with caret, we change the arguments of trainControl,
and then run train exactly as before:
tc <- trainControl(method = "cv" , number = 10)
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

m

Like with test-training splitting, the results from a 𝑘-fold cross-validation will vary
each time it is run (unless 𝑘 = 𝑛). To reduce the variance of the estimates of the
prediction error, we can repeat the cross-validation procedure multiple times, and
average the errors from all runs. This is known as a repeated 𝑘-fold cross-validation.
To run 100 10-fold cross-validations, we change the settings in trainControl as
follows:
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

m

Repeated 𝑘-fold cross-validations are more computer-intensive than simple 𝑘-fold
cross-validations, but in return the estimates of the average prediction error are
much more stable.

Which type of cross-validation to use for different problems remains an open question.
Several studies (e.g. Zhang & Yang (2015), and the references therein) indicate that
in most settings larger 𝑘 is better (with LOOCV being the best), but there are
exceptions to this rule - e.g. when you have a lot of twinned data. This is in contrast
to an older belief that a high 𝑘 leads to estimates with high variances, tracing its
roots back to a largely unsubstantiated claim in Efron (1983), which you still can see
repeated in many books. When 𝑛 is very large, the difference between different 𝑘 is
typically negligible.
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A downside to 𝑘-fold cross-validation is that the model is fitted using 𝑘−1
𝑘 𝑛 observa-

tions instead of 𝑛. If 𝑛 is small, this can lead to models that are noticeably worse
than the model fitted using 𝑛 observations. LOOCV is the best choice in such cases,
as it uses 𝑛 − 1 observations (so, almost 𝑛) when fitting the models. On the other
hand, there is also the computational aspect - LOOCV is simply not computation-
ally feasible for large datasets with numerically complex models. In summary, my
recommendation is to use LOOCV when possible, particularly for smaller datasets,
and to use repeated 10-fold cross-validation otherwise. For very large datasets, or toy
examples, you can resort to a simple 10-fold cross-validation (which still is a better
option than test-training splitting).

∼

Exercise 9.3. Return to the estates.xlsx data from the previous exercise. Refit
your linear model, but this time:

1. Use 10-fold cross-validation for the evaluation. Run it several times and check
the MAE. How much does the MAE vary between runs?

2. Run repeated 10-fold cross-validations a few times. How much does the MAE
vary between runs?

9.1.5 Twinned observations
If you want to use LOOCV but are concerned about twinned observations, you can
use duplicated, which returns a logical vector showing which rows are duplicates of
previous rows. It will however not find near-duplicates. Let’s try it on the diamonds
data from ggplot2:
library(ggplot2)
# Are there twinned observations?
duplicated(diamonds)

# Count the number of duplicates:
sum(duplicated(diamonds))

# Show the duplicates:
diamonds[which(duplicated(diamonds)),]

If you plan on using LOOCV, you may want to remove duplicates. We saw how to
do this in Section 5.8.2:

With data.table: library(data.table)
diamonds <- as.data.table(diamonds)
unique(diamonds)
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With dplyr: library(dplyr)
diamonds %>% distinct

9.1.6 Bootstrapping
An alternative to cross-validation is to draw bootstrap samples, some of which are
used to fit models, and some to evaluate them. This has the benefit that the models
are fitted to 𝑛 observations instead of 𝑘−1

𝑘 𝑛 observations. This is in fact the default
method in trainControl. To use it for our mtcars model, with 999 bootstrap
samples, we run the following:
library(caret)
tc <- trainControl(method = "boot",

number = 999)
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

m
m$results

∼

Exercise 9.4. Return to the estates.xlsx data from the previous exercise. Refit
your linear model, but this time use the bootstrap to evaluate the model. Run it
several times and check the MAE. How much does the MAE vary between runs?

9.1.7 Evaluating classification models
Classification models, or classifiers, differ from regression model in that they aim
to predict which class (category) an observation belongs to, rather than to predict
a number. Because the target variable, the class, is categorical, it would make lit-
tle sense to use measures like 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 to evaluate the performance of a
classifier. Instead, we will use other measures that are better suited to this type of
problem.

To begin with, though, we’ll revisit the wine data that we studied in Section 8.3.1.
It contains characteristics of wines that belong to either of two classes: white and
red. Let’s create the dataset:
# Import data about white and red wines:
white <- read.csv("https://tinyurl.com/winedata1",

sep = ";")
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red <- read.csv("https://tinyurl.com/winedata2",
sep = ";")

# Add a type variable:
white$type <- "white"
red$type <- "red"

# Merge the datasets:
wine <- rbind(white, red)
wine$type <- factor(wine$type)

# Check the result:
summary(wine)

In Section 8.3.1, we fitted a logistic regression model to the data using glm:
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)
summary(m)

Logistic regression models are regression models, because they give us a numeric
output: class probabilities. These probabilities can however be used for classification
- we can for instance classify a wine as being red if the predicted probability that it
is red is at least 0.5. We can therefore use logistic regression as a classifier, and refer
to it as such, although we should bear in mind that it actually is more than that1.

We can use caret and train to fit the same a logistic regression model, and use
cross-validation or the bootstrap to evaluate it. We should supply the arguments
method = "glm" and family = "binomial" to train to specify that we want a
logistic regression model. Let’s do that, and run a repeated 10-fold cross-validation
of the model - this takes longer to run than our mtcars example because the dataset
is larger:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m <- train(type ~ pH + alcohol,

data = wine,
trControl = tc,
method = "glm",
family = "binomial")

m

The summary reports two figures from the cross-validation:
1Many, but not all, classifiers also output predicted class probabilities. The distinction between

regression models and classifiers is blurry at best.
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• Accuracy: the proportion of correctly classified observations,
• Cohen’s kappa: a measure combining the observed accuracy with the accuracy

expected under random guessing (which is related to the balance between the
two classes in the sample).

We mentioned a little earlier that we can use logistic regression for classification by,
for instance, classifying a wine as being red if the predicted probability that it is red
is at least 0.5. It is of course possible to use another threshold as well, and classify
wines as being red if the probability is at least 0.2, or 0.3333, or 0.62. When setting
this threshold, there is a tradeoff between the occurrence of what is known as false
negatives and false positives. Imagine that we have two classes (white and red), and
that we label one of them as negative (white) and one as positive (red). Then:

• A false negative is a positive (red) observation incorrectly classified as negative
(white),

• A false positive is a negative (white) observation incorrectly classified as positive
(red).

In the wine example, there is little difference between these types of errors. But
in other examples, the distinction is an important one. Imagine for instance that
we, based on some data, want to classify patients as being sick (positive) or healthy
(negative). In that case it might be much worse to get a false negative (the patient
won’t get the treatment that they need) than a false positive (which just means that
the patient will have to run a few more tests). For any given threshold, we can
compute two measures of the frequency of these types of errors:

• Sensitivity or true positive rate: the proportion of positive observations that
are correctly classified as being positive,

• Specificity or true negative rate: the proportion of negative observations that
are correctly classified as being negative.

If we increase the threshold for at what probability a wine is classified as being red
(positive), then the sensitivity will increase, but the specificity will decrease. And if
we lower the threshold, the sensitivity will decrease while the specificity increases.

It would make sense to try several different thresholds, to see for which threshold we
get a good compromise between sensitivity and specificity. We will use the MLeval
package to visualise the result of this comparison, so let’s install that:
install.packages("MLeval")

Sensitivity and specificity are usually visualised using receiver operation character-
istic curves, or ROC curves for short. We’ll plot such a curve for our wine model.
The function evalm from MLeval can be used to collect the data that we need from
the cross-validations of a model m created using train. To use it, we need to set
savePredictions = TRUE and classProbs = TRUE in trainControl:
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tc <- trainControl(method = "repeatedcv",
number = 10, repeats = 100,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol,
data = wine,
trControl = tc,
method = "glm",
family = "binomial")

library(MLeval)
plots <- evalm(m)

# ROC:
plots$roc

The x-axis shows the false positive rate of the classifier (which is 1 minus the specificity
- we’d like this to be as low as possible) and the y-axis shows the corresponding
sensitivity of the classifier (we’d like this to be as high as possible). The red line
shows the false positive rate and sensitivity of our classifier, which each point on the
line corresponding to a different threshold. The grey line shows the performance of
a classifier that is no better than random guessing - ideally, we want the red line to
be much higher than that.

The beauty of the ROC curve is that it gives us a visual summary of how the classifier
performs for all possible thresholds. It is instrumental if we want to compare two or
more classifiers, as you will do in Exercise 9.5.

The legend shows a summary measure, 𝐴𝑈𝐶, the area under the ROC curve. An
𝐴𝑈𝐶 of 0.5 means that the classifier is no better than random guessing, and an
𝐴𝑈𝐶 of 1 means that the model always makes correct predictions for all thresholds.
Getting an 𝐴𝑈𝐶 that is lower than 0.5, meaning that the classifier is worse than
random guessing, is exceedingly rare, and can be a sign of some error in the model
fitting.

evalm also computes a 95 % confidence interval for the 𝐴𝑈𝐶, which can be obtained
as follows:
plots$optres[[1]][13,]

Another very important plot provided by evalm is the calibration curve. It shows
how well-calibrated the model is. If the model is well-calibrated, then the predicted
probabilities should be close to the true frequencies. As an example, this means that
among wines for which the predicted probability of the wine being red is about 20
%, 20 % should actually be red. For a well-calibrated model, the red curve should
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closely follow the grey line in the plot:
# Calibration curve:
plots$cc

Our model doesn’t appear to be that well-calibrated, meaning that we can’t really
trust its predicted probabilities.

If we just want to quickly print the 𝐴𝑈𝐶 without plotting the ROC curves, we can
set summaryFunction = twoClassSummary in trainControl, after which the 𝐴𝑈𝐶
will be printed instead of accuracy and Cohen’s kappa (although it is erroneously
called ROC instead of 𝐴𝑈𝐶). The sensitivity and specificity for the 0.5 threshold
are also printed:
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol,
data = wine,
trControl = tc,
method = "glm",
family = "binomial",
metric = "ROC")

m

∼

Exercise 9.5. Fit a second logistic regression model, m2, to the wine data, that
also includes fixed.acidity and residual.sugar as explanatory variables. You
can then run

library(MLeval)
plots <- evalm(list(m, m2),

gnames = c("Model 1", "Model 2"))

to create ROC curves and calibration plots for both models. Compare their curves.
Is the new model better than the simpler model?

9.1.8 Visualising decision boundaries
For models with two explanatory variables, the decision boundaries of a classifier can
easily be visualised. These show the different regions of the sample space that the
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classifier associates with the different classes. Let’s look at an example of this using
the model m fitted to the wine data at the end of the previous section. We’ll create a
grid of points using expand.grid and make predictions for each of them (i.e. classify
each of them). We can then use geom_contour to draw the decision boundaries:
contour_data <- expand.grid(
pH = seq(min(wine$pH), max(wine$pH), length = 500),
alcohol = seq(min(wine$alcohol), max(wine$alcohol), length = 500))

predictions <- data.frame(contour_data,
type = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(wine, aes(pH, alcohol, colour = type)) +

geom_point(size = 2) +
stat_contour(aes(x = pH, y = alcohol, z = type),

data = predictions, colour = "black")

In this case, points to the left of the black line are classified as white, and points to
the right of the line are classified as red. It is clear from the plot (both from the
point clouds and from the decision boundaries) that the model won’t work very well,
as many wines will be misclassified.

9.2 Ethical issues in predictive modelling
Even when they are used for the best of intents, predictive models can inadvertently
create injustice and bias, and lead to discrimination. This is particularly so for models
that, in one way or another, make predictions about people. Real-world examples
include facial recognition systems that perform worse for people with darker skin
(Buolamwini & Gebru, 2018) and recruitment models that are biased against women
(Dastin, 2018).

A common issue that can cause this type of problem is difficult-to-spot biases in the
training data. If female applicants have been less likely to get a job at a company in
the past, then a recruitment model built on data from that company will likely also
become biased against women. It can be problematic to simply take data from the
past and to consider it as the “ground-truth” when building models.

Similarly, predictive models can create situations where people are prevented from
improving their circumstances, and for instance are stopped from getting out of
poverty because they are poor. As an example, if people from a certain (poor)
zip code historically often have defaulted on their loans, then a predictive model
determining who should be granted a student loan may reject an applicant from that
area solely on those grounds, even though they otherwise might be an ideal candidate
for a loan (which would have allowed them to get an education and a better-paid job).
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Finally, in extreme cases, predictive models can be used by authoritarian governments
to track and target dissidents in a bid to block democracy and human rights.

When working on a predictive model, you should always keep these risks in mind, and
ask yourself some questions. How will your model be used, and by whom? Are there
hidden biases in the training data? Are the predictions good enough, and if they
aren’t, what could be the consequences for people who get erroneous predictions?
Are the predictions good enough for all groups of people, or does the model have
worse performance for some groups? Will the predictions improve fairness or cement
structural unfairness that was implicitly incorporated in the training data?

∼

Exercise 9.6. Discuss the following. You are working for a company that tracks
the behaviour of online users using cookies. The users have all agreed to be tracked
by clicking on an “Accept all cookies” button, but most can be expected not to have
read the terms and conditions involved. You analyse information from the cookies,
consisting of data about more or less all parts of the users’ digital lives, to serve
targeted ads to the users. Is this acceptable? Does the accuracy of your targeting
models affect your answer? What if the ads are relevant to the user 99 % of the time?
What if they only are relevant 1 % of the time?

Exercise 9.7. Discuss the following. You work for a company that has developed a
facial recognition system. In a final trial before releasing your product, you discover
that your system performs poorly for people over the age of 70 (the accuracy is 99 %
for people below 70 and 65 % for people above 70). Should you release your system
without making any changes to it? Does your answer depend on how it will be used?
What if it is used instead of keycards to access offices? What if it is used to unlock
smartphones? What if it is used for ID controls at voting stations? What if it is
used for payments?

Exercise 9.8. Discuss the following. Imagine a model that predicts how likely it
is that a suspect committed a crime that they are accused of, and that said model
is used in courts of law. The model is described as being faster, fairer, and more
impartial than human judges. It is a highly complex black-box machine learning
model built on data from previous trials. It uses hundreds of variables, and so it
isn’t possible to explain why it gives a particular prediction for a specific individual.
The model makes correct predictions 99 % of the time. Is using such a model in the
judicial system acceptable? What if an innocent person is predicted by the model
to be guilty, without an explanation of why it found them to be guilty? What if the
model makes correct predictions 90 % or 99.99 % of the time? Are there things that
the model shouldn’t be allowed to take into account, such as skin colour or income?
If so, how can you make sure that such variables aren’t implicitly incorporated into
the training data?
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9.3 Challenges in predictive modelling
There are a number of challenges that often come up in predictive modelling projects.
In this section we’ll briefly discuss some of them.

9.3.1 Handling class imbalance
Imbalanced data, where the proportions of different classes differ a lot, are common
in practice. In some areas, such as the study of rare diseases, such datasets are
inherent to the field. Class imbalance can cause problems for many classifiers, as
they tend to become prone to classify too many observations as belonging to the
more common class.

One way to mitigate this problem is to use down-sampling and up-sampling when
fitting the model. In down-sampling, only a (random) subset of the observations from
the larger class are used for fitting the model, so that the number of cases from each
class becomes balanced. In up-sampling the number of observations in the smaller
class are artificially increased by resampling, also to achieve balance. These methods
are only used when fitting the model, to avoid problems with the model overfitting
to the class imbalance.

To illustrate the need and use for these methods, let’s create a more imbalanced
version of the wine data:
# Create imbalanced wine data:
wine_imb <- wine[1:5000,]

# Check class balance:
table(wine_imb$type)

Next, we fit three logistic models - one the usual way, one with down-sampling and one
with up-sampling. We’ll use 10-fold cross-validation to evaluate their performance.
library(caret)

# Fit a model the usual way:
tc <- trainControl(method = "cv" , number = 10,

savePredictions = TRUE,
classProbs = TRUE)

m1 <- train(type ~ pH + alcohol,
data = wine_imb,
trControl = tc,
method = "glm",
family = "binomial")

# Fit with down-sampling:
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tc <- trainControl(method = "cv" , number = 10,
savePredictions = TRUE,
classProbs = TRUE,
sampling = "down")

m2 <- train(type ~ pH + alcohol,
data = wine_imb,
trControl = tc,
method = "glm",
family = "binomial")

# Fit with up-sampling:
tc <- trainControl(method = "cv" , number = 10,

savePredictions = TRUE,
classProbs = TRUE,
sampling = "up")

m3 <- train(type ~ pH + alcohol,
data = wine_imb,
trControl = tc,
method = "glm",
family = "binomial")

Looking at the accuracy of the three models, m1 seems to be the winner:
m1$results
m2$results
m3$results

Bear in mind though, that the accuracy can be very high when you have imbalanced
classes, even if your model has overfitted to the data and always predicts that all
observations belong to the same class. Perhaps ROC curves will paint a different
picture?
library(MLeval)
plots <- evalm(list(m1, m2, m3),

gnames = c("Imbalanced data",
"Down-sampling",
"Up-sampling"))

The three models have virtually identical performance in terms of AUC, so thus far
there doesn’t seem to be an advantage to using down-sampling or up-sampling.

Now, let’s make predictions for all the red wines that the models haven’t seen in
the training data. What are the predicted probabilities of them being red, for each
model?
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# Number of red wines:
size <- length(5001:nrow(wine))

# Collect the predicted probabilities in a data frame:
red_preds <- data.frame(pred = c(

predict(m1, wine[5001:nrow(wine),], type = "prob")[, 1],
predict(m2, wine[5001:nrow(wine),], type = "prob")[, 1],
predict(m3, wine[5001:nrow(wine),], type = "prob")[, 1]),
method = rep(c("Standard",

"Down-sampling",
"Up-sampling"),

c(size, size, size)))

# Plot the distributions of the predicted probabilities:
library(ggplot2)
ggplot(red_preds, aes(pred, colour = method)) +

geom_density()

When the model is fitted using the standard methods, almost all red wines get very
low predicted probabilities of being red. This isn’t the case for the models that
used down-sampling and up-sampling, meaning that m2 and m3 are much better at
correctly classifying red wines. Note that we couldn’t see any differences between the
models in the ROC curves, but that there are huge differences between them when
they are applied to new data. Problems related to class imbalance can be difficult to
detect, so always be careful when working with imbalanced data.

9.3.2 Assessing variable importance
caret contains a function called varImp that can be used to assess the relative
importance of different variables in a model. dotPlot can then be used to plot the
results:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

varImp(m) # Numeric summary
dotPlot(varImp(m)) # Graphical summary

Getting a measure of variable importance sounds really good - it can be useful to
know which variables that influence the model the most. Unfortunately, varImp
uses a nonsensical importance measure: the 𝑡-statistics of the coefficients of the
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linear model. In essence, this means that variables with a lower p-value are assigned
higher importance. But the p-value is not a measure of effect size, nor the predictive
importance of a variable (see e.g. Wasserstein & Lazar (2016)). I strongly advise
against using varImp for linear models.

There are other options for computing variable importance for linear and generalised
linear models, for instance in the relaimpo package, but mostly these rely on in-
sample metrics like 𝑅2. Since our interest is in the predictive performance of our
model, we are chiefly interested in how much the different variables affect the predic-
tions. In Section 9.5.2 we will see an example of such an evaluation, for another type
of model.

9.3.3 Extrapolation
It is always dangerous to use a predictive model with data that comes from outside the
range of the variables in the training data. We’ll use bacteria.csv as an example
of that - download that file from the books’ web page and set file_path to its
path. The data has two variables, Time and OD. The first describes the time of a
measurement, and the second describes the optical density (OD) of a well containing
bacteria. The more the bacteria grow, the greater the OD. First, let’s load and plot
the data:
# Read and format data:
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

# Plot the bacterial growth:
library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line()

Now, let’s fit a linear model to data from hours 3-6, during which the bacteria are in
their exponential phase, where they grow faster:
# Fit model:
m <- lm(OD ~ Time, data = bacteria[45:90,])

# Plot fitted model:
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),

colour = "red")

The model fits the data that it’s been fitted to extremely well - but does very poorly
outside this interval. It overestimates the future growth and underestimates the
previous OD.

http://www.modernstatisticswithr.com/data.zip


9.3. CHALLENGES IN PREDICTIVE MODELLING 375

In this example, we had access to data from outside the range used for fitting the
model, which allowed us to see that the model performs poorly outside the original
data range. In most cases however, we do not have access to such data. When
extrapolating outside the range of the training data, there is always a risk that the
patterns governing the phenomenons we are studying are completely different, and
it is important to be aware of this.

9.3.4 Missing data and imputation
The estates.xlsx data that you studied in Exercise 9.2 contained a lot of missing
data, and as a consequence, you had to remove a lot of rows from the dataset. Another
option is to use imputation, i.e. to add artificially generated observations in place of
the missing values. This allows you to use the entire dataset - even those observations
where some variables are missing. caret has functions for doing this, using methods
that are based on some of the machine learning models that we will look at in Section
9.5.

To see an example of imputation, let’s create some missing values in mtcars:
mtcars_missing <- mtcars
rows <- sample(1:nrow(mtcars), 5)
cols <- sample(1:ncol(mtcars), 2)
mtcars_missing[rows, cols] <- NA
mtcars_missing

If we try to fit a model to this data, we’ll get an error message about NA values:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m <- train(mpg ~ .,

data = mtcars_missing,
method = "lm",
trControl = tc)

By adding preProcess = "knnImpute" and na.action = na.pass to train we can
use the observations that are the most similar to those with missing values to impute
data:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m <- train(mpg ~ .,

data = mtcars_missing,
method = "lm",
trControl = tc,
preProcess = "knnImpute",
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na.action = na.pass)

m$results

You can compare the results obtained for this model to does obtained using the
complete dataset:
m <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

m$results

Here, these are probably pretty close (we didn’t have a lot of missing data, after all),
but not identical.

9.3.5 Endless waiting
Comparing many different models can take a lot of time, especially if you are working
with large datasets. Waiting for the results can seem to take forever. Fortuitously,
modern computers have processing units, CPU’s, that can perform multiple compu-
tations in parallel using different cores or threads. This can significantly speed up
model fitting, as it for instance allows us to fit the same model to different subsets
in a cross-validation in parallel, i.e. at the same time.

In Section 10.2 you’ll learn how to perform any type of computation in parallel.
However, caret is so simple to run in parallel that we’ll have a quick lock at that
right away. We’ll use the foreach, parallel, and doParallel packages, so let’s
install them:
install.packages(c("foreach", "parallel", "doParallel"))

The number of cores available on your machine determines how many processes can
be run in parallel. To see how many you have, use detectCores:
library(parallel)
detectCores()

You should avoid the temptation of using all available cores for your parallel com-
putation - you’ll always need to reserve at least one for running RStudio and other
applications.

To enable parallel computations, we use registerDoParallel to register the parallel
backend to be used. Here is an example where we create 3 workers (and so use 3
cores in parallel2):

2If your CPU has 3 or fewer cores, you should lower this number.
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library(doParallel)
registerDoParallel(3)

After this, it will likely take less time to fit your caret models, as model fitting now
will be performed using parallel computations on 3 cores. That means that you’ll
spend less time waiting and more time modelling. Hurrah! One word of warning
though: parallel computations require more memory, so you may run into problems
with RAM if you are working on very large datasets.

9.3.6 Overfitting to the test set
Although out-of-sample evaluations are better than in-sample evaluations of predic-
tive models, they are not without risks. Many practitioners like to fit several different
models to the same dataset, and then compare their performance (indeed, we our-
selves have done and will continue to do so!). When doing this, there is a risk that we
overfit our models to the data used for the evaluation. The risk is greater when using
test-training splits, but is not non-existent for cross-validation and bootstrapping.
An interesting example of this phenomenon is presented by Recht et al. (2019), who
show that the celebrated image classifiers trained on a dataset known as ImageNet
perform significantly worse when used on new data.

When building predictive models that will be used in a real setting, it is a good
practice to collect an additional evaluation set that is used to verify that the model
still works well when faced with new data, that wasn’t part of the model fitting or
the model testing. If your model performs worse than expected on the evaluation
set, it is a sign that you’ve overfitted your model to the test set.

Apart from testing so many models that one happens to perform well on the test
data (thus overfitting), there are several mistakes that can lead to overfitting. One
example is data leakage, where part of the test data “leaks” into the training set.
This can happen in several ways: maybe you include an explanatory variable that is
a function of the response variable (e.g. price per square meter when trying to predict
housing prices), or maybe you have twinned or duplicate observations in your data.
Another example is to not include all steps of the modelling in the evaluation, for
instance by first using the entire dataset to select which variables to include, and
then use cross-validation to assess the performance of the model. If you use the data
for variable selection, then that needs to be a part of your cross-validation as well.

In contrast to much of traditional statistics, out-of-sample evaluations are example-
based. We must be aware that what worked at one point won’t necessarily work
in the future. It is entirely possible that the phenomenon that we are modelling
is non-stationary, meaning that the patterns in the training data differ from the
patterns in future data. In that case, our model can be overfitted in the sense that
it describes patterns that no longer are valid. It is therefore important to not only
validate a predictive model once, but to return to it at a later point to check that it
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still performs as expected. Model evaluation is a task that lasts as long as the model
is in use.

9.4 Regularised regression models
The standard method used for fitting linear models, ordinary least squares or OLS,
can be shown to yield the best unbiased estimator of the regression coefficients (under
certain assumptions). But what if we are willing to use estimators that are biased?
A common way of measuring the performance of an estimator is the mean squared
error, 𝑀𝑆𝐸. If ̂𝜃 is an estimator of a parameter 𝜃, then

𝑀𝑆𝐸(𝜃) = 𝐸(( ̂𝜃 − 𝜃)2) = 𝐵𝑖𝑎𝑠2( ̂𝜃) + 𝑉 𝑎𝑟( ̂𝜃),
which is known as the bias-variance decomposition of the 𝑀𝑆𝐸. This means that
if increasing the bias allows us to decrease the variance, it is possible to obtain an
estimator with a lower 𝑀𝑆𝐸 than what is possible for unbiased estimators.

Regularised regression models are linear or generalised linear models in which a small
(typically) bias is introduced in the model fitting. Often this can lead to models with
better predictive performance. Moreover, it turns out that this also allows us to fit
models in situations where it wouldn’t be possible to fit ordinary (generalised) linear
models, for example when the number of variables is greater than the sample size.

To introduce the bias, we add a penalty term to the loss function used to fit the
regression model. In the case of linear regression, the usual loss function is the
squared ℓ2 norm, meaning that we seek the estimates 𝛽𝑖 that minimise

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2 − ⋯ − 𝛽𝑝𝑥𝑖𝑝)2.

When fitting a regularised regression model, we instead seek the 𝛽 = (𝛽1, … , 𝛽𝑝) that
minimise

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 − 𝛽1𝑥𝑖1 − 𝛽2𝑥𝑖2 − ⋯ − 𝛽𝑝𝑥𝑖𝑝)2 + 𝑝(𝛽, 𝜆),

for some penalty function 𝑝(𝛽, 𝜆). The penalty function increases the “cost” of having
large 𝛽𝑖, which causes the estimates to “shrink” towards 0. 𝜆 is a shrinkage parameter
used to control the strength of the shrinkage - the larger 𝜆 is, the greater the shrinkage.
It is usually chosen using cross-validation.

Regularised regression models are not invariant under linear rescalings of the explana-
tory variables, meaning that if a variable is multiplied by some number 𝑎, then this
can change the fit of the entire model in an arbitrary way. For that reason, it is
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widely agreed that the explanatory variables should be standardised to have mean 0
and variance 1 before fitting a regularised regression model. Fortunately, the func-
tions that we will use for fitting these models does that for us, so that we don’t have
to worry about it. Moreover, they then rescale the model coefficients to be on the
original scale, to facilitate interpretation of the model. We can therefore interpret the
regression coefficients in the same way as we would for any other regression model.

In this section, we’ll look at how to use regularised regression in practice. Further
mathematical details are deferred to Section 12.5. We will make use of model-fitting
functions from the glmnet package, so let’s start by installing that:
install.packages("glmnet")

We will use the mtcars data to illustrate regularised regression. We’ll begin by once
again fitting an ordinary linear regression model to the data:
library(caret)
tc <- trainControl(method = "LOOCV")
m1 <- train(mpg ~ .,

data = mtcars,
method = "lm",
trControl = tc)

summary(m1)

9.4.1 Ridge regression
The first regularised model that we will consider is ridge regression (Hoerl & Kennard,
1970), for which the penalty function is 𝑝(𝛽, 𝜆) = 𝜆 ∑𝑝

𝑗=1 𝛽2
𝑖 . We will fit such a model

to the mtcars data using train. LOOCV will be used, both for evaluating the model
and for finding the best choice of the shrinkage parameter 𝜆. This process is often
called hyperparameter3 tuning - we tune the hyperparameter 𝜆 until we get a good
model.
library(caret)
# Fit ridge regression:
tc <- trainControl(method = "LOOCV")
m2 <- train(mpg ~ .,

data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = 0,

lambda = seq(0, 10, 0.1)),
metric = "RMSE",
trControl = tc)

3Parameters like 𝜆 that describe “settings” used for the method rather than parts of the model,
are often referred to as hyperparameters.
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In the tuneGrid setting of train we specified that values of 𝜆 in the interval [0, 10]
should be evaluated. When we print the m object, we will see 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸 of
the models for different values of 𝜆 (with 𝜆 = 0 being ordinary non-regularised linear
regression):
# Print the results:
m2

# Plot the results:
library(ggplot2)
ggplot(m2, metric = "RMSE")
ggplot(m2, metric = "MAE")

To only print the results for the best model, we can use:
m2$results[which(m2$results$lambda == m2$finalModel$lambdaOpt),]

Note that the 𝑅𝑀𝑆𝐸 is substantially lower than that for the ordinary linear regres-
sion (m1).

In the metric setting of train, we said that we wanted 𝑅𝑀𝑆𝐸 to be used to
determine which value of 𝜆 gives the best model. To get the coefficients of the model
with the best choice of 𝜆, we use coef as follows:
# Check the coefficients of the best model:
coef(m2$finalModel, m2$finalModel$lambdaOpt)

Comparing these coefficients to those from the ordinary linear regression
(summary(m1)), we see that the coefficients of the two models actually differ
quite a lot.

If we want to use our ridge regression model for prediction, it is straightforward to do
so using predict(m), as predict automatically uses the best model for prediction.

It is also possible to choose 𝜆 without specifying the region in which to search for the
best 𝜆, i.e. without providing a tuneGrid argument. In this case, some (arbitrarily
chosen) default values will be used instead:
m2 <- train(mpg ~ .,

data = mtcars,
method = "glmnet",
metric = "RMSE",
trControl = tc)

m2

∼
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Exercise 9.9. Return to the estates.xlsx data from Exercise 9.2. Refit your
linear model, but this time use ridge regression instead. Does the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸
improve?

Exercise 9.10. Return to the wine data from Exercise 9.5. Fitting the models below
will take a few minutes, so be prepared to wait for a little while.

1. Fit a logistic ridge regression model to the data (make sure to add family =
"binomial" so that you actually fit a logistic model and not a linear model),
using all variables in the dataset (except type) as explanatory variables. Use
5-fold cross-validation for choosing 𝜆 and evaluating the model (other options
are too computer-intensive). What metric is used when finding the optimal 𝜆?

2. Set summaryFunction = twoClassSummary in trainControl and metric =
"ROC" in train and refit the model using 𝐴𝑈𝐶 to find the optimal 𝜆. Does
the choice of 𝜆 change, for this particular dataset?

9.4.2 The lasso
The next regularised regression model that we will consider is the lasso (Tibshirani,
1996), for which 𝑝(𝛽, 𝜆) = 𝜆 ∑𝑝

𝑗=1 |𝛽𝑖|. This is an interesting model because it simul-
taneously performs estimation and variable selection, by completely removing some
variables from the model. This is particularly useful if we have a large number of
variables, in which case the lasso may create a simpler model while maintaining high
predictive accuracy. Let’s fit a lasso model to our data, using 𝑀𝐴𝐸 to select the
best 𝜆:
library(caret)
tc <- trainControl(method = "LOOCV")
m3 <- train(mpg ~ .,

data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = 1,

lambda = seq(0, 10, 0.1)),
metric = "MAE",
trControl = tc)

# Plot the results:
library(ggplot2)
ggplot(m3, metric = "RMSE")
ggplot(m3, metric = "MAE")

# Results for the best model:
m3$results[which(m3$results$lambda == m3$finalModel$lambdaOpt),]
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# Coefficients for the best model:
coef(m3$finalModel, m3$finalModel$lambdaOpt)

The variables that were removed from the model are marked by points (.) in the list
of coefficients. The 𝑅𝑀𝑆𝐸 is comparable to that from the ridge regression - and is
better than that for the ordinary linear regression, but the number of variables used
is fewer. The lasso model is more parsimonious, and therefore easier to interpret
(and present to your boss/client/supervisor/colleagues!).

If you only wish to extract the names of the variables with non-zero coefficients from
the lasso model (i.e. a list of the variables retained in the variable selection), you
can do so using the code below. This can be useful if you have a large number of
variables and quickly want to check which have non-zero coefficients:
rownames(coef(m3$finalModel, m3$finalModel$lambdaOpt))[

coef(m3$finalModel, m3$finalModel$lambdaOpt)[,1]!= 0]

∼

Exercise 9.11. Return to the estates.xlsx data from Exercise 9.2. Refit your
linear model, but this time use the lasso instead. Does the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸
improve?

Exercise 9.12. To see how the lasso handles variable selection, simulate a dataset
where only the first 5 out of 200 explanatory variables are correlated with the response
variable:

n <- 100 # Number of observations
p <- 200 # Number of variables
# Simulate explanatory variables:
x <- matrix(rnorm(n*p), n, p)
# Simulate response variable:
y <- 2*x[,1] + x[,2] - 3*x[,3] + 0.5*x[,4] + 0.25*x[,5] + rnorm(n)
# Collect the simulated data in a data frame:
simulated_data <- data.frame(y, x)

1. Fit a linear model to the data (using the model formula y ~ .). What happens?

2. Fit a lasso model to this data. Does it select the correct variables? What if
you repeat the simulation several times, or change the values of n and p?

9.4.3 Elastic net
A third option is the elastic net (Zou & Hastie, 2005), which essentially is a com-
promise between ridge regression and the lasso. Its penalty function is 𝑝(𝛽, 𝜆, 𝛼) =
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𝜆(𝛼 ∑𝑝
𝑗=1 |𝛽𝑖| + (1 − 𝛼) ∑𝑝

𝑗=1 𝛽2
𝑖 ), with 0 ≤ 𝛼 ≤ 1. 𝛼 = 0 yields the ridge estimator,

𝛼 = 1 yields the lasso, and 𝛼 between 0 and 1 yields a combination of the both.
When fitting an elastic net model, we search for an optimal choice of 𝛼, along with
the choice of 𝜆𝑖. To fit such a model, we can run the following:
library(caret)
tc <- trainControl(method = "LOOCV")
m4 <- train(mpg ~ .,

data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = seq(0, 1, 0.1),

lambda = seq(0, 10, 0.1)),
metric = "RMSE",
trControl = tc)

# Print best choices of alpha and lambda:
m4$bestTune

# Print the RMSE and MAE for the best model:
m4$results[which(rownames(m4$results) == rownames(m4$bestTune)),]

# Print the coefficients of the best model:
coef(m4$finalModel, m4$bestTune$lambda, m4$bestTune$alpha)

In this example, the ridge regression happened to yield the best fit, in terms of the
cross-validation 𝑅𝑀𝑆𝐸.

∼

Exercise 9.13. Return to the estates.xlsx data from Exercise 9.2. Refit your
linear model, but this time use the elastic net instead. Does the 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝐸
improve?

9.4.4 Choosing the best model
So far, we have used the values of 𝜆 and 𝛼 that give the best results according to a
performance metric, such as 𝑅𝑀𝑆𝐸 or 𝐴𝑈𝐶. However, it is often the case that we
can find a more parsimonious, i.e. simpler, model with almost as good performance.
Such models can sometimes be preferable, because of their relative simplicity. Using
those models can also reduce the risk of overfitting. caret has two functions that
can be used for this:

• oneSE, which follows a rule-of-thumb from Breiman et al. (1984), which states
that the simplest model within one standard error of the model with the best
performance should be chosen,
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• tolerance, which chooses the simplest model that has a performance within
(by default) 1.5 % of the model with the best performance.

Neither of these can be used with LOOCV, but work for other cross-validation
schemes and the bootstrap.

We can set the rule for selecting the “best” model using the argument
selectionFunction in trainControl. By default, it uses a function called
best that simply extracts the model with the best performance. Here are some
examples for the lasso:
library(caret)
# Choose the best model (this is the default!):
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m3 <- train(mpg ~ .,

data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = 1,

lambda = seq(0, 10, 0.1)),
metric = "RMSE",
trControl = tc)

# Print the best model:
m3$bestTune
coef(m3$finalModel, m3$finalModel$lambdaOpt)

# Choose model using oneSE:
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
selectionFunction = "oneSE")

m3 <- train(mpg ~ .,
data = mtcars,
method = "glmnet",
tuneGrid = expand.grid(alpha = 1,

lambda = seq(0, 10, 0.1)),
trControl = tc)

# Print the "best" model (according to the oneSE rule):
m3$bestTune
coef(m3$finalModel, m3$finalModel$lambdaOpt)

In this example, the difference between the models is small - and it usually is. In
some cases, using oneSE or tolerance leads to a model that has better performance
on new data, but in other cases the model that has the best performance in the
evaluation also has the best performance for new data.
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9.4.5 Regularised mixed models
caret does not handle regularisation of (generalised) linear mixed models. If you
want to work with such models, you’ll therefore need a package that provides func-
tions for this:
install.packages("glmmLasso")

Regularised mixed models are strange birds. Mixed models are primarily used for in-
ference about the fixed effects, whereas regularisation primarily is used for predictive
purposes. The two don’t really seem to match. They can however be very useful if
our main interest is estimation rather than prediction or hypothesis testing, where
regularisation can help decrease overfitting. Similarly, it is not uncommon for linear
mixed models to be numerically unstable, with the model fitting sometimes failing to
converge. In such situations, a regularised LMM will often work better. Let’s study
an example concerning football (soccer) teams, from Groll & Tutz (2014), that shows
how to incorporate random effects and the lasso in the same model:
library(glmmLasso)

data(soccer)
?soccer
View(soccer)

We want to model the points totals for these football teams. We suspect that variables
like transfer.spendings can affect the performance of a team:
ggplot(soccer, aes(transfer.spendings, points, colour = team)) +

geom_point() +
geom_smooth(method = "lm", colour = "black", se = FALSE)

Moreover, it also seems likely that other non-quantitative variables also affect the
performance, which could cause the teams to all have different intercepts. Let’s plot
them side-by-side:
library(ggplot2)
ggplot(soccer, aes(transfer.spendings, points, colour = team)) +

geom_point() +
theme(legend.position = "none") +
facet_wrap(~ team, nrow = 3)

When we model the points totals, it seems reasonable to include a random intercept
for team. We’ll also include other fixed effects describing the crowd capacity of the
teams’ stadiums, and their playing style (e.g. ball possession and number of yellow
cards).

The glmmLasso functions won’t automatically centre and scale the data for us, which
you’ll recall is recommended to do before fitting a regularised regression model. We’ll
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create a copy of the data with centred and scaled numeric explanatory variables:
soccer_scaled <- soccer
soccer_scaled[, c(4:16)] <- scale(soccer_scaled[, c(4:16)],

center = TRUE,
scale = TRUE)

Next, we’ll run a for loop to find the best 𝜆. Because we are interested in fitting
a model to this particular dataset rather than making predictions, we will use an
in-sample measure of model fit, 𝐵𝐼𝐶, to compare the different values of 𝜆. The code
below is partially adapted from demo("glmmLasso-soccer"):
# Number of effects used in model:
params <- 10

# Set parameters for optimisation:
lambda <- seq(500, 0, by = -5)
BIC_vec <- rep(Inf, length(lambda))
m_list <- list()
Delta_start <- as.matrix(t(rep(0, params + 23)))
Q_start <- 0.1

# Search for optimal lambda:
pbar <- txtProgressBar(min = 0, max = length(lambda), style = 3)
for(j in 1:length(lambda))
{
setTxtProgressBar(pbar, j)

m <- glmmLasso(points ~ 1 + transfer.spendings +
transfer.receits +
ave.unfair.score +
tackles +
yellow.card +
sold.out +
ball.possession +
capacity +
ave.attend,
rnd = list(team =~ 1),
family = poisson(link = log),
data = soccer_scaled,
lambda = lambda[j],
switch.NR = FALSE,
final.re = TRUE,
control = list(start = Delta_start[j,],

q_start = Q_start[j]))
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BIC_vec[j] <- m$bic
Delta_start <- rbind(Delta_start, m$Deltamatrix[m$conv.step,])
Q_start <- c(Q_start,m$Q_long[[m$conv.step + 1]])
m_list[[j]] <- m

}
close(pbar)

# Print the optimal model:
opt_m <- m_list[[which.min(BIC_vec)]]
summary(opt_m)

Don’t pay any attention to the p-values in the summary table. Variable selection
can affect p-values in all sorts of strange ways, and because we’ve used the lasso to
select what variables to include, the p-values presented here are no longer valid.

Note that the coefficients printed by the code above are on the scale of the standard-
ised data. To make them possible to interpret, let’s finish by transforming them back
to the original scale of the variables:
sds <- sqrt(diag(cov(soccer[, c(4:16)])))
sd_table <- data.frame(1/sds)
sd_table["(Intercept)",] <- 1
coef(opt_m) * sd_table[names(coef(opt_m)),]

9.5 Machine learning models
In this section we will have a look at the smorgasbord of machine learning models
that can be used for predictive modelling. Some of these models differ from more
traditional regression models in that they are black-box models, meaning that we
don’t always know what’s going on inside the fitted model. This is in contrast to
e.g. linear regression, where we can look at and try to interpret the 𝛽 coefficients.
Another difference is that these models have been developed solely for prediction, and
so often lack some of the tools that we associate with traditional regression models,
like confidence intervals and p-values.

Because we use caret for the model fitting, fitting a new type of model mostly
amounts to changing the method argument in train. But please note that I wrote
mostly - there are a few other differences e.g. in the preprocessing of the data to
which you need to pay attention. We’ll point these out as we go.

9.5.1 Decision trees
Decision trees are a class of models that can be used for both classification and
regression. Their use is perhaps best illustrated by an example, so let’s fit a decision
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tree to the estates data from Exercise 9.2. We set file_path to the path to
estates.xlsx and import and clean the data as before:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we fit a decision tree by setting method = "rpart"4, which uses functions from
the rpart package to fit the tree:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(selling_price ~ .,
data = estates,
trControl = tc,
method = "rpart",
tuneGrid = expand.grid(cp = 0))

m

So, what is this? We can plot the resulting decision tree using the rpart.plot
package, so let’s install and use that:
install.packages("rpart.plot")

library(rpart.plot)
prp(m$finalModel)

What we see here is our machine learning model - our decision tree. When it is used
for prediction, the new observation is fed to the top of the tree, where a question
about the new observation is asked: “is tax_value < 1610”? If the answer is yes, the
observation continues down the line to the left, to the next question. If the answer
is no, it continues down the line to the right, to the question ”is tax_value < 2720‘,
and so on. After a number of questions, the observation reaches a circle - a so-called
leaf node, with a number in it. This number is the predicted selling price of the
house, which is based on observations in the training data that belong to the same
leaf. When the tree is used for classification, the predicted probability of class A is
the proportion of observations from the training data in the leaf that belong to class
A.

prp has a number of parameters that lets us control what our tree plot looks like.
box.palette, shadow.col, nn, type, extra, and cex are all useful - read the docu-
mentation for prp to see how they affect the plot:

4The name rpart may seem cryptic: it is an abbreviation for Recursive Partitioning and Regres-
sion Trees, which is a type of decision trees.
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prp(m$finalModel,
box.palette = "RdBu",
shadow.col = "gray",
nn = TRUE,
type = 3,
extra = 1,
cex = 0.75)

When fitting the model, rpart builds the tree from the top down. At each split, it
tries to find a question that will separate subgroups in the data as much as possible.
There is no need to standardise the data (in fact, this won’t change the shape of the
tree at all).

∼

Exercise 9.14. Fit a classification tree model to the wine data, using pH, alcohol,
fixed.acidity, and residual.sugar as explanatory variables. Evaluate its 𝐴𝑈𝐶
using repeated 10-fold cross-validation.

1. Plot the resulting decision tree. It is too large to be easily understandable, and
needs to be pruned. This is done using the parameter cp. Try increasing the
value of cp in tuneGrid = expand.grid(cp = 0) to different values between
0 and 1. What happens with the tree?

2. Use tuneGrid = expand.grid(cp = seq(0, 0.01, 0.001)) to find an opti-
mal choice of cp. What is the result?

Exercise 9.15. Fit a regression tree model to the bacteria.csv data to see how
OD changes with Time, using the data from observations 45 to 90 of the data frame,
as in the example in Section 9.3.3. Then make predictions for all observations in
the dataset. Plot the actual OD values along with your predictions. Does the model
extrapolate well?

Exercise 9.16. Fit a classification tree model to the seeds data from Section 4.9,
using Variety as the response variable and Kernel_length and Compactness as
explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do
they seem reasonable to you?

9.5.2 Random forests
Random forest (Breiman, 2001) is an ensemble method, which means that it is based
on combining multiple predictive models. In this case, it is a combination of multiple
decision trees, that have been built using different subsets of the data. Each tree is
fitted to a bootstrap sample of the data (a procedure known as bagging), and at each
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split only a random subset of the explanatory variables are used. The predictions
from these trees are then averaged to obtain a single prediction. While the individual
trees in the forest tend to have rather poor performance, the random forest itself often
performs better than a single decision tree fitted to all of the data using all variables.

To fit a random forest to the estates data (loaded in the same way as in Section
9.5.1), we set method = "rf", which will let us do the fitting using functions from
the randomForest package. The random forest has a parameter called mtry that
determines the number of randomly selected explanatory variables. As a rule-of-
thumb, mtry close to √𝑝, where 𝑝 is the number of explanatory variables in your
data, is usually a good choice. When trying to find the best choice for mtry I
recommend trying some values close to that.

For the estates data we have 11 explanatory variables, and so a value of mtry close
to

√
11 ≈ 3 could be a good choice. Let’s try a few different values with a 10-fold

cross-validation:
library(caret)
tc <- trainControl(method = "cv",

number = 10)

m <- train(selling_price ~ .,
data = estates,
trControl = tc,
method = "rf",
tuneGrid = expand.grid(mtry = 2:4))

m

In my run, an mtry equal to 4 gave the best results. Let’s try larger values as well,
just to see if that gives a better model:
m <- train(selling_price ~ .,

data = estates,
trControl = tc,
method = "rf",
tuneGrid = expand.grid(mtry = 4:10))

m

We can visually inspect the impact of mtry by plotting m:
ggplot(m)

For this data, a value of mtry that is a little larger than what usually is recommended
seems to give the best results. It was a good thing that we didn’t just blindly go
with the rule-of-thumb, but instead tried a few different values.
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Random forests have a built-in variable importance measure, which is based on mea-
suring how much worse the model fares when the values of each variable are permuted.
This is a much more sensible measure of variable importance than that presented in
Section 9.3.2. The importance values are reported on a relative scale, with the value
for the most important variable always being 100. Let’s have a look:
dotPlot(varImp(m))

∼

Exercise 9.17. Fit a decision tree model and a random forest to the wine data, using
all variables (except type) as explanatory variables. Evaluate their performance using
10-fold cross-validation. Which model has the best performance?

Exercise 9.18. Fit a random forest to the bacteria.csv data to see how OD changes
with Time, using the data from observations 45 to 90 of the data frame, as in the
example in Section 9.3.3. Then make predictions for all observations in the dataset.
Plot the actual OD values along with your predictions. Does the model extrapolate
well?

Exercise 9.19. Fit a random forest model to the seeds data from Section 4.9,
using Variety as the response variable and Kernel_length and Compactness as
explanatory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do
they seem reasonable to you?

9.5.3 Boosted trees
Another useful class of ensemble method that relies on combining decision trees are
boosted trees. Several different versions are available - we’ll use a version called
Stochastic Gradient Boosting (Friedman, 2002), which is available through the gbm
package. Let’s start by installing that:
install.packages("gbm")

The decision trees in the ensemble are built sequentially, with each new tree giving
more weight to observations for which the previous trees performed poorly. This
process is known as boosting.

When fitting a boosted trees model in caret, we set method = "gbm". There are
four parameters that we can use to find a better fit. The two most important are
interaction.depth, which determines the maximum tree depth (values greater than√𝑝, where 𝑝 is the number of explanatory variables in your data, are discouraged)
and n.trees, which specifies the number of trees to fit (also known as the number
of boosting iterations). Both these can have a large impact on the model fit. Let’s
try a few values with the estates data (loaded in the same way as in Section 9.5.1):



392 CHAPTER 9. PREDICTIVE MODELLING AND MACHINE LEARNING

library(caret)
tc <- trainControl(method = "cv",

number = 10)

m <- train(selling_price ~ .,
data = estates,
trControl = tc,
method = "gbm",
tuneGrid = expand.grid(

interaction.depth = 1:3,
n.trees = seq(20, 200, 10),
shrinkage = 0.1,
n.minobsinnode = 10),

verbose = FALSE)

m

The setting verbose = FALSE is added used to stop gbm from printing details about
each fitted tree.

We can plot the model performance for different settings:
ggplot(m)

As you can see, using more trees (a higher number of boosting iterations) seems to
lead to a better model. However, if we use too many trees, the model usually overfits,
leading to a worse performance in the evaluation:
m <- train(selling_price ~ .,

data = estates,
trControl = tc,
method = "gbm",
tuneGrid = expand.grid(

interaction.depth = 1:3,
n.trees = seq(25, 500, 25),
shrinkage = 0.1,
n.minobsinnode = 10),

verbose = FALSE)

ggplot(m)

A table and plot of variable importance is given by summary:
summary(m)

In many problems, boosted trees are among the best-performing models. They do
however require a lot of tuning, which can be time-consuming, both in terms of how
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long it takes to run the tuning and in terms of how much time you have to spend
fiddling with the different parameters. Several different implementations of boosted
trees are available in caret. A good alternative to gbm is xgbTree from the xgboost
package. I’ve chosen not to use that for the examples here, as it often is slower to
train due to having a larger number of hyperparameters (which in return makes it
even more flexible!).

∼

Exercise 9.20. Fit a boosted trees model to the wine data, using all variables
(except type) as explanatory variables. Evaluate its performance using repeated 10-
fold cross-validation. What is the best 𝐴𝑈𝐶 that you can get by tuning the model
parameters?

Exercise 9.21. Fit a boosted trees regression model to the bacteria.csv data to
see how OD changes with Time, using the data from observations 45 to 90 of the data
frame, as in the example in Section 9.3.3. Then make predictions for all observations
in the dataset. Plot the actual OD values along with your predictions. Does the
model extrapolate well?

Exercise 9.22. Fit a boosted trees model to the seeds data from Section 4.9, using
Variety as the response variable and Kernel_length and Compactness as explana-
tory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they
seem reasonable to you?

9.5.4 Model trees
A downside to all the tree-based models that we’ve seen so far is their inability to
extrapolate when the explanatory variables of a new observation are outside the range
in the training data. You’ve seen this e.g. in Exercise 9.15. Methods based on model
trees solve this problem by fitting e.g. a linear model in each leaf node of the decision
tree. Ordinary decision trees fit regression models that are piecewise constant, while
model trees utilising linear regression fit regression models that are piecewise linear.

The model trees that we’ll now have a look at aren’t available in caret, meaning
that we can’t use its functions for evaluating models using cross-validations. We can
however still perform cross-validation using a for loop, as we did in the beginning of
Section 9.1.3. Model trees are available through the partykit package, which we’ll
install next. We’ll also install ggparty, which contains tools for creating good-looking
plots of model trees:
install.packages(c("partykit", "ggparty"))

The model trees in partykit differ from classical decision tress not only in how the
nodes are treated, but also in how the splits are determined; see Zeileis et al. (2008)
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for details. To illustrate their use, we’ll return to the estates data. The model
formula for model trees has two parts. The first specifies the response variable and
what variables to use for the linear models in the nodes, and the second part specifies
what variables to use for the splits. In our example, we’ll use living_area as the sole
explanatory variable in our linear models, and location, build_year, tax_value,
and plot_area for the splits (in this particular example, there is no overlap between
the variables used for the linear models and the variables used for the splits, but its
perfectly fine to have an overlap if you like!).

As in Section 9.5.1, we set file_path to the path to estates.xlsx and import and
clean the data. We can then fit a model tree with linear regressions in the nodes
using lmtree:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

# Make location a factor variable:
estates$location <- factor(estates$location)

# Fit model tree:
library(partykit)
m <- lmtree(selling_price ~ living_area | location + build_year +

tax_value + plot_area,
data = estates)

Next, we plot the resulting tree - make sure that you enlarge your Plot panel so that
you can see the linear models fitted in each node:
library(ggparty)
autoplot(m)

By adding additional arguments to lmtree, we can control e.g. the amount of pruning.
You can find a list of all the available arguments by having a look at ?mob_control.
To do automated likelihood-based pruning, we can use prune = "AIC" or prune =
"BIC", which yields a slightly shorter tree:
m <- lmtree(selling_price ~ living_area | location + build_year +

tax_value + plot_area,
data = estates,
prune = "BIC")

autoplot(m)

As per usual, we can use predict to make predictions from our model. Similarly
to how we used lmtree above, we can use glmtree to fit a logistic regression in
each node, which can be useful for classification problems. We can also fit Poisson



9.5. MACHINE LEARNING MODELS 395

regressions in the nodes using glmtree, creating more flexible Poisson regression
models. For more information on how you can control how model trees are plotted
using ggparty, have a look at vignette("ggparty-graphic-partying").

∼

Exercise 9.23. In this exercise, you will fit model trees to the bacteria.csv data
to see how OD changes with Time.

1. Fit a model tree and a decision tree, using the data from observations 45 to 90
of the data frame, as in the example in Section 9.3.3. Then make predictions
for all observations in the dataset. Plot the actual OD values along with your
predictions. Do the models extrapolate well?

2. Now, fit a model tree and a decision tree using the data from observations 20
to 120 of the data frame. Then make predictions for all observations in the
dataset. Does this improve the models’ ability to extrapolate?

9.5.5 Discriminant analysis
In linear discriminant analysis (LDA), prior knowledge about how common different
classes are is used to classify new observations using Bayes’ theorem. It relies on
the assumption that the data from each class is generated by a multivariate normal
distribution, and that all classes share a common covariance matrix. The resulting
decision boundary is a hyperplane.

As part of fitting the model, LDA creates linear combinations of the explanatory
variables, which are used for separating different classes. These can be used both for
classification and as a supervised alternative to principal components analysis (PCA,
Section 4.9).

LDA does not require any tuning. It does however allow you to specify prior class
probabilities if you like, using the prior argument, allowing for Bayesian classifica-
tion. If you don’t provide a prior, the class proportions in the training data will be
used instead. Here is an example using the wine data from Section 9.1.7:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

# Without the use of a prior:
# Prior probability of a red wine is 0.25 (i.e. the
# proportion of red wines in the dataset).
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m_no_prior <- train(type ~ pH + alcohol + fixed.acidity +
residual.sugar,

data = wine,
trControl = tc,
method = "lda",
metric = "ROC")

# With a prior:
# Prior probability of a red wine is set to be 0.5.
m_with_prior <- train(type ~ pH + alcohol + fixed.acidity +

residual.sugar,
data = wine,
trControl = tc,
method = "lda",
metric = "ROC",
prior = c(0.5, 0.5))

m_no_prior
m_with_prior

As I mentioned, LDA can also be used as an alternative to PCA, which we studied
in Section 4.9. Let’s have a look at the seeds data that the we used in that section:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

When caret fits an LDA, it uses the lda function from the MASS package, which
uses the same syntax as lm. If we use lda directly, without involving caret, we can
extract the scores (linear combinations of variables) for all observations. We can then
plot these, to get something similar to a plot of the first two principal components.
There is a difference though - PCA seeks to create new variables that summarise
as much as possible of the variation in the data, whereas LDA seeks to create new
variables that can be used to discriminate between pre-specified groups.
# Run an LDA:
library(MASS)
m <- lda(Variety ~ ., data = seeds)

# Save the LDA scores:
lda_preds <- data.frame(Type = seeds$Variety,
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Score = predict(m)$x)
View(lda_preds)
# There are 3 varieties of seeds. LDA creates 1 less new variable
# than the number of categories - so 2 in this case. We can
# therefore visualise these using a simple scatterplot.

# Plot the two LDA scores for each observation to get a visual
# representation of the data:
library(ggplot2)
ggplot(lda_preds, aes(Score.LD1, Score.LD2, colour = Type)) +

geom_point()

∼

Exercise 9.24. An alternative to linear discriminant analysis is quadratic discrimi-
nant analysis (QDA). This is closely related to LDA, the difference being that we no
longer assume that the classes have equal covariance matrices. The resulting decision
boundaries are quadratic (i.e. non-linear). Run a QDA on the wine data, by using
method = "qda" in train.

Exercise 9.25. Fit an LDA classifier and a QDA classifier to the seeds data
from Section 4.9, using Variety as the response variable and Kernel_length and
Compactness as explanatory variables. Plot the resulting decision boundaries, as in
Section 9.1.8. Do they seem reasonable to you?

Exercise 9.26. An even more flexible version of discriminant analysis is MDA, mix-
ture discriminant analysis, which uses normal mixture distributions for classification.
That way, we no longer have to rely on the assumption of normality. It is available
through the mda package, and can be used in train with ‘method = "mda". Fit an
MDA classifier to the seeds data from Section 4.9, using Variety as the response
variable and Kernel_length and Compactness as explanatory variables. Plot the
resulting decision boundaries, as in Section 9.1.8. Do they seem reasonable to you?

9.5.6 Support vector machines
Support vector machines, SVM, is a flexible class of methods for classification and
regression. Like LDA, they rely on hyperplanes to separate classes. Unlike LDA
however, more weight is put to points close to the border between classes. Moreover,
the data is projected into a higher-dimensional space, with the intention of creating a
projection that yields a good separation between classes. Several different projection
methods can be used, typically represented by kernels - functions that measure the
inner product in these high-dimensional spaces.
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Despite the fancy mathematics, using SVM’s is not that difficult. With caret, we
can fit many SVM’s with many different types of kernels using the kernlab package.
Let’s install it:
install.packages("kernlab")

The simplest SVM uses a linear kernel, creating a linear classification that is reminis-
cent of LDA. Let’s look at an example using the wine data from Section 9.1.7. The
parameter 𝐶 is a regularisation parameter:
library(caret)
tc <- trainControl(method = "cv",

number = 10,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
trControl = tc,
method = "svmLinear",
tuneGrid = expand.grid(C = c(0.5, 1, 2)),
metric = "ROC")

There are a number of other nonlinear kernels that can be used, with different hyper-
parameters that can be tuned. Without going into details about the different kernels,
some important examples are:

• method = "svmPoly: polynomial kernel. The tuning parameters are degree
(the polynomial degree, e.g. 3 for a cubic polynomial), scale (scale) and C
(regularisation).

• method = "svmRadialCost: radial basis/Gaussian kernel. The only tuning
parameter is C (regularisation).

• method = "svmRadialSigma: radial basis/Gaussian kernel with tuning of 𝜎.
The tuning parameters are C (regularisation) and sigma (𝜎).

• method = "svmSpectrumString: spectrum string kernel. The tuning parame-
ters are C (regularisation) and length (length).

∼

Exercise 9.27. Fit an SVM to the wine data, using all variables (except type) as
explanatory variables, using a kernel of your choice. Evaluate its performance using
repeated 10-fold cross-validation. What is the best 𝐴𝑈𝐶 that you can get by tuning
the model parameters?
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Exercise 9.28. In this exercise, you will SVM regression models to the
bacteria.csv data to see how OD changes with Time.

1. Fit an SVM, using the data from observations 45 to 90 of the data frame, as
in the example in Section 9.3.3. Then make predictions for all observations in
the dataset. Plot the actual OD values along with your predictions. Does the
model extrapolate well?

2. Now, fit an SVM using the data from observations 20 to 120 of the data frame.
Then make predictions for all observations in the dataset. Does this improve
the model’s ability to extrapolate?

Exercise 9.29. Fit SVM classifiers with different kernels to the seeds data
from Section 4.9, using Variety as the response variable and Kernel_length and
Compactness as explanatory variables. Plot the resulting decision boundaries, as in
Section 9.1.8. Do they seem reasonable to you?

9.5.7 Nearest neighbours classifiers
In classification problems with numeric explanatory variables, a natural approach
to finding the class of a new observation is to look at the classes of neighbouring
observations, i.e. of observations that are “close” to it in some sense. This requires a
distance measure, to measure how close observations are. A kNN classifier classifies
the new observations by letting the 𝑘 Nearest Neighbours – the 𝑘 points that are
the closest to the observation – ”vote” about the class of the new observation. As
an example, if 𝑘 = 3, two of the three closest neighbours belong to class A, and one
of the three closest neighbours belongs to class B, then the new observation will be
classified as A. If we like, we can also use the proportion of different classes among
the nearest neighbours to get predicted probabilities of the classes (in our example:
2/3 for A, 1/3 for B).

What makes kNN appealing is that it doesn’t require a complicated model - instead,
we simply compare observations to each other. A major downside is that we have
to compute the distance between each new observations and all observations in the
training data, which can be time-consuming if you have large datasets. Moreover, we
consequently have to store the training data indefinitely, as it is used each time we
use the model for prediction. This can cause problems e.g. if the data are of a kind
that falls under the European GDPR regulation, which limits how long data can be
stored, and for what purpose.

A common choice of distance measure, which is the default when we set method
= "knn" in train, is the common Euclidean distance. We need to take care to
standardise our variables before using it, as variables with a high variance otherwise
automatically will contribute more to the Euclidean distance. Unlike in regularised
regression, caret does not do this for us. Instead, we must provide the argument
preProcess = c("center", "scale") to train.
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An important choice in kNN is what value to use for the parameter 𝑘. If 𝑘 is too small,
we use too little information, and if 𝑘 is to large, the classifier will become prone to
classify all observations as belonging to the most common class in the training data.
𝑘 is usually chosen using cross-validation or bootstrapping. To have caret find a
good choice of 𝑘 for us (like we did with 𝜆 in regularised regression models), we use
the argument tuneLength in train, e.g. tuneLength = 15 to try 15 different values
of 𝑘.
By now, I think you’ve seen enough examples of how to fit models in caret that you
can figure out how to fit a model with knn on your own (using the information above,
of course). In the next exercise, you will give kNN a go, using the wine data.

∼

Exercise 9.30. Fit a kNN classification model to the wine data, using pH, alcohol,
fixed.acidity, and residual.sugar as explanatory variables. Evaluate its perfor-
mance using 10-fold cross-validation, using 𝐴𝑈𝐶 to choose the best 𝑘. Is it better
than the logistic regression models that you fitted in Exercise 9.5?

Exercise 9.31. Fit a kNN classifier to the seeds data from Section 4.9, using
Variety as the response variable and Kernel_length and Compactness as explana-
tory variables. Plot the resulting decision boundaries, as in Section 9.1.8. Do they
seem reasonable to you?

9.6 Forecasting time series
A time series, like those we studied in Section 4.6, is a series of observations sorted
in time order. The goal of time series analysis is to model temporal patterns in data.
This allows us to take correlations between observations into account (today’s stock
prices are correlated to yesterday’s), to capture seasonal patterns (ice cream sales
always increase during the summer), and to incorporate those into predictions, or
forecasts, for the future. This section acts as a brief introduction to how this can be
done.

9.6.1 Decomposition
In Section 4.6.5 we saw how time series can be decomposed into three components:

• A seasonal component, describing recurring seasonal patterns,
• A trend component, describing a trend over time,
• A remainder component, describing random variation.

Let’s have a quick look at how to do this in R, using the a10 data from fpp2:
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library(forecast)
library(ggplot2)
library(fpp2)
?a10
autoplot(a10)

The stl function uses repeated LOESS smoothing to decompose the series. The
s.window parameter lets us set the length of the season in the data. We can set it
to "periodic" to have stl find the periodicity of the data automatically:
autoplot(stl(a10, s.window = "periodic"))

We can access the different parts of the decomposition as follows:
a10_stl <- stl(a10, s.window = "periodic")
a10_stl$time.series[,"seasonal"]
a10_stl$time.series[,"trend"]
a10_stl$time.series[,"remainder"]

When modelling time series data, we usually want to remove the seasonal component,
as it makes the data structure too complicated. We can then add it back when we
use the model for forecasting. We’ll see how to do that in the following sections.

9.6.2 Forecasting using ARIMA models
The forecast package contains a large number of useful methods for fitting time
series models. Among them is auto.arima which can be used to fit autoregressive
integrated moving average (ARIMA) models to time series data. ARIMA models
are a flexible class of models that can capture many different types of temporal
correlations and patterns. auto.arima helps us select a model that seems appropriate
based on historical data, using an in-sample criterion, a version of 𝐴𝐼𝐶, for model
selection.

stlm can be used to fit a model after removing the seasonal component, and then
automatically add it back again when using it for a forecast. The modelfunction
argument lets us specify what model to fit. Let’s use auto.arima for model fitting
through stlm:
library(forecast)
library(fpp2)

# Fit the model after removing the seasonal component:
tsmod <- stlm(a10, s.window = "periodic", modelfunction = auto.arima)

For model diagnostics, we can use checkresiduals to check whether the residuals
from the model look like white noise (i.e. look normal):
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# Check model diagnostics:
checkresiduals(tsmod)

In this case, the variance of the series seems to increase with time, which the model
fails to capture. We therefore see more large residuals than what is expected under
the model.

Nevertheless, let’s see how we can make a forecast for the next 24 months. The
function for this is the aptly named forecast:
# Plot the forecast (with the seasonal component added back)
# for the next 24 months:
forecast(tsmod, h = 24)

# Plot the forecast along with the original data:
autoplot(forecast(tsmod, h = 24))

In addition to the forecasted curve, forecast also provides prediction intervals. By
default, these are based on an asymptotic approximation. To obtain bootstrap pre-
diction intervals instead, we can add bootstrap = TRUE to forecast:
autoplot(forecast(tsmod, h = 24, bootstrap = TRUE))

The forecast package is designed to work well with pipes. To fit a model using
stlm and auto.arima and then plot the forecast, we could have used:
a10 %>% stlm(s.window = "periodic", modelfunction = auto.arima) %>%

forecast(h = 24, bootstrap = TRUE) %>% autoplot()

It is also possible to incorporate seasonal effects into ARIMA models by adding
seasonal terms to the model. auto.arima will do this for us if we apply it directly
to the data:
a10 %>% auto.arima() %>%

forecast(h = 24, bootstrap = TRUE) %>% autoplot()

For this data, the forecasts from the two approaches are very similar.

In Section 9.3 we mentioned that a common reason for predictive models failing
in practical applications is that many processes are non-stationary, so that their
patterns change over time. ARIMA model are designed to handle some types of non-
stationary, which can make them particularly useful for modelling such processes.

∼

Exercise 9.32. Return to the writing dataset from the fma package, that we stud-
ied in Exercise 4.15. Remove the seasonal component. Fit an ARIMA model to the
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data and use it plot a forecast for the next three years, with the seasonal component
added back and with bootstrap prediction intervals.

9.7 Deploying models
The process of making a prediction model available to other users or systems, for
instance by running them on a server, is known as deployment. In addition to the
need for continuous model evaluation, mentioned in Section 9.3.6, you will also need
to check that your R code works as intended in the environment in which you deploy
your model. For instance, if you developed your model using R 4.1 and then run it
on a server running R 3.6 with out-of-date versions of the packages you used, there
is a risk that some of the functions that you use behave differently from what you
expected. Maybe something that should be a factor variable becomes a character
variable, which breaks that part of your code where you use levels. A lot of the
time, small changes are enough to make the code work in the new environment (add
a line that converts the variable to a factor), but sometimes large changes can be
needed. Likewise, you must check that the model still works after the software is
updated on the server.

9.7.1 Creating APIs with plumber
An Application Programming Interface (API) is an interface that lets other systems
access your R code - which is exactly what you want when you’re ready to deploy
your model. By using the plumber package to create an API (or a REST API, to
be more specific), you can let other systems (a web page, a Java script, a Python
script, and so on) access your model. Those systems can call your model, sending
some input, and then receive its output in different formats, e.g. a JSON list, a csv
file, or an image.

We’ll illustrate how this works with a simple example. First, let’s install plumber:
install.packages("plumber")

Next, assume that we’ve fitted a model (we’ll use the linear regression model for
mtcars that we’ve used several times before). We can use this model to make pre-
dictions:
m <- lm(mpg ~ hp + wt, data = mtcars)

predict(m, newdata = data.frame(hp = 150, wt = 2))

We would like to make these predictions available to other systems. That is, we’d like
to allow other systems to send values of hp and wt to our model, and get predictions
in return. To do so, we start by writing a function for the predictions:
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m <- lm(mpg ~ hp + wt, data = mtcars)

predictions <- function(hp, wt)
{

predict(m, newdata = data.frame(hp = hp, wt = wt))
}

predictions(150, 2)

To make this accessible to other systems, we save this function in a script called
mtcarsAPI.R (make sure to save it in your working directory), which looks as follows:
# Fit the model:
m <- lm(mpg ~ hp + wt, data = mtcars)

#* Return the prediction:
#* @param hp
#* @param wt
#* @post /predictions
function(hp, wt)
{

predict(m, newdata = data.frame(hp = as.numeric(hp),
wt = as.numeric(wt)))

}

The only changes that we have made are some additional special comments (#*),
which specify what input is expected (parameters hp and wt) and that the function is
called predictions. plumber uses this information to create the API. The functions
made available in an API are referred to as endpoints.

To make the function available to other systems, we run pr as follows:
library(plumber)
pr("mtcarsAPI.R") %>% pr_run(port = 8000)

The function will now be available on port 8000 of your computer. To access it, you
can open your browser and go to the following URL:

• http://localhost:8000/predictions?hp=150&wt=2

Try changing the values of hp and wt and see how the returned value changes.

That’s it! As long as you leave your R session running with plumber, other systems
will be able to access the model using the URL. Typically, you would run this on a
server and not on your personal computer.
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9.7.2 Different types of output
You won’t always want to return a number. Maybe you want to use R to create a
plot, send a file, or print some text. Here is an example of an R script, which we’ll
save as exampleAPI.R, that returns different types of output - an image, a text, and
a downloadable csv file:
#* Plot some random numbers
#* param n The number of points to plot
#* @serializer png
#* @get /plot
function(n = 15) {
x <- rnorm(as.numeric(n))
y <- rnorm(as.numeric(n))
plot(x, y, col = 2, pch = 16)

}

#* Print a message
#* @param name Your name
#* @get /message
function(name = "") {
list(message = paste("Hello", name, "- I'm happy to see you!"))

}

#* Download the mtcars data as a csv file
#* @serializer csv
#* @get /download
function() {
mtcars

}

After you’ve saved the file in your working directory, run the following to create the
API:
library(plumber)
pr("mtcarsAPI.R") %>% pr_run(port = 8000)

You can now try the different endpoints:

• http://localhost:8000/plot
• http://localhost:8000/plot?n=50
• http://localhost:8000/message?name=Oskar
• http://localhost:8000/download

We’ve only scratched the surface of plumber:s capabilities here. A more thorough
guide can be found on the official plumber web page at https://www.rplumber.io/

https://www.rplumber.io/
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Chapter 10

Advanced topics

This chapter contains brief descriptions of more advanced uses of R. First, we cover
more details surrounding packages. We then deal with two topics that are important
for computational speed: parallelisation and matrix operations. Finally, there are
some tips for how to play well with others (which in this case means using R in
combination with programming languages like Python and C++).

After reading this chapter, you will know how to:

• Update and remove R packages,
• Install R packages from other repositories than CRAN,
• Run computations in parallel,
• Perform matrix computations using R,
• Integrate R with other programming languages.

10.1 More on packages
10.1.1 Loading and auto-installing packages
The best way to load R packages is usually to use library, as we’ve done in the
examples in this book. If the package that you’re trying to load isn’t installed, this
will return an error message:
library("theWrongPackageName")

Alternatively, you can use require to load packages. This will only display a warning,
but won’t cause your code to stop executing, which usually would be a problem if
the rest of the code depends on the package1!

1And why else would you load it…?

407
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However, require also returns a logical: TRUE if the package is installed, and FALSE
otherwise. This is useful if you want to load a package, and automatically install it
if it doesn’t exist.

To load the beepr package, and install it if it doesn’t already exist, we can use
require inside an if condition, as in the code chunk below. If the package exists,
the package will be loaded (by require) and TRUE will be returned, and otherwise
FALSE will be returned. By using ! to turn FALSE into TRUE and vice versa, we can
make R install the package if it is missing:
if(!require("beepr")) { install.packages("beepr"); library(beepr) }
beep(4)

10.1.2 Updating R and your packages
You can download new versions of R and RStudio following the same steps as in Sec-
tion 2.1. On Windows, you can have multiple versions of R installed simultaneously.

To update a specific R package, you can use install.packages. For instance, to
update the beepr package, you’d run:
install.packages("beepr")

If you make a major update of R, you may have to update most or all of your packages.
To update all your packages, you simply run update.packages(). If this fails, you
can try the following instead:
pkgs <- installed.packages()
pkgs <- pkgs[is.na(pkgs[, "Priority"]), 1]
install.packages(pkgs)

10.1.3 Alternative repositories
In addition to CRAN, two important sources for R packages are Bioconductor, which
contains a large number of packages for bioinformatics, and GitHub, where many de-
velopers post development versions of their R packages (which often contain functions
and features not yet included in the version of the package that has been posted on
CRAN).

To install packages from GitHub, you need the devtools package. You can install
it using:
install.packages("devtools")

If you for instance want to install the development version of dplyr (which you can
find at https://github.com/tidyverse/dplyr), you can then run the following:

https://github.com/tidyverse/dplyr
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library(devtools)
install_github("tidyverse/dplyr")

Using development versions of packages can be great, because it gives you the most
up-to-date version of packages. Bear in mind that they are development versions
though, which means that they can be less stable and have more bugs.

To install packages from Bioconductor, you can start by running this code chunk,
which installs the BiocManager package that is used to install Bioconductor packages:
install.packages("BiocManager")
# Install core packages:
library(BiocManager)
install()

You can have a look at the list of packages at

https://www.bioconductor.org/packages/release/BiocViews.html#___Software

If you for instance find the affyio package interesting, you can then install it using:
library(BiocManager)
install("affyio")

10.1.4 Removing packages
This is probably not something that you’ll find yourself doing often, but if you need to
uninstall a package, you can do so using remove.packages. Perhaps you’ve installed
the development version of a package and want to remove it, so that you can install
the stable version again? If you for instance want to uninstall the beepr package2,
you’d run the following:
remove.packages("beepr")

10.2 Speeding up computations with parallelisation
Modern computers have CPU’s with multiple cores and threads, which allows us to
speed up computations by performing them in parallel. Some functions in R do this
by default, but far from all do. In this section, we’ll have a look at how to run parallel
versions of for loops and functionals.

10.2.1 Parallelising for loops
First, we’ll have a look at how to parallelise a for loop. We’ll use the foreach,
parallel, and doParallel packages, so let’s install them if you haven’t already:

2Why though?!

https://www.bioconductor.org/packages/release/BiocViews.html#___Software
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install.packages(c("foreach", "parallel", "doParallel"))

To see how many cores that are available on your machine, you can use detectCores:
library(parallel)
detectCores()

It is unwise to use all available cores for your parallel computation - you’ll always
need to reserve at least one for running RStudio and other applications.

To run the steps of a for loop in parallel, we must first use registerDoParallel
to register the parallel backend to be used. Here is an example where we create 3
workers (and so use 3 cores in parallel3) using registerDoParallel. When we then
use foreach to create a for loop, these three workers will execute different steps of
the loop in parallel. Note that this wouldn’t work if each step of the loop depended
on output from the previous step. foreach returns the output created at the end of
each step of the loop in a list (Section 5.2):
library(doParallel)
registerDoParallel(3)

loop_output <- foreach(i = 1:9) %dopar%
{

i^2
}

loop_output
unlist(loop_output) # Convert the list to a vector

If the output created at the end of each iteration is a vector, we can collect the output
in a matrix object as follows:
library(doParallel)
registerDoParallel(3)

loop_output <- foreach(i = 1:9) %dopar%
{

c(i, i^2)
}

loop_output
matrix(unlist(loop_output), 9, 2, byrow = TRUE)

If you have nested loops, you should run the outer loop in parallel, but not the inner
loops. The reason for this is that parallelisation only really helps if each step of the

3If your CPU has 3 or fewer cores, you should lower this number.
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loop takes a comparatively long time to run. In fact, there is a small overhead cost
associated with assigning different iterations to different cores, meaning that parallel
loops can be slower than regular loops if each iteration runs quickly.

An example where each step often takes a while to run is simulation studies. Let’s
rewrite the simulation we used to compute the type I error rates of different versions
of the t-test in Section 7.5.2 using a parallel for loop instead. First, we define the
function as in Section 7.5.2 (minus the progress bar):
# Load package used for permutation t-test:
library(MKinfer)

# Create a function for running the simulation:
simulate_type_I <- function(n1, n2, distr, level = 0.05, B = 999,

alternative = "two.sided", ...)
{

# Create a data frame to store the results in:
p_values <- data.frame(p_t_test = rep(NA, B),

p_perm_t_test = rep(NA, B),
p_wilcoxon = rep(NA, B))

for(i in 1:B)
{

# Generate data:
x <- distr(n1, ...)
y <- distr(n2, ...)

# Compute p-values:
p_values[i, 1] <- t.test(x, y,

alternative = alternative)$p.value
p_values[i, 2] <- perm.t.test(x, y,

alternative = alternative,
R = 999)$perm.p.value

p_values[i, 3] <- wilcox.test(x, y,
alternative = alternative)$p.value

}

# Return the type I error rates:
return(colMeans(p_values < level))

}

Next, we create a parallel version:
# Register parallel backend:
library(doParallel)
registerDoParallel(3)
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# Create a function for running the simulation in parallel:
simulate_type_I_parallel <- function(n1, n2, distr, level = 0.05,

B = 999,
alternative = "two.sided", ...)

{

results <- foreach(i = 1:B) %dopar%
{

# Generate data:
x <- distr(n1, ...)
y <- distr(n2, ...)

# Compute p-values:
p_val1 <- t.test(x, y,

alternative = alternative)$p.value
p_val2 <- perm.t.test(x, y,

alternative = alternative,
R = 999)$perm.p.value

p_val3 <- wilcox.test(x, y,
alternative = alternative)$p.value

# Return vector with p-values:
c(p_val1, p_val2, p_val3)

}

# Each element of the results list is now a vector
# with three elements.
# Turn the list into a matrix:
p_values <- matrix(unlist(results), B, 3, byrow = TRUE)

# Return the type I error rates:
return(colMeans(p_values < level))

}

We can now compare how long the two functions take to run using the tools from
Section 6.6 (we’ll not use mark in this case, as it requires both functions to yield
identical output, which won’t be the case for a simulation):
time1 <- system.time(simulate_type_I(20, 20, rlnorm,

B = 999, sdlog = 3))
time2 <- system.time(simulate_type_I_parallel(20, 20, rlnorm,

B = 999, sdlog = 3))

# Compare results:
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time1; time2; time2/time1

As you can see, the parallel function is considerably faster. If you have more cores,
you can try increasing the value in registerDoParallel and see how that affects
the results.

10.2.2 Parallelising functionals
The parallel package contains parallelised versions of the apply family of functions,
with names like parApply, parLapply, and mclapply. Which of these that you
should use depends in part on your operating system, as different operating systems
handle multicore computations differently. Here is the first example from Section
6.5.3, run in parallel with 3 workers:
# Non-parallel version:
lapply(airquality, function(x) { (x-mean(x))/sd(x) })

# Parallel version for Linux/Mac:
library(parallel)
mclapply(airquality, function(x) { (x-mean(x))/sd(x) },

mc.cores = 3)

# Parallel version for Windows (a little slower):
library(parallel)
myCluster <- makeCluster(3)
parLapply(myCluster, airquality, function(x) { (x-mean(x))/sd(x) })
stopCluster(myCluster)

Similarly, the furrr package lets just run purrr-functionals in parallel. It relies on
a package called future. Let’s install them both:
install.packages(c("future", "furrr"))

To run functionals in parallel, we load the furrr package and use plan to set the
number of parallel workers:
library(furrr)
# Use 3 workers:
plan(multisession, workers = 3)

We can then run parallel versions of functions like map and imap, by using functions
from furrr with the same names, only with future_ added at the beginning. Here
is the first example from Section 6.5.3, run in parallel:
library(magrittr)
airquality %>% future_map(~(.-mean(.))/sd(.))
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Just as for for loops, parallelisation of functionals only really helps if each iteration
of the functional takes a comparatively long time to run (and so there is no benefit
to using parallelisation in this particular example).

10.3 Linear algebra and matrices
Linear algebra is the beating heart of many statistical methods. R has a wide range
of functions for creating and manipulating matrices, and doing matrix algebra. In
this section, we’ll have a look at some of them.

10.3.1 Creating matrices
To create a matrix object, we can use the matrix function. It always coerces all
elements to be of the same type (Section 5.1):
# Create a 3x2 matrix, one column at a time:
matrix(c(2, -1, 3, 1, -2, 4), 3, 2)

# Create a 3x2 matrix, one row at a time:
# (No real need to include line breaks in the vector with
# the values, but I like to do so to see what the matrix
# will look like!)
matrix(c(2, -1,

3, 1,
-2, 4), 3, 2, byrow = TRUE)

Matrix operations require the dimension of the matrices involved to match. To check
the dimension of a matrix, we can use dim:
A <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2)
dim(A)

To create a unit matrix (all 1’s) or a zero matrix (all 0’s), we use matrix with a
single value in the first argument:
# Create a 3x3 unit matrix:
matrix(1, 3, 3)

# Create a 2x3 zero matrix:
matrix(0, 2, 3)

The diag function has three uses. First, it can be used to create a diagonal matrix
(if we supply a vector as input). Second, it can be used to create an identity matrix
(if we supply a single number as input). Third, it can be used to extract the diagonal
from a square matrix (if we supply a matrix as input). Let’s give it a go:
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# Create a diagonal matrix with 2, 4, 6 along the diagonal:
diag(c(2, 4, 6))

# Create a 9x9 identity matrix:
diag(9)

# Create a square matrix and then extract its diagonal:
A <- matrix(1:9, 3, 3)
A
diag(A)

Similarly, we can use lower.tri and upper.tri to extract a matrix of logical
values, describing the location of the lower and upper triangular part of a matrix:
# Create a matrix_
A <- matrix(1:9, 3, 3)
A

# Which are the elements in the lower triangular part?
lower.tri(A)
A[lower.tri(A)]

# Set the lower triangular part to 0:
A[lower.tri(A)] <- 0
A

To transpose a matrix, use t:
t(A)

Matrices can be combined using cbind and rbind:
A <- matrix(c(1:3, 3:1, 2, 1, 3), 3, 3, byrow = TRUE) # 3x3
B <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2) # 3x2

# Add B to the right of A:
cbind(A, B)

# Add the transpose of B below A:
rbind(A, t(B))

# Adding B below A doesn't work, because the dimensions
# don't match:
rbind(A, B)
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10.3.2 Sparse matrices
The Matrix package contains functions for creating and speeding up computations
with sparse matrices (i.e. matrices with lots of 0’s), as well as for creating matri-
ces with particular structures. You likely already have it installed, as many other
packages rely on it. Matrix distinguishes between sparse and dense matrices:
# Load or/and install Matrix:
if(!require("Matrix")) { install.packages("Matrix"); library(Matrix) }

# Create a dense 8x8 matrix using the Matrix package:
A <- Matrix(1:64, 8, 8)

# Create a copy and randomly replace 40 elements by 0:
B <- A
B[sample(1:64, 40)] <- 0
B

# Store B as a sparse matrix instead:
B <- as(B, "sparseMatrix")
B

To visualise the structure of a sparse matrix, we can use image:
image(B)

An example of a slightly larger, 72 × 72 sparse matrix is given by CAex:
data(CAex)
CAex
image(CAex)

Matrix contains additional classes for e.g. symmetric sparse matrices and triangular
matrices. See vignette("Introduction", "Matrix") for further details.

10.3.3 Matrix operations
In this section, we’ll use the following matrices and vectors to show how to perform
various matrix operations:
# Matrices:
A <- matrix(c(1:3, 3:1, 2, 1, 3), 3, 3, byrow = TRUE) # 3x3
B <- matrix(c(2, -1, 3, 1, -2, 4), 3, 2) # 3x2
C <- matrix(c(4, 1, 1, 2), 2, 2) # Symmetric 2x2

# Vectors:
a <- 1:9 # Length 9



10.3. LINEAR ALGEBRA AND MATRICES 417

b <- c(2, -1, 3, 1, -2, 4) # Length 6
d <- 9:1 # Length 9
y <- 4:6 # Length 3

To perform element-wise addition and subtraction with matrices, use + and -:
A + A
A - t(A)

To perform element-wise multiplication, use *:
2 * A # Multiply all elements by 2
A * A # Square all elements

To perform matrix multiplication, use %*%. Remember that matrix multiplication is
non-commutative, and so the order of the matrices is important:
A %*% B # A is 3x3, B is 3x2
B %*% C # B is 3x2, C is 2x2
B %*% A # Won't work, because B is 3x2 and A 3x3!

Given the vectors a, b, and d defined above, we can compute the outer product 𝑎 ⊗ 𝑏
using %o% and the dot product 𝑎 ⋅ 𝑑 by using %*% and t in the right manner:
a %o% b # Outer product
a %*% t(b) # Alternative way of getting the outer product
t(a) %*% d # Dot product

To find the inverse of a square matrix, we can use solve. To find the generalised
Moore-Penrose inverse of any matrix, we can use ginv from MASS:
solve(A)
solve(B) # Doesn't work because B isn't square

library(MASS)
ginv(A) # Same as solve(A), because A is non-singular and square
ginv(B)

solve can also be used to solve equations systems. To solve the equation 𝐴𝑥 = 𝑦:
solve(A, y)

The eigenvalues and eigenvectors of a square matrix can be found using eigen:
eigen(A)
eigen(A)$values # Eigenvalues only
eigen(A)$vectors # Eigenvectors only

The singular value decomposition, QR decomposition, and the Choleski factorisation
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of a matrix are computed as follows:
svd(A)
qr(A)
chol(C)

qr also provides the rank of the matrix:
qr(A)$rank
qr(B)$rank

Finally, you can get the determinant4 of a matrix using det:
det(A)

As a P.S., I’ll also mention the matlab package, which contains functions for running
computations using MATLAB-like function calls. This is useful if you want to reuse
MATLAB code in R without translating it row-by-row. Incidentally, this also brings
us nicely into the next section.

10.4 Integration with other programming lan-
guages

R is great for a lot of things, but it is obviously not the best choice for every task.
There are a number of packages that can be used to harvest the power of other
languages, or to integrate your R code with code that you or others have developed
in other programming languages. In this section, we’ll mention a few of them.

10.4.1 Integration with C++
C++ is commonly used to speed up functions, for instance involving loops
that can’t be vectorised or parallelised due to dependencies between different
iterations. The Rcpp package (Eddelbuettel & Balamuta, 2018) allows you to
easily call C++ functions from R, as well as calling R functions from C++. See
vignette("Rcpp-introduction", "Rcpp") for details.

An important difference between R and C++ that you should be aware of is that the
indexing of vectors (and similar objects) in C++ starts with 0. So the first element
of the vector is element 0, the second is element 1, and so forth. Bear this in mind
if you pass a vector and a list of indices to C++ functions.

10.4.2 Integration with Python
The reticulate package can be used to call Python functions from R. See
vignette("calling_python", "reticulate") for some examples.

4Do you really need it, though?
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Some care has to be taken when sending data back and forth between R and Python.
In R NA is used to represent missing data and NaN (not a number) is used to represent
things that should be numbers but aren’t (e.g. the result of computing 0/0). Perfectly
reasonable! However, for reasons unknown to humanity, popular Python packages
like Pandas, NumPy and SciKit-Learn use NaN instead of NA to represent missing
data - but only for double (numeric) variables. integer and logical variables
have no way to represent missing data in Pandas. Tread gently if there are NA or NaN
values in your data.

Like in C++, the indexing of vectors (and similar objects) in Python starts with 0.

10.4.3 Integration with Tensorflow and PyTorch
Tensorflow, Keras and PyTorch are popular frameworks for deep learning. To use
Tensorflow or Keras with R, you can use the keras package. See vignette("index",
"keras") for an introduction and Chollet & Allaire (2018) for a thorough treatise.
Similarly, to use PyTorch with R, use the torch package. In both cases, it can take
some tampering to get the frameworks to run on a GPU.

10.4.4 Integration with Spark
If you need to process large datasets using Spark, you can do so from R using the
sparklyr package. It can be used both with local and cloud clusters, and (as the
name seems to imply) is easy to integrate with dplyr.
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Chapter 11

Debugging

In Section 2.10, I gave some general advice about what to do when there is an error
in your R code:

1. Read the error message carefully and try to decipher it. Have you seen it
before? Does it point to a particular variable or function? Check Section 11.2
of this book, which deals with common error messages in R.

2. Check your code. Have you misspelt any variable or function names? Are there
missing brackets, strange commas or invalid characters?

3. Copy the error message and do a web search using the message as your search
term. It is more than likely that somebody else has encountered the same
problem, and that you can find a solution to it online. This is a great shortcut
for finding solutions to your problem. In fact, this may well be the single
most important tip in this entire book.

4. Read the documentation for the function causing the error message, and look at
some examples of how to use it (both in the documentation and online, e.g. in
blog posts). Have you used it correctly?

5. Use the debugging tools presented in Chapter 11, or try to simplify the example
that you are working with (e.g. removing parts of the analysis or the data) and
see if that removes the problem.

6. If you still can’t find a solution, post a question at a site like Stack Overflow
or the RStudio community forums. Make sure to post your code and describe
the context in which the error message appears. If at all possible, post a
reproducible example, i.e. a piece of code that others can run, that causes the
error message. This will make it a lot easier for others to help you.
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The debugging tools mentioned in point 5 are an important part of your toolbox,
particularly if you’re doing more advanced programming with R.

In this chapter you will learn how to:

• Debug R code,
• Recognise and resolve common errors in R code,
• Interpret and resolve common warning messages in R.

11.1 Debugging
Debugging is the process of finding and removing bugs in your scripts. R and RStudio
have several functions that can be used for this purpose. We’ll have a closer look at
some of them here.

11.1.1 Find out where the error occured with traceback
If a function returns an error, it is not always clear where exactly the error occurred.
Let’s say that we want to compute the correlation between two variables, but have
forgotten to give the variables values:
cor(variable1, variable2)

The resulting error message is:
> cor(variable1, variable2)
Error in is.data.frame(y) : object 'variable2' not found

Why is the function is.data.frame throwing an error? We were using cor, not
is.data.frame!

Functions often make calls to other functions, which in turn make calls the functions,
and so on. When you get an error message, the error can have taken place in any
one of these functions. To find out in which function the error occurred, you can run
traceback, which shows the sequence of calls that lead to the error:
traceback()

Which in this case will yield the output:
> traceback()
2: is.data.frame(y)
1: cor(variable1, variable2)

What this tells you is that cor makes a call to is.data.frame, and that that is
where the error occurs. This can help you understand why a function that you
weren’t aware that you were calling (is.data.frame in this case) is throwing an
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error, but won’t tell you why there was an error. To find out, you can use debug,
which we’ll discuss next.

As a side note, if you’d like to know why and when cor called is.data.frame you
can print the code for cor in the Console by typing the function name without
parentheses:
cor

Reading the output, you can see that it makes a call to is.data.frame on the 10th
line:
1 function (x, y = NULL, use = "everything", method = c("pearson",
2 "kendall", "spearman"))
3 {
4 na.method <- pmatch(use, c("all.obs", "complete.obs",
5 "pairwise.complete.obs",
6 "everything", "na.or.complete"))
7 if (is.na(na.method))
8 stop("invalid 'use' argument")
9 method <- match.arg(method)
10 if (is.data.frame(y))
11 y <- as.matrix(y)

...

11.1.2 Interactive debugging of functions with debug
If you are looking for an error in a script, you can simply run the script one line at
a time until the error occurs, to find out where the error is. But what if the error is
inside of a function, as in the example above?

Once you know in which function the error occurs, you can have a look inside it
using debug. debug takes a function name as input, and the next time you run that
function, an interactive debugger starts, allowing you to step through the function
one line at a time. That way, you can find out exactly where in the function the
error occurs. We’ll illustrate its use with a custom function:
transform_number <- function(x)
{
square <- x^2
if(x >= 0) { logx <- log(x) } else { stop("x must be positive") }
if(x >= 0) { sqrtx <- sqrt(x) } else { stop("x must be positive") }
return(c(x.squared = square, log = logx, sqrt = sqrtx))

}

The function appears to work just fine:
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transform_number(2)
transform_number(-1)

However, if we input an NA, an error occurs:
transform_number(NA)

We now run debug:
debug(transform_number)
transform_number(NA)

Two things happen. First, a tab with the code for transform_number opens. Second,
a browser is initialised in the Console panel. This allows you to step through the
code, by typing one of the following and pressing Enter:

• n to run the next line,
• c to run the function until it finishes or an error occurs,
• a variable name to see the current value of that variable (useful for checking

that variables have the intended values),
• Q to quit the browser and stop the debugging.

If you either use n a few times, or c, you can see that the error occurs on line number
4 of the function:
if(x >= 0) { logx <- log(x) } else { stop("x must be positive") }

Because this function was so short, you could probably see that already, but for longer
and more complex functions, debug is an excellent way to find out where exactly the
error occurs.

The browser will continue to open for debugging each time transform_number is run.
To turn it off, use undebug:
undebug(transform_number)

11.1.3 Investigate the environment with recover
By default, R prints an error message, returns to the global environment and stops
the execution when an error occurs. You can use recover to change this behaviour
so that R stays in the environment where the error occurred. This allows you to
investigate that environment, e.g. to see if any variables have been assigned the
wrong values.
transform_number(NA)
recover()

This gives you the same list of function calls as traceback (called the function stack),
and you can select which of these that you’d like to investigate (in this case there is
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only one, which you access by writing 1 and pressing Enter). The environment for
that call shows up in the Environment panel, which in this case shows you that the
local variable x has been assigned the value NA (which is what causes an error when
the condition x >= 0 is checked).

11.2 Common error messages
Some errors are more frequent than others. Below is a list of some of the most
common ones, along with explanations of what they mean, and how to resolve them.

11.2.1 +
If there is a + sign at the beginning of the last line in the Console, and it seems that
your code doesn’t run, that is likely due to missing brackets or quotes. Here is an
example where a bracket is missing:
> 1 + 2*(3 + 2
+

Type ) in the Console to finish the expression, and your code will run. The same
problem can occur if a quote is missing:
> myString <- "Good things come in threes
+

Type " in the Console to finish the expression, and your code will run.

11.2.2 could not find function
This error message appears when you try to use a function that doesn’t exist. Here
is an example:
> age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
> means(age)
Error in means(age) : could not find function "means"

This error is either due to a misspelling (in which case you should fix the spelling)
or due to attempting to use a function from a package that hasn’t been loaded (in
which case you should load the package using library(package_name)). If you
are unsure which package the function belongs to, doing a quick web search for “R
function_name” usually does the trick.

11.2.3 object not found
R throws this error message if we attempt to use a variable that does not exist:
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> name_of_a_variable_that_doesnt_exist + 1 * pi^2
Error: object 'name_of_a_variable_that_doesnt_exist' not found

This error may be due to a spelling error, so check the spelling of the variable name.
It is also commonly encountered if you return to an old R script and try to run just
a part of it - if the variable is created on an earlier line that hasn’t been run, R won’t
find it because it hasn’t been created yet.

11.2.4 cannot open the connection and No such file or
directory

This error message appears when you try to load a file that doesn’t exist:
> read.csv("not-a-real-file-name.csv")
Error in file(file, "rt") : cannot open the connection
In addition: Warning message:
In file(file, "rt") :
cannot open file 'not-a-real-file-name.csv': No such file or
directory

Check the spelling of the file name, and that you have given the correct path to it
(see Section 3.3). If you are unsure about the path, you can use
read.csv(file.choose())

to interactively search for the file in question.

11.2.5 invalid 'description' argument

When you try to import data from an Excel file, you can run into error messages
like:
Error in file(con, "r") : invalid 'description' argument
In addition: Warning message:
In unzip(xlsxFile, exdir = xmlDir) : error 1 in extracting from zip file

and
Error: Evaluation error: zip file 'C:\Users\mans\Data\some_file.xlsx' cannot be opened.

These usually appear if you have the file open in Excel at the same time that you’re
trying to import data from it in R. Excel temporarily locks the file so that R can’t
open it. Close Excel and then import the data.
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11.2.6 missing value where TRUE/FALSE needed
This message appears when a condition in a conditional statement evaluates to NA.
Here is an example:
x <- c(8, 5, 9, NA)
for(i in seq_along(x))
{

if(x[i] > 7) { cat(i, "\n") }
}

which yields:
> x <- c(8, 5, 9, NA)
> for(i in seq_along(x))
+ {
+ if(x[i] > 7) { cat(i, "\n") }
+ }
1
3
Error in if (x[i] > 7) { : missing value where TRUE/FALSE needed

The error occurs when i is 4, because the expression x[i] > 7 becomes NA > 7,
which evaluates to NA. if statements require that the condition evaluates to either
TRUE or FALSE. When this error occurs, you should investigate why you get an NA
instead.

11.2.7 unexpected '=' in ...
This message indicates that you have an assignment happening in the wrong place.
You probably meant to use == to check for equality, but accidentally wrote = instead,
as in this example:
x <- c(8, 5, 9, NA)
for(i in seq_along(x))
{

if(x[i] = 5) { cat(i, "\n") }
}

which yields:
> x <- c(8, 5, 9, NA)
> for(i in seq_along(x))
+ {
+ if(x[i] = 5) { cat(i, "\n") }
Error: unexpected '=' in:
"{
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if(x[i] ="
> }
Error: unexpected '}' in "}"

Replace the = by == and your code should run as intended. If you really intended
to assign a value to a variable inside the if condition, you should probably rethink
that.

11.2.8 attempt to apply non-function
This error occurs when you put parentheses after something that isn’t a function. It
is easy to make that mistake e.g. when doing a mathematical computation.
> 1+2(2+3)
Error: attempt to apply non-function

In this case, we need to put a multiplication symbol * between 2 and ( to make the
code run:
> 1+2*(2+3)
[1] 11

11.2.9 undefined columns selected
If you try to select a column that doesn’t exist from a data frame, this message will
be printed. Let’s start by defining an example data frame:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
bookstore <- data.frame(age, purchase)

If we attempt to access the third column of the data, we get the error message:
> bookstore[,3]
Error in `[.data.frame`(bookstore, , 3) : undefined columns selected

Check that you really have the correct column number. It is common to get this
error if you have removed columns from your data.

11.2.10 subscript out of bounds
This error message is similar to the last example above, but occurs if you try to
access the column in another way:
> bookstore[[3]]
Error in .subset2(x, i, exact = exact) : subscript out of bounds
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Check that you really have the correct column number. It is common to get this
error if you have removed columns from your data, or if you are running a for loop
accessing element [i, j] of your data frame, where either i or j is greater than the
number of rows and columns of your data.

11.2.11 Object of type ‘closure’ is not subsettable
This error occurs when you use square brackets [ ] directly after a function:
> x <- c(8, 5, 9, NA)
> sqrt[x]
Error in sqrt[x] : object of type 'closure' is not subsettable

You probably meant to use parentheses ( ) instead. Or perhaps you wanted to use
the square brackets on the object returned by the function:
> sqrt(x)[2]
[1] 2.236068

11.2.12 $ operator is invalid for atomic vectors
This messages is printed when you try to use the $ operator with an object that isn’t
a list or a data frame, for instance with a vector. Even though the elements in a
vector can be named, you cannot access them using $:
> x <- c(a = 2, b = 3)
> x
a b
2 3
> x$a
Error in x$a : $ operator is invalid for atomic vectors

If you need to access the element named a, you can do so using bracket notation:
> x["a"]
a
2

Or use a data frame instead:
> x <- data.frame(a = 2, b = 3)
> x$a
[1] 2

11.2.13 (list) object cannot be coerced to type ‘double’
This error occurs when you try to convert the elements of a list to numeric. First,
we create a list:
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x <- list(a = c("1", "2", "3"),
b = c("1", "4", "1889"))

If we now try to apply as.numeric we get the error:
> as.numeric(x)
Error: 'list' object cannot be coerced to type 'double'

You can apply unlist to collapse the list to a vector:
as.numeric(unlist(x))

You can also use lapply (see Section 6.5):
lapply(x, as.numeric)

11.2.14 arguments imply differing number of rows
This message is printed when you try to create a data frame with different numbers
of rows for different columns, like in this example, where a has 3 rows and b has 4:
> x <- data.frame(a = 1:3, b = 6:9)
Error in data.frame(a = 1:3, b = 6:9) :
arguments imply differing number of rows: 3, 4

If you really need to create an object with different numbers of rows for different
columns, create a list instead:
x <- list(a = 1:3, b = 6:9)

11.2.15 non-numeric argument to a binary operator
This error occurs when you try to use mathematical operators with non-numerical
variables. For instance, it occurs if you try to add character variables:
> "Hello" + "World"
Error in "Hello" + "world" : non-numeric argument to binary operator

If you want to combine character variables, use paste instead:
paste("Hello", "world")

11.2.16 non-numeric argument to mathematical function
This error message is similar the previous one, and appears when you try to apply a
mathematical function, like log or exp to non-numerical variables:
> log("1")
Error in log("1") : non-numeric argument to mathematical function



11.3. COMMON WARNING MESSAGES 431

Make sure that the data you are inputting doesn’t contain character variables.

11.2.17 cannot allocate vector of size ...
This message is shown when you’re trying to create an object that would require more
RAM than is available. You can try to free up RAM by closing other programs and
removing data that you don’t need using rm (see Section 5.14). Also check your code
so that you don’t make copies of your data, which takes up more RAM. Replacing
base R and dplyr code for data wrangling with data.table code can also help, as
data.table uses considerably less RAM for most tasks.

11.2.18 Error in plot.new() : figure margins too large
This error occurs when your Plot panel (or file, if you are saving your plot as a
graphics file) is too small to fit the graphic that you’re trying to create. Enlarge your
Plot panel (or increase the size of the graphics file) and run the code again.

11.2.19 Error in .Call.graphics(C_palette2, .Call(C_palette2,
NULL)) : invalid graphics state

This error can happen when you create plots with ggplot2. You can usually solve
it by running dev.off() to close the previous plot window. In rare cases, you may
have to reinstall ggplot2 (see Section 10.1).

11.3 Common warning messages
11.3.1 replacement has ... rows ...
This occurs when you try to assign values to rows in a data frame, but the object
you are assigning to them has a different number of rows. Here is an example:
> x <- data.frame(a = 1:3, b = 6:8)
> y <- data.frame(a = 4:5, b = 10:11)
> x[3,] <- y
Warning messages:
1: In `[<-.data.frame`(`*tmp*`, 3, , value = list(a = 4:5, b = 10:11)) :
replacement element 1 has 2 rows to replace 1 rows

2: In `[<-.data.frame`(`*tmp*`, 3, , value = list(a = 4:5, b = 10:11)) :
replacement element 2 has 2 rows to replace 1 rows

You can fix this e.g. by changing the numbers of rows to place the data in:
x[3:4,] <- y
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11.3.2 the condition has length > 1 and only the first
element will be used

This warning is thrown when the condition in a conditional statement is a vector
rather than a single value. Here is an example:
> x <- 1:3
> if(x == 2) { cat("Two!") }
Warning message:
In if (x == 2) { :
the condition has length > 1 and only the first element will be used

Only the first element of the vector is used for evaluating the condition. See if you
can change the condition so that it doesn’t evaluate to a vector. If you actually want
to evaluate the condition for all elements of the vector, either collapse it using any
or all or wrap it in a loop:
x <- 1:3
if(any(x == 2)) { cat("Two!") }

for(i in seq_along(x))
{

if(x[i] == 2) { cat("Two!") }
}

11.3.3 number of items to replace is not a multiple of
replacement length

This error occurs when you try to assign too many values to too short a vector. Here
is an example:
> x <- c(8, 5, 9, NA)
> x[4] <- c(5, 7)
Warning message:
In x[4] <- c(5, 7) :
number of items to replace is not a multiple of replacement length

Don’t try to squeeze more values than can fit into a single element! Instead, do
something like this:
x[4:5] <- c(5, 7)

11.3.4 longer object length is not a multiple of shorter
object length

This warning is printed e.g. when you try to add two vectors of different lengths
together. If you add two vectors of equal length, everything is fine:
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a <- c(1, 2, 3)
b <- c(4, 5, 6)
a + b

R does element-wise addition, i.e. adds the first element of a to the first element of
b, and so on.

But what happens if we try to add two vectors of different lengths together?
a <- c(1, 2, 3)
b <- c(4, 5, 6, 7)
a + b

This yields the following warning message:
> a + b
[1] 5 7 9 8
Warning message:
In a + b : longer object length is not a multiple of shorter object length

R recycles the numbers in a in the addition, so that the first element of a is added
to the fourth element of b. Was that really what you wanted? Maybe. But probably
not.

11.3.5 NAs introduced by coercion
This warning is thrown when you try to convert something that cannot be converted
to another data type:
> as.numeric("two")
[1] NA
Warning message:
NAs introduced by coercion

You can try using gsub to manually replace values instead:
x <- c("one", "two")
x <- gsub("one", 1, x)
as.numeric(x)

11.3.6 package is not available (for R version 4.x.x)
This warning message (which perhaps should be an error message rather than a
warning) occurs when you try to install a package that isn’t available for the version
of R that you are using.
> install.packages("great_name_for_a_package")
Installing package into ‘/home/mans/R/x86_64-pc-linux-gnu-library/4.0’



434 CHAPTER 11. DEBUGGING

(as ‘lib’ is unspecified)
Warning in install.packages :
package ‘great_name_for_a_package’ is not available (for R version
4.0.0)

This can be either due to the fact that you’ve misspelt the package name or that the
package isn’t available for your version of R, either because you are using an out-of-
date version or because the package was developed for an older version of R. In the
former case, consider updating to a newer version of R. In the latter case, if you really
need the package you can find and download older version of R at R-project.org - on
Windows it is relatively easy to have multiple version of R installed side-by-side.

11.4 Messages printed when installing ggplot2
Below is an excerpt from the output from when I installed the ggplot2 package
on a fresh install of R 4.0.0, provided here as a reference for what messages can be
expected during a successful installation. The full output covers more than 20 pages.
Parts that have been removed are marked by three points: ...
> install.packages("ggplot2")
Installing package into ‘/home/mans/R/x86_64-pc-linux-gnu-library/4.0’
(as ‘lib’ is unspecified)
also installing the dependencies ‘ps’, ‘processx’, ‘callr’,
‘prettyunits’, ‘backports’, ‘desc’, ‘pkgbuild’, ‘rprojroot’,
‘rstudioapi’, ‘evaluate’, ‘pkgload’, ‘praise’, ‘colorspace’,
‘assertthat’, ‘utf8’, ‘Rcpp’, ‘testthat’, ‘farver’, ‘labeling’,
‘munsell’, ‘R6’, ‘RColorBrewer’, ‘viridisLite’, ‘lifecycle’,
‘cli’, ‘crayon’, ‘ellipsis’, ‘fansi’, ‘magrittr’, ‘pillar’,
‘pkgconfig’, ‘vctrs’, ‘digest’, ‘glue’, ‘gtable’, ‘isoband’,
‘rlang’, ‘scales’, ‘tibble’, ‘withr’

trying URL 'https://cloud.r-project.org/src/contrib/ps_1.3.2.tar.gz'
Content type 'application/x-gzip' length 98761 bytes (96 KB)
==================================================
downloaded 96 KB

trying URL 'https://cloud.r-project.org/src/contrib/processx_3.4.2.tar.
gz'
Content type 'application/x-gzip' length 130148 bytes (127 KB)
==================================================
downloaded 127 KB

trying URL 'https://cloud.r-project.org/src/contrib/callr_3.4.3.tar.gz'
Content type 'application/x-gzip' length 85802 bytes (83 KB)

https://cran.r-project.org/bin/windows/base/old/
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==================================================
downloaded 83 KB

...

trying URL 'https://cloud.r-project.org/src/contrib/ggplot2_3.3.0.tar.gz'
Content type 'application/x-gzip' length 3031461 bytes (2.9 MB)
==================================================
downloaded 2.9 MB

* installing *source* package ‘ps’ ...
** package ‘ps’ successfully unpacked and MD5 sums checked
** using staged installation
** libs
gcc -std=gnu99 -g -O2 -fstack-protector-strong -Wformat -Werror=format-
security-Wdate-time -D_FORTIFY_SOURCE=2 -g -Wall px.c -o px

gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2
-fstack-protector-strong -Wformat -Werror=format-security -Wdate-time
-D_FORTIFY_SOURCE=2
-g -c init.c -o init.o
gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2
-fstack-protector-strong -Wformat -Werror=format-security -Wdate-time
-D_FORTIFY_SOURCE=2
-g -c api-common.c -o api-common.o
gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2
-fstack-protector-strong -Wformat -Werror=format-security -Wdate-time
-D_FORTIFY_SOURCE=2
-g -c common.c -o common.o
gcc -std=gnu99 -I"/usr/share/R/include" -DNDEBUG -fpic -g -O2
-fstack-protector-strong -Wformat -Werror=format-security

...

gcc -std=gnu99 -shared -L/usr/lib/R/lib -Wl,-Bsymbolic-functions -Wl,-z,
relro -o ps.so init.o api-common.o common.o extra.o dummy.o posix.o
api-posix.o linux.o api-linux.o
-L/usr/lib/R/lib -lR
installing via 'install.libs.R' to
/home/mans/R/x86_64-pc-linux-gnu-library/4.0/00LOCK-ps/00new/ps
** R
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
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** building package indices
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation
path
* DONE (ps)

...

* installing *source* package ‘ggplot2’ ...
** package ‘ggplot2’ successfully unpacked and MD5 sums checked
** using staged installation
** R
** data
*** moving datasets to lazyload DB
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
*** copying figures
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation
path
* DONE (ggplot2)

The downloaded source packages are in
‘/tmp/RtmpVck22r/downloaded_packages’

>



Chapter 12

Mathematical appendix

This chapter contains remarks regarding the mathematical background of certain
methods and concepts encountered in Chapters 7-9. Sections 12.2 and 12.3 consist
of reworked materials from Thulin (2014b). Most of this chapter assumes some
familiarity with mathematical statistics, on the level of Casella & Berger (2002) or
Liero & Zwanzig (2012).

12.1 Bootstrap confidence intervals
We wish to construct a confidence interval for a parameter 𝜃 based on a statistic
𝑡. Let 𝑡𝑜𝑏𝑠 be the value of the statistic in the original sample, 𝑡∗

𝑖 be a bootstrap
replicate of the statistic, for 𝑖 = 1, 2, … , 𝐵, and 𝑡∗ be the mean of the statistic among
the bootstrap replicates. Let 𝑠𝑒∗ be the standard error of the bootstrap estimate
and 𝑏∗ = 𝑡∗ − 𝑡𝑜𝑏𝑠 be the bias of the bootstrap estimate. For a confidence level 1 − 𝛼
(𝛼 = 0.05 being a common choice), let 𝑧𝛼/2 be the 1 − 𝛼

2 quantile of the standard
normal distribution (with 𝑧0.025 = 1.9599 …). Moreover, let 𝜃𝛼/2 be the 1− 𝛼

2 -quantile
of the bootstrap distribution of the 𝑡∗

𝑖 ’s.

The bootstrap normal confidence interval is

𝑡𝑜𝑏𝑠 − 𝑏∗ ± 𝑧𝛼/2 ⋅ 𝑠𝑒∗.

The bootstrap basic confidence interval is

(2𝑡𝑜𝑏𝑠 − 𝜃𝛼/2, 2𝑡𝑜𝑏𝑠 − 𝜃1−𝛼/2).

The bootstrap percentile confidence interval is

(𝜃1−𝛼/2, 𝜃𝛼/2).

437
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For the bootstrap BCa confidence interval, let

̂𝑧 = Θ−1(#{𝑡∗
𝑖 < 𝑡𝑜𝑏𝑠}

𝐵 ),

where Θ is the cumulative distribution function for the normal distribution. Let 𝑡∗
(−𝑖)

be the mean of the bootstrap replicates after deleting the 𝑖:th replicate, and define
the acceleration term

̂𝑎 =
∑𝑛

𝑖=1(𝑡∗ − 𝑡∗
(−𝑖))

6( ∑𝑛
𝑖=1(𝑡∗ − 𝑡∗

(−𝑖))2)
3/2 .

Finally, let

𝛼1 = Θ( ̂𝑧 +
̂𝑧 + 𝑧1−𝛼/2

1 − ̂𝑎( ̂𝑧 + 𝑧1−𝛼/2))

and
𝛼2 = Θ( ̂𝑧 +

̂𝑧 + 𝑧𝛼/2
1 − ̂𝑎( ̂𝑧 + 𝑧𝛼/2)).

Then the confidence interval is
(𝜃𝛼1

, 𝜃𝛼2
).

For the studentised bootstrap confidence interval, we additionally have an estimate
𝑠𝑒∗

𝑡 for the standard error of the statistic. Moreover, we compute 𝑞𝑖 = 𝑡∗
𝑖−𝑡𝑜𝑏𝑠

𝑠𝑒∗
𝑡

for each
bootstrap replicate, and define 𝑞𝛼/2 as the 1− 𝛼

2 -quantile of the bootstrap distribution
of 𝑞𝑖’s. The confidence interval is then

(𝑡𝑜𝑏𝑠 − 𝑠𝑒∗
𝑡 ⋅ 𝑞𝛼/2, 𝑡𝑜𝑏𝑠 + 𝑠𝑒∗

𝑡 ⋅ 𝑞1−𝛼/2).

12.2 The equivalence between confidence intervals
and hypothesis tests

Let 𝜃 be an unknown parameter in the parameter space Θ ⊆ ℝ, and let the sample
x = (𝑥1, … , 𝑥𝑛) ∈ 𝒳𝑛 ⊆ ℝ𝑛 be a realisation of the random variable X = (𝑋1, … , 𝑋𝑛).
In frequentist statistics there is a fundamental connection between interval estimation
and point-null hypothesis testing of 𝜃 , which we describe next. We define a confidence
interval 𝐼𝛼(X) as a random interval such that its coverage probability

P𝜃(𝜃 ∈ 𝐼𝛼(X)) = 1 − 𝛼 for all 𝛼 ∈ (0, 1).

Consider a two-sided test of the point-null hypothesis 𝐻0(𝜃0) ∶ 𝜃 = 𝜃0 against the
alternative 𝐻1(𝜃0) ∶ 𝜃 ≠ 𝜃0. Let 𝜆(𝜃0, x) denote the p-value of the test. For any
𝛼 ∈ (0, 1), 𝐻0(𝜃0) is rejected at the level 𝛼 if 𝜆(𝜃0, 𝑥) ≤ 𝛼. The level 𝛼 rejection
region is the set of x which lead to the rejection of 𝐻0(𝜃0):

𝑅𝛼(𝜃0) = {x ∈ ℝ𝑛 ∶ 𝜆(𝜃0, x) ≤ 𝛼}.
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Now, consider a family of two-sided tests with p-values 𝜆(𝜃, x), for 𝜃 ∈ Θ. For such
a family we can define an inverted rejection region

𝑄𝛼(x) = {𝜃 ∈ Θ ∶ 𝜆(𝜃, x) ≤ 𝛼}.

For any fixed 𝜃0, 𝐻0(𝜃0) is rejected if x ∈ 𝑅𝛼(𝜃0), which happens if and only if
𝜃0 ∈ 𝑄𝛼(x), that is,

x ∈ 𝑅𝛼(𝜃0) ⇔ 𝜃0 ∈ 𝑄𝛼(x).
If the test is based on a test statistic with a completely specified absolutely continuous
null distribution, then 𝜆(𝜃0, X) ∼ U(0, 1) under 𝐻0(𝜃0) (Liero & Zwanzig, 2012).
Then

P𝜃0
(X ∈ 𝑅𝛼(𝜃0)) = P𝜃0

(𝜆(𝜃0, X) ≤ 𝛼) = 𝛼.
Since this holds for any 𝜃0 ∈ Θ and since the equivalence relation x ∈ 𝑅𝛼(𝜃0) ⇔ 𝜃0 ∈
𝑄𝛼(x) implies that

P𝜃0
(X ∈ 𝑅𝛼(𝜃0)) = P𝜃0

(𝜃0 ∈ 𝑄𝛼(X)),

it follows that the random set 𝑄𝛼(x) always covers the true parameter 𝜃0 with prob-
ability 𝛼. Consequently, letting 𝑄𝐶

𝛼 (x) denote the complement of 𝑄𝛼(x), for all
𝜃0 ∈ Θ we have

P𝜃0
(𝜃0 ∈ 𝑄𝐶

𝛼 (X)) = 1 − 𝛼,
meaning that the complement of the inverted rejection region is a 1 − 𝛼 confidence
interval for 𝜃. This equivalence between a family of tests and a confidence interval
𝐼𝛼(x) = 𝑄𝐶

𝛼 (x), illustrated in the figure below, provides a simple way of constructing
confidence intervals through test inversion, and vice versa.

The figure shows the rejection regions and confidence intervals corresponding to the
the 𝑧-test for a normal mean, for different null means 𝜃 and different sample means

̄𝑥, with 𝜎 = 1. 𝐻0(𝜃) is rejected if ( ̄𝑥, 𝜃) is in the shaded light grey region. Shown in
dark grey is the rejection region 𝑅0.05(−0.9) = (−∞, −1.52) ∪ (−0.281, ∞) and the
confidence interval 𝐼0.05(1/2) = 𝑄𝐶

0.05(1/2) = (−0.120, 1.120).

12.3 Two types of p-values
The symmetric argument in perm.t.test and boot.t.test controls how the p-
values of the test are computed. In most cases, the difference is not that large:
library(MKinfer)
library(ggplot2)
boot.t.test(sleep_total ~ vore, data =

subset(msleep, vore == "carni" | vore == "herbi"),
symmetric = FALSE)
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Figure 12.1: The equivalence between confidence intervals and hypothesis tests.

boot.t.test(sleep_total ~ vore, data =
subset(msleep, vore == "carni" | vore == "herbi"),

symmetric = TRUE)

In other cases, the choice matters more. Below, we will discuss the difference between
the two approaches.

Let 𝑇 (X) be a test statistic on which a two-sided test of the point-null hypothesis
that 𝜃 = 𝜃0 is based, and let 𝜆(𝜃0, x) denote its p-value. Assume for simplicity that
𝑇 (x) < 0 implies that 𝜃 < 𝜃0 and that 𝑇 (x) > 0 implies that 𝜃 > 𝜃0. We’ll call
the symmetric = FALSE scenario the twice-the-smaller-tail approach to computing
p-values. In it, the first step is to check whether 𝑇 (x) < 0 or 𝑇 (x) > 0. “At least
as extreme as the observed” is in a sense redefined as “at least as extreme as the
observed, in the observed direction”. If the median of the null distribution of 𝑇 (X)
is 0, then, for 𝑇 (x) > 0,

P𝜃0
(𝑇 (X) ≥ 𝑇 (x)|𝑇 (x) > 0) = 2 ⋅ P𝜃0

(𝑇 (X) ≥ 𝑇 (x)),
i.e. twice the unconditional probability that 𝑇 (X) ≥ 𝑇 (x). Similarly, for 𝑇 (x) < 0,

P𝜃0
(𝑇 (X) ≤ 𝑇 (x)|𝑇 (x) < 0) = 2 ⋅ P𝜃0

(𝑇 (X) ≤ 𝑇 (x)).
Moreover,

P𝜃0
(𝑇 (X) ≥ 𝑇 (x)) < P𝜃0

(𝑇 (X) ≤ 𝑇 (x)) when 𝑇 (x) > 0
and

P𝜃0
(𝑇 (X) ≥ 𝑇 (x)) > P𝜃0

(𝑇 (X) ≤ 𝑇 (x)) when 𝑇 (x) < 0.
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Consequently, the p-value using this approach can in general be written as

𝜆𝑇 𝑆𝑇 (𝜃0, x) ∶= min(1, 2 ⋅ P𝜃0
(𝑇 (X) ≥ 𝑇 (x)), 2 ⋅ P𝜃0

(𝑇 (X) ≤ 𝑇 (x))).

This definition of the p-value is frequently used also in situations where the median
of the null distribution of 𝑇 (X) is not 0, despite the fact that the interpretation of
the p-value as being conditioned on whether 𝑇 (x) < 0 or 𝑇 (x) > 0 is lost.

At the level 𝛼, if 𝑇 (x) > 0 the test rejects the hypothesis 𝜃 = 𝜃0 if

𝜆𝑇 𝑆𝑇 (𝜃0, x) = min(1, 2 ⋅ P𝜃0
(𝑇 (X) ≥ 𝑇 (x))) ≤ 𝛼.

This happens if and only if the one-sided test of 𝜃 ≤ 𝜃0, also based on 𝑇 (X), rejects its
null hypothesis at the 𝛼/2 level. By the same reasoning, it is seen that the rejection
region of a level 𝛼 twice-the-smaller-tail test always is the union of the rejection
regions of two level 𝛼/2 one-sided tests of 𝜃 ≤ 𝜃0 and 𝜃 ≥ 𝜃0, respectively. The test
puts equal weight to the two types of type I errors: false rejection in the two different
directions. The corresponding confidence interval is therefore also equal-tailed, in
the sense that the non-coverage probability is 𝛼/2 on both sides of the interval.

Twice-the-smaller-tail p-values are in a sense computed by looking only at one tail
of the null distribution. In the alternative approach, symmetric = TRUE, we use
strictly two-sided p-values. Such a p-value is computed using both tails, as follows:
𝜆𝑆𝑇 𝑇 (𝜃0, x) = P𝜃0

(|𝑇 (X)| ≥ |𝑇 (x)|) = P𝜃0
({X ∶ 𝑇 (X) ≤ −|𝑇 (x)|} ∪ {X ∶ 𝑇 (X) ≥

|𝑇 (x)|}).

Under this approach, the directional type I error rates will in general not be equal
to 𝛼/2, so that the test might be more prone to falsely reject 𝐻0(𝜃0) in one direction
than in another. On the other hand, the rejection region of a strictly-two sided test
is typically smaller than its twice-the-smaller-tail counterpart. The coverage proba-
bilities of the corresponding confidence interval 𝐼𝛼(X) = (𝐿𝛼(X), 𝑈𝛼(X)) therefore
satisfies the condition that

P𝜃(𝜃 ∈ 𝐼𝛼(X)) = 1 − 𝛼 for all 𝛼 ∈ (0, 1),

but not the stronger condition

P𝜃(𝜃 < 𝐿𝛼(X)) = P𝜃(𝜃 > 𝑈𝛼(X)) = 𝛼/2 for all 𝛼 ∈ (0, 1).

For parameters of discrete distributions, strictly two-sided hypothesis tests and con-
fidence intervals can behave very erratically (Thulin & Zwanzig, 2017). Twice-the-
smaller tail methods are therefore always preferable when working with count data.

It is also worth noting that if the null distribution of 𝑇 (X) is symmetric about 0,

P𝜃0
(𝑇 (X) ≥ 𝑇 (x)) = P𝜃0

(𝑇 (X) ≤ −𝑇 (x)).
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For 𝑇 (x) > 0, unless 𝑇 (X) has a discrete distribution,

𝜆𝑇 𝑆𝑇 (𝜃0, x) = 2 ⋅ P𝜃0
(𝑇 (X) ≥ 𝑇 (x))

= P𝜃0
(𝑇 (X) ≥ 𝑇 (x)) + P𝜃0

(𝑇 (X) ≤ −𝑇 (x)) = 𝜆𝑆𝑇 𝑇 (𝜃0, x),

meaning that the twice-the-smaller-tail and strictly-two-sided approaches coincide in
this case. The ambiguity related to the definition of two-sided p-values therefore only
arises under asymmetric null distributions.

12.4 Deviance tests
Consider a model with 𝑝 = 𝑛, having a separate parameter for each observation.
This model will have a perfect fit, and among all models, it attains the maximum
achievable likelihood. It is known as the saturated model. Despite having a perfect
fit, it is useless for prediction, interpretation and causality, as it is severely overfitted.
It is however useful as a baseline for comparison with other models, i.e. for checking
goodness-of-fit: our goal is to find a reasonable and useful model with almost as good
a fit.

Let 𝐿( ̂𝜇, 𝑦) denote the log-likelihood corresponding to the ML-estimate for a model,
with estimates ̂𝜃𝑖. Let 𝐿(𝑦, 𝑦) denote the log-likelihood for the saturated model, with
estimates ̃𝜃𝑖. For an exponential dispersion family, i.e. a distribution of the form

𝑓(𝑦𝑖; 𝜃𝑖, 𝜙) = exp([𝑦𝑖𝜃𝑖 − 𝑏(𝜃𝑖)]/𝑎(𝜙) + 𝑐(𝑦𝑖, 𝜙)),

(the binomial and Poisson distributions being examples of this), we have

𝐿(𝑦, 𝑦) − 𝐿( ̂𝜇, 𝑦) =
𝑛

∑
𝑖=1

(𝑦𝑖 ̃𝜃𝑖 − 𝑏( ̃𝜃𝑖))/𝑎(𝜙) −
𝑛

∑
𝑖=1

(𝑦𝑖 ̂𝜃𝑖 − 𝑏( ̂𝜃𝑖))/𝑎(𝜙).

Typically, 𝑎(𝜙) = 𝜙/𝜔𝑖, in which case this becomes

𝑛
∑
𝑖=1

𝜔𝑖(𝑦𝑖( ̃𝜃𝑖 − ̂𝜃𝑖) − 𝑏( ̃𝜃𝑖) + 𝑏( ̂𝜃𝑖))/𝜙 =∶ 𝐷(𝑦, ̂𝜇)
2𝜙 ,

where the statistic 𝐷(𝑦, ̂𝜇) is called the deviance.

The deviance is essentially the difference between the log-likelihoods of a model and
of the saturated model. The greater the deviance, the poorer the fit. It holds that
𝐷(𝑦, ̂𝜇) ≥ 0, with 𝐷(𝑦, ̂𝜇) = 0 corresponding to a perfect fit.

Deviance is used to test whether two models are equal. Assume that we have two
models:

• 𝑀0, which has 𝑝0 parameters, with fitted values ̂𝜇0,
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• 𝑀1, which has 𝑝1 > 𝑝0 parameters, with fitted values ̂𝜇1.

We say that the models are nested, because 𝑀0 is a special case of 𝑀1, corresponding
to some of the 𝑝1 parameters of 𝑀1 being 0. If both models give a good fit, we prefer
𝑀0 because of its (relative) simplicity. We have 𝐷(𝑦, ̂𝜇1) ≤ 𝐷(𝑦, ̂𝜇0), since simpler
models have larger deviances. Assuming that 𝑀1 holds, we can test whether 𝑀0
holds by using the likelihood ratio-test statistic 𝐷(𝑦, ̂𝜇0) − 𝐷(𝑦, ̂𝜇1). If we reject the
null hypothesis, 𝑀0 fits the data poorly compared to 𝑀1. Otherwise, the fit of 𝑀1
is not significantly better and we prefer 𝑀0 because of its simplicity.

12.5 Regularised regression
Linear regression is a special case of generalised linear regression. Under the assump-
tion of normality, the least squares estimator is the maximum likelihood estimator
in this setting. In what follows, we will therefore discuss how the maximum likeli-
hood estimator is modified when using regularisation, bearing in mind that this also
includes the ordinary least squares estimator for linear models.

In a regularised GLM, it is not the likelihood 𝐿(𝛽) that is maximised, but a regu-
larised function 𝐿(𝛽) ⋅ 𝑝(𝜆, 𝛽), where 𝑝 is a penalty function that typically forces the
resulting estimates to be closer to 0, which leads to a stable solution. The shrinkage
parameter 𝜆 controls the size of the penalty, and therefore how much the estimates
are shrunk toward 0. When 𝜆 = 0, we are back at the standard maximum likelihood
estimate.

The most popular penalty terms correspond to common 𝐿𝑞-norms. On a log-scale,
the function to be maximised is then

ℓ(𝛽) + 𝜆
𝑝

∑
𝑖=1

|𝛽𝑖|𝑞,

where ℓ(𝛽) is the loglikelihood of 𝛽 and ∑𝑝
𝑖=1 |𝛽𝑖|𝑞 is the 𝐿𝑞-norm, with 𝑞 ≥ 0. This is

equivalent to maximising ℓ(𝛽) under the constraint that ∑𝑝
𝑖=1 |𝛽𝑖|𝑞 ≤ 1

ℎ(𝜆) , for some
increasing positive function ℎ.
In Bayesian estimation, a prior distribution 𝑝(𝛽) for the parameters 𝛽𝑖 is used The
estimates are then computed from the conditional distribution of the 𝛽𝑖 given the
data, called the posterior distribution. Using Bayes’ theorem, we find that

𝑃(𝛽|x) ∝ 𝐿(𝛽) ⋅ 𝑝(𝛽),

i.e. that the posterior distribution is proportional to the likelihood times the prior.
The Bayesian maximum a posteriori estimator (MAP) is found by maximising the
above expression (i.e. finding the mode of the posterior). This is equivalent to the
estimates from a regularised frequentist model with penalty function 𝑝(𝛽), meaning
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that regularised regression can be motivated both from a frequentist and a Bayesian
perspective.

When the 𝐿2 penalty is used, the regularised model is called ridge regression, for
which we maximise

ℓ(𝛽) + 𝜆
𝑝

∑
𝑖=1

𝛽2
𝑖 .

In a Bayesian context, this corresponds to putting a standard normal prior on the 𝛽𝑖.
This method has been invented and reinvented by several authors, from the 1940’s
onwards, among them Hoerl & Kennard (1970). The 𝛽𝑖 can become very small, but
are never pushed all the way down to 0. The name comes from the fact that in a
linear model, the OLS estimate is ̂𝛽 = (X𝑇 X)−1X𝑇 y, whereas the ridge estimate is

̂𝛽 = (X𝑇 X + 𝜆I)−1X𝑇 y. The 𝜆I is the “ridge”.

When the 𝐿1 penalty is used, the regularised model is called the lasso (Least Absolute
Shrinkage and Selection Operator), for which we maximise

ℓ(𝛽) + 𝜆
𝑝

∑
𝑖=1

|𝛽𝑖|.

In a Bayesian context, this corresponds to putting a standard Laplace prior on the
𝛽𝑖. For this penalty, as 𝜆 increases, more and more 𝛽𝑖 become 0, meaning that we
can simultaneously perform estimation and variable selection!



Chapter 13

Solutions to exercises

Chapter 2
Exercise 2.1

Type the following code into the Console window:
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10

The answer is 3, 628, 800.

Exercise 2.2

1. To compute the sum and assign it to a, we use:
a <- 924 + 124

2. To compute the square of a we can use:
a*a

The answer is 1, 098, 304.
As you’ll soon see in other examples, the square can also be computed using:
a^2

Exercise 2.3

1. When an invalid character is used in a variable name, an error message is
displayed in the Console window. Different characters will render different
error messages. For instance, net-income <- income - taxes yields the er-
ror message Error in net - income <- income - taxes : object 'net'

445
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not found. This may seem a little cryptic (and it is!), but what it means
is that R is trying to compute the difference between the variables net and
income, because that is how R interprets net-income, and fails because the
variable net does not exist. As you become more experienced with R, the error
messages will start making more and more sense (at least in most cases).

2. If you put R code as a comment, it will be treated as a comment, meaning that
it won’t run. This is actually hugely useful, for instance when you’re looking
for errors in your code - you can comment away lines of code and see if the rest
of the code runs without them.

3. Semicolons can be used to write multiple commands on a single line - both will
run as if they were on separate lines. If you like, you can add more semicolons
to run even more commands.

4. The value to the right is assigned to both variables. Note, however, that any
operations you perform on one variable won’t affect the other. For instance, if
you change the value of one of them, the other will remain unchanged:

income2 <- taxes2 <- 100
income2; taxes2 # Check that both are 100
taxes2 <- 30 # income2 doesn't change
income2; taxes2 # Check values

Exercise 2.4

1. To create the vectors, use c:
height <- c(158, 170, 172, 181, 196)
weight <- c(45, 80, 62, 75, 115)

2. To combine the two vectors into a data frame, use data.frame
hw_data <- data.frame(height, weight)

Exercise 2.5

The vector created using:
x <- 1:5

is (1, 2, 3, 4, 5). Similarly,
x <- 5:1

gives us the same vector in reverse order: (5, 4, 3, 2, 1). To create the vector
(1, 2, 3, 4, 5, 4, 3, 2, 1) we can therefore use:
x <- c(1:5, 4:1)
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Exercise 2.6

1. To compute the mean height, use the mean function:
mean(height)

2. To compute the correlation between the two variables, use cor:
cor(height, weight)

Exercise 2.7

1. length computes the length (i.e. the number of elements) of a vector.
length(height) returns the value 5, because the vector is 5 elements long.

2. sort sorts a vector. The parameter decreasing can be used to decide whether
the elements should be sorted in ascending (sort(weights, decreasing =
FALSE)) or descending (sort(weights, decreasing = TRUE)) order. To sort
the weights in ascending order, we can use sort(weight). Note, however, that
the resulting sorted vector won’t be stored in the variable weight unless we
write weight <- sort(weight)!

Exercise 2.8

1.
√𝜋 = 1.772454 …:

sqrt(pi)

2. 𝑒2 ⋅ 𝑙𝑜𝑔(4) = 10.24341 …:
exp(2)*log(4)

Exercise 2.9

1. The expression 1/𝑥 tends to infinity as 𝑥 → 0, and so R returns ∞ as the
answer in this case:

1/0

2. The division 0/0 is undefined, and R returns NaN, which stands for Not a
Number:

0/0

3.
√

−1 is undefined (as long as we stick to real numbers), and so R returns NaN.
The sqrt function also provides an error message saying that NaN values were
produced.

sqrt(-1)
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If you want to use complex numbers for some reason, you can write the complex
number 𝑎+𝑏𝑖 as complex(1, a, b). Using complex numbers, the square root of −1
is 𝑖:
sqrt(complex(1, -1, 0))

Exercise 2.10

1. View the documentation, where the data is described:
?diamonds

2. Have a look at the structure of the data:
str(diamonds)

This shows you the number of observations (53,940) and variables (10), and the vari-
able types. There are three different data types here: num (numerical), Ord.factor
(ordered factor, i.e. an ordered categorical variable) and int (integer, a numerical
variable that only takes integer values).

3. To compute the descriptive statistics, we can use:
summary(diamonds)

In the summary, missing values show up as NA’s. There are no NA’s here, and hence
no missing values.

Exercise 2.11

ggplot(msleep, aes(sleep_total, awake)) +
geom_point()

The points follow a declining line. The reason for this is that at any given time,
an animal is either awake or asleep, so the total sleep time plus the awake time is
always 24 hours for all animals. Consequently, the points lie on the line given by
awake=24-sleep_total.

Exercise 2.12

1.
ggplot(diamonds, aes(carat, price, colour = cut)) +

geom_point() +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")

2. We can change the opacity of the points by adding an alpha argument to
geom_point. This is useful when the plot contains overlapping points:
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ggplot(diamonds, aes(carat, price, colour = cut)) +
geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")

Exercise 2.13

1. To set different shapes for different values of cut we use:
ggplot(diamonds, aes(carat, price, colour = cut, shape = cut)) +

geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")

2. We can then change the size of the points as follows. The resulting figure is
unfortunately not that informative in this case.

ggplot(diamonds, aes(carat, price, colour = cut,
shape = cut, size = x)) +

geom_point(alpha = 0.25) +
xlab("Weight of diamond (carat)") +
ylab("Price (USD)")

Exercise 2.14

Using the scale_axis_log10 options:
ggplot(msleep, aes(bodywt, brainwt, colour = sleep_total)) +

geom_point() +
xlab("Body weight (logarithmic scale)") +
ylab("Brain weight (logarithmic scale)") +
scale_x_log10() +
scale_y_log10()

Exercise 2.15

1. We use facet_wrap(~ cut) to create the facetting:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
facet_wrap(~ cut)

2. To set the number of rows, we add an nrow argument to facet_wrap:
ggplot(diamonds, aes(carat, price)) +

geom_point() +
facet_wrap(~ cut, nrow = 5)
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Exercise 2.16

1.
ggplot(diamonds, aes(cut, price)) +

geom_boxplot()

2. To change the colours of the boxes, we add colour (outline colour) and fill
(box colour) arguments to geom_boxplot:

ggplot(diamonds, aes(cut, price)) +
geom_boxplot(colour = "magenta", fill = "turquoise")

(No, I don’t really recommend using this particular combination of colours.)

3. reorder(cut, price, median) changes the order of the cut categories based
on their median price values.

ggplot(diamonds, aes(reorder(cut, price, median), price)) +
geom_boxplot(colour = "magenta", fill = "turquoise")

4. geom_jitter can be used to plot the individual observations on top of the
histogram. Because there are so many observations in this dataset, we must
set a small size and a low alpha in order not to cover the boxes completely.

ggplot(diamonds, aes(reorder(cut, price), price)) +
geom_boxplot(colour = "magenta", fill = "turquoise") +
geom_jitter(size = 0.1, alpha = 0.2)

Exercise 2.17

1.
ggplot(diamonds, aes(price)) +

geom_histogram()

2. Next, we facet the histograms using cut:
ggplot(diamonds, aes(price)) +

geom_histogram() +
facet_wrap(~ cut)

3. Finally, by reading the documentation ?geom_histogram we find that we can
add outlines using the colour argument:

ggplot(diamonds, aes(price)) +
geom_histogram(colour = "black") +
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facet_wrap(~ cut)

Exercise 2.18

1.
ggplot(diamonds, aes(cut)) +

geom_bar()

2. To set different colours for the bars, we can use fill, either to set the colours
manually or using default colours (by adding a colour aesthetic):

# Set colours manually:
ggplot(diamonds, aes(cut)) +

geom_bar(fill = c("red", "yellow", "blue", "green", "purple"))

# Use defaults:
ggplot(diamonds, aes(cut, fill = cut)) +

geom_bar()

3. width lets us control the bar width:
ggplot(diamonds, aes(cut, fill = cut)) +

geom_bar(width = 0.5)

4. By adding fill = clarity to aes we create stacked bar charts:
ggplot(diamonds, aes(cut, fill = clarity)) +

geom_bar()

5. By adding position = "dodge" to geom_bar we obtain grouped bar charts:
ggplot(diamonds, aes(cut, fill = clarity)) +

geom_bar(position = "dodge")

6. coord_flip flips the coordinate system, yielding a horizontal bar plot:
ggplot(diamonds, aes(cut)) +

geom_bar() +
coord_flip()

Exercise 2.19

To save the png file, use
myPlot <- ggplot(msleep, aes(sleep_total, sleep_rem)) +

geom_point()
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ggsave("filename.png", myPlot, width = 4, height = 4)

To change the resolution, we use the dpi argument:
ggsave("filename.png", myPlot, width = 4, height = 4, dpi=600)

Chapter 3
Exercise 3.1

1. Both approaches render a character object with the text A rainy day in
Edinburgh:

a <- "A rainy day in Edinburgh"
a
class(a)

a <- 'A rainy day in Edinburgh'
a
class(a)

That is, you are free to choose whether to use single or double quotation marks. I
tend to use double quotation marks, because I was raised to believe that double
quotation marks are superior in every way (well, that, and the fact that I think that
they make code easier to read simply because they are easier to notice).

2. The first two sums are numeric whereas the third is integer
class(1 + 2) # numeric
class(1L + 2) # numeric
class (1L + 2L) # integer

If we mix numeric and integer variables, the result is a numeric. But as long as we
stick to just integer variables, the result is usually an integer. There are exceptions
though - computing 2L/3L won’t result in an integer because… well, because it’s
not an integer.

3. When we run "Hello" + 1 we receive an error message:
> "Hello" + 1
Error in "Hello" + 1 : non-numeric argument to binary operator

In R, binary operators are mathematical operators like +, -, * and / that takes two
numbers and returns a number. Because "Hello" is a character and not a numeric,
it fails in this case. So, in English the error message reads Error in "Hello" + 1 :
trying to perform addition with something that is not a number. Maybe
you know a bit of algebra and want to say hey, we can add characters together, like
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in 𝑎2 + 𝑏2 = 𝑐2!. Which I guess is correct. But R doesn’t do algebraic calculations,
but numerical ones - that is, all letters involved in the computations must represent
actual numbers. a^2+b^2=c^2 will work only if a, b and c all have numbers assigned
to them.

4. Combining numeric and a logical variables turns out to be very useful in
some problems. The result is always numeric, with FALSE being treated as the
number 0 and TRUE being treated as the number 1 in the computations:

class(FALSE * 2)
class(TRUE + 1)

Exercise 3.2

The functions return information about the data frame:
ncol(airquality) # Number of columns of the data frame
nrow(airquality) # Number of rows of the data frame
dim(airquality) # Number of rows, followed by number of columns
names(airquality) # The name of the variables in the data frame
row.names(airquality) # The name of the rows in the data frame

# (indices unless the rows have been named)

Exercise 3.3

To create the matrices, we need to set the number of rows nrow, the number of
columns ncol and whether to use the elements of the vector x to fill the matrix by
rows or by columns (byrow). To create

(1 2 3
4 5 6)

we use:
x <- 1:6

matrix(x, nrow = 2, ncol = 3, byrow = TRUE)

And to create

⎛⎜
⎝

1 4
2 5
3 6

⎞⎟
⎠

we use:
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x <- 1:6

matrix(x, nrow = 3, ncol = 2, byrow = FALSE)

We’ll do a deep-dive on matrix objects in Section 10.3.

Exercise 3.4

1. In the [i, j] notation, i is the row number and j is the column number. In
this case, airquality[, 3], we have j=3 and therefore asks for the 3rd column,
not the 3rd row. To get the third row, we’d use airquality[3,] instead.

2. To extract the first five rows, we can use:
airquality[1:5,]
# or
airquality[c(1, 2, 3, 4, 5),]

3. First, we use names(airquality) to check the column numbers of the two
variables. Wind is column 3 and Temp is column 4, so we can access them using
airquality[,3] and airquality[,4] respectively. Thus, we can compute the
correlation using:

cor(airquality[,3], airquality[,4])

Alternatively, we could refer to the variables using the column names:
cor(airquality[,"Wind"], airquality[,"Temp"])

4. To extract all columns except Temp and Wind, we use a minus sign - and a
vector containing their indices:

airquality[, -c(3, 4)]

Exercise 3.5

1. To add the new variable, we can use:
bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length

2. By using View(bookstore) or looking at the data in the Console window using
bookstore, we see that the customer in question is on row 6 of the data. To
replace the value, we can use:

bookstore$purchase[6] <- 16

Note that the value of rev_per_minute hasn’t been changed by this operation. We
will therefore need to compute it again, to update its value:
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# We can either compute it again for all customers:
bookstore$rev_per_minute <- bookstore$purchase / bookstore$visit_length
# ...or just for customer number 6:
bookstore$rev_per_minute[6] <- bookstore$purchase[6] / bookstore$visit_length[6]

Exercise 3.6

1. The coldest day was the day with the lowest temperature:
airquality[which.min(airquality$Temp),]

We see that the 5th day in the period, May 5, was the coldest, with a temperature
of 56 degrees Fahrenheit.

2. To find out how many days the wind speed was greater than 17 mph, we use
sum:

sum(airquality$Wind > 17)

Because there are so few days fulfilling this condition, we could also easily have solved
this by just looking at the rows for those days and counting them:
airquality[airquality$Wind > 17,]

3. Missing data are represented by NA values in R, and so we wish to check how
many NA elements there are in the Ozone vector. We do this by combining
is.na and sum and find that there are 37 missing values:

sum(is.na(airquality$Ozone))

4. In this case, we need to use an ampersand & sign to combine the two conditions:
sum(airquality$Temp < 70 & airquality$Wind > 10)

We find that there are 22 such days in the data.

Exercise 3.7

We should use the breaks argument to set the interval bounds in cut:
airquality$TempCat <- cut(airquality$Temp,

breaks = c(50, 70, 90, 110))

To see the number of days in each category, we can use summary:
summary(airquality$TempCat)
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Exercise 3.8

1. The variable X represents the empty column between Visit and VAS. In the X.1
column the researchers have made comments on two rows (rows 692 and 1153),
causing R to read this otherwise empty column. If we wish, we can remove
these columns from the data using the syntax from Section 3.2.1:

vas <- vas[, -c(4, 6)]

2. We remove the sep = ";" argument:
vas <- read.csv(file_path, dec = ",", skip = 4)

…and receive the following error message:
Error in read.table(file = file, header = header, sep = sep,

quote = quote, :
duplicate 'row.names' are not allowed

By default, read.csv uses commas, ,, as column delimiters. In this case it fails to
read the file, because it uses semicolons instead.

3. Next, we remove the dec = "," argument:
vas <- read.csv(file_path, sep = ";", skip = 4)
str(vas)

read.csv reads the data without any error messages, but now VAS has become a
character vector. By default, read.csv assumes that the file uses decimal points
rather than decimals commas. When we don’t specify that the file has decimal
commas, read.csv interprets 0,4 as text rather than a number.

4. Next, we remove the skip = 4 argument:
vas <- read.csv(file_path, sep = ";", dec = ",")
str(vas)
names(vas)

read.csv looks for column names on the first row that it reads. skip = 4 tells the
function to skip the first 4 rows of the .csv file (which in this case were blank or
contain other information about the data). When it doesn’t skip those lines, the only
text on the first row is Data updated 2020-04-25. This then becomes the name of
the first column, and the remaining columns are named X, X.1, X.2, and so on.

5. Finally, we change skip = 4 to skip = 5:
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 5)
str(vas)
names(vas)

In this case, read.csv skips the first 5 rows, which includes row 5, on which the
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variable names are given. It still looks for variable names on the first row that it
reads though, meaning that the data values from the first observation become variable
names instead of data points. An X is added at the beginning of the variable names,
because variable names in R cannot begin with a number.

Exercise 3.9

1. First, set file_path to the path to projects-email.xlsx. Then we can use
read.xlsx from the openxlsx package. The argument sheet lets us select
which sheet to read:

library(openxlsx)
emails <- read.xlsx(file_path, sheet = 2)

View(emails)
str(emails)

2. To obtain a vector containing the email addresses without any duplicates, we
apply unique to the vector containing the e-mail addresses. That vector is
called E-mail with a hyphen -. We cannot access it using emails$E-mail, be-
cause R will interpret that as email$E - mail, and neither the vector email$E
nor the variable mail exist. Instead, we can do one of the following:

unique(emails[,3])
unique(emails$"E-mail")

Exercise 3.10

1. We set file_path to the path to vas-transposed.csv and then read it:
vast <- read.csv(file_path)
dim(vast)
View(vast)

It is a data frame with 4 rows and 2366 variables.

2. Adding row.names = 1 lets us read the row names:
vast <- read.csv(file_path, row.names = 1)
View(vast)

This data frame only contains 2365 variables, because the leftmost column is now
the row names and not a variable.

3. t lets us rotate the data into the format that we are used to. If we only apply
t though, the resulting object is a matrix and not a data.frame. If we want
it to be a data.frame, we must also make a call to as.data.frame:
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vas <- t(vast)
class(vas)

vas <- as.data.frame(t(vast))
class(vas)

Exercise 3.11

We fit the model and use summary to print estimates and p-values:
m <- lm(mpg ~ hp + wt + cyl + am, data = mtcars)
summary(m)

hp and wt are significant at the 5 % level, but cyl and am are not.

Exercise 3.12

We set file_path to the path for vas.csv and read the data as in Exercise 3.8::
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)

1. First, we compute the mean VAS for each patient:
aggregate(VAS ~ ID, data = vas, FUN = mean)

2. Next, we compute the lowest and highest VAS recorded for each patient:
aggregate(VAS ~ ID, data = vas, FUN = min)
aggregate(VAS ~ ID, data = vas, FUN = max)

3. Finally, we compute the number of high-VAS days for each patient. One way
to do this is to create a logical vector by VAS >= 7 and then compute its
sum.

aggregate((VAS >= 7) ~ ID, data = vas, FUN = sum)

Exercise 3.13

First we load and inspect the data:
library(datasauRus)
View(datasaurus_dozen)

1. Next, we compute summary statistics grouped by dataset:
aggregate(cbind(x, y) ~ dataset, data = datasaurus_dozen, FUN = mean)
aggregate(cbind(x, y) ~ dataset, data = datasaurus_dozen, FUN = sd)

by(datasaurus_dozen[, 2:3], datasaurus_dozen$dataset, cor)
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The summary statistics for all datasets are virtually identical.

2. Next, we make scatterplots. Here is a solution using ggplot2:
library(ggplot2)
ggplot(datasaurus_dozen, aes(x, y, colour = dataset)) +

geom_point() +
facet_wrap(~ dataset, ncol = 3)

Clearly, the datasets are very different! This is a great example of how simply
computing summary statistics is not enough. They tell a part of the story, yes,
but only a part.

Exercise 3.14

First, we load the magrittr package and create x:
library(magrittr)
x <- 1:8

1. sqrt(mean(x)) can be rewritten as:
x %>% mean %>% sqrt

2. mean(sqrt(x)) can be rewritten as:
x %>% sqrt %>% mean

3. sort(x^2-5)[1:2] can be rewritten as:
x %>% raise_to_power(2) %>% subtract(5) %>% extract(1:2,)

Exercise 3.15

We can use inset to add the new variable:
age <- c(28, 48, 47, 71, 22, 80, 48, 30, 31)
purchase <- c(20, 59, 2, 12, 22, 160, 34, 34, 29)
visit_length <- c(5, 2, 20, 22, 12, 31, 9, 10, 11)
bookstore <- data.frame(age, purchase, visit_length)

library(magrittr)
bookstore %>% inset("rev_per_minute",

value = .$purchase / .$visit_length)
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Chapter 4
Exercise 4.1

1. We change the background colour of the entire plot to lightblue.
p + theme(panel.background = element_rect(fill = "lightblue"),

plot.background = element_rect(fill = "lightblue"))

2. Next, we change the font of the legend to serif.
p + theme(panel.background = element_rect(fill = "lightblue"),

plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"))

3. We remove the grid:
p + theme(panel.background = element_rect(fill = "lightblue"),

plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank())

4. Finally, we change the colour of the axis ticks to orange and increase their
width:

p + theme(panel.background = element_rect(fill = "lightblue"),
plot.background = element_rect(fill = "lightblue"),
legend.text = element_text(family = "serif"),
legend.title = element_text(family = "serif"),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
axis.ticks = element_line(colour = "orange", size = 2))

It doesn’t look all that great, does it? Let’s just stick to the default theme in the
remaining examples.

Exercise 4.2

1. We can use the bw argument to control the smoothness of the curves:
ggplot(diamonds, aes(carat, colour = cut)) +

geom_density(bw = 0.2)

2. We can fill the areas under the density curves by adding fill to the aes:
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ggplot(diamonds, aes(carat, colour = cut, fill = cut)) +
geom_density(bw = 0.2)

3. Because the densities overlap, it’d be better to make the fill colours slightly
transparent. We add alpha to the geom:

ggplot(diamonds, aes(carat, colour = cut, fill = cut)) +
geom_density(bw = 0.2, alpha = 0.2)

4. A similar plot can be created using geom_density_ridges from the ggridges
package. Note that you must set y = cut in the aes, because the densities
should be separated by cut.

install.packages("ggridges")
library(ggridges)

ggplot(diamonds, aes(carat, cut, fill = cut)) +
geom_density_ridges()

Exercise 4.3

We use xlim to set the boundaries of the x-axis and bindwidth to decrease the bin
width:
ggplot(diamonds, aes(carat)) +

geom_histogram(binwidth = 0.01) +
xlim(0, 3)

It appears that carat values that are just above multiples of 0.25 are more common
than other values. We’ll explore that next.

Exercise 4.4

1. We set the colours using the fill aesthetic:
ggplot(diamonds, aes(cut, price, fill = cut)) +

geom_violin()

2. Next, we remove the legend:
ggplot(diamonds, aes(cut, price, fill = cut)) +

geom_violin() +
theme(legend.position = "none")

3. We add boxplots by adding an additional geom to the plot. Increasing the
width of the violins and decreasing the width of the boxplots creates a better
figure. We also move the fill = cut aesthetic from ggplot to geom_violin
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so that the boxplots use the default colours instead of different colours for each
category.

ggplot(diamonds, aes(cut, price)) +
geom_violin(aes(fill = cut), width = 1.25) +
geom_boxplot(width = 0.1, alpha = 0.5) +
theme(legend.position = "none")

4. Finally, we can create a horizontal version of the figure in the same way we did
for boxplots in Section 2.18: by adding coord_flip() to the plot:

ggplot(diamonds, aes(cut, price)) +
geom_violin(aes(fill = cut), width = 1.25) +
geom_boxplot(width = 0.1, alpha = 0.5) +
theme(legend.position = "none") +
coord_flip()

Exercise 4.5

We can create an interactive scatterplot using:
myPlot <- ggplot(diamonds, aes(x, y,

text = paste("Row:", rownames(diamonds)))) +
geom_point()

ggplotly(myPlot)

There are outliers along the y-axis on rows 24,068 and 49,190. There are also some
points for which 𝑥 = 0. Examples include rows 11,183 and 49,558. It isn’t clear
from the plot, but in total there are 8 such points, 7 of which have both 𝑥 = 0 and
𝑦 = 0. To view all such diamonds, you can use filter(diamonds, x==0). These
observations must be due to data errors, since diamonds can’t have 0 width. The high
𝑦-values also seem suspicious - carat is a measure of diamond weight, and if these
diamonds really were 10 times longer than others then we would probably expect
them to have unusually high carat values as well (which they don’t).

Exercise 4.6

The two outliers are the only observations for which 𝑦 > 20, so we use that as our
condition:
ggplot(diamonds, aes(x, y)) +

geom_point() +
geom_text(aes(label = ifelse(y > 20, rownames(diamonds), "")),

hjust = 1.1)
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Exercise 4.7

# Create a copy of diamonds, then replace x-values greater than 9
# with NA:
diamonds2 <- diamonds
diamonds2[diamonds2$x > 9] <- NA

## Create the scatterplot
ggplot(diamonds2, aes(carat, price, colour = is.na(x))) +

geom_point()

In this plot, we see that virtually all high carat diamonds have missing x values. This
seems to indicate that there is a systematic pattern to the missing data (which of
course is correct in this case!), and we should proceed with any analyses of x with
caution.

Exercise 4.8

The code below is an example of what your analysis can look like, with some remarks
as comments:
# Investigate missing data
colSums(is.na(flights2))
# Not too much missing data in this dataset!
View(flights2[is.na(flights2$air_time),])
# Flights with missing data tend to have several missing variables.

# Ridge plots to compare different carriers (boxplots, facetted
# histograms and violin plots could also be used)
library(ggridges)
ggplot(flights2, aes(arr_delay, carrier, fill = carrier)) +

geom_density_ridges() +
theme(legend.position = "none") +
xlim(-50, 250)

# Some airlines (e.g. EV) appear to have a larger spread than others

ggplot(flights2, aes(dep_delay, carrier, fill = carrier)) +
geom_density_ridges() +
theme(legend.position = "none") +
xlim(-15, 100)

# Some airlines (e.g. EV) appear to have a larger spread others

ggplot(flights2, aes(air_time, carrier, fill = carrier)) +
geom_density_ridges() +
theme(legend.position = "none")
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# VX only do long-distance flights, whereas MQ, FL and 9E only do
# shorter flights

# Make scatterplots and label outliers with flight numbers
ggplot(flights2, aes(dep_delay, arr_delay, colour = carrier)) +

geom_point() +
geom_text(aes(label = ifelse(arr_delay > 300,

paste("Flight", flight), "")),
vjust = 1.2, hjust = 1)

ggplot(flights2, aes(air_time, arr_delay, colour = carrier)) +
geom_point() +
geom_text(aes(label = ifelse(air_time > 400 | arr_delay > 300,

paste("Flight", flight), "")),
vjust = 1.2, hjust = 1)

Exercise 4.9

1. To decrease the smoothness of the line, we use the span argument in
geom_smooth. The default is geom_smooth(span = 0.75). Decreasing this
values yields a very different fit:

ggplot(msleep, aes(brainwt, sleep_total)) +
geom_point() +
geom_smooth(span = 0.25) +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

More smoothing is probably preferable in this case. The relationship appears to be
fairly weak, and appears to be roughly linear.

2. We can use the method argument in geom_smooth to fit a straight line using
lm instead of LOESS:

ggplot(msleep, aes(brainwt, sleep_total)) +
geom_point() +
geom_smooth(method = "lm") +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

3. To remove the confidence interval from the plot, we set se = FALSE in
geom_smooth:
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ggplot(msleep, aes(brainwt, sleep_total)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE) +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

4. Finally, we can change the colour of the smoothing line using the colour argu-
ment:

ggplot(msleep, aes(brainwt, sleep_total)) +
geom_point() +
geom_smooth(method = "lm", se = FALSE, colour = "red") +
xlab("Brain weight (logarithmic scale)") +
ylab("Total sleep time") +
scale_x_log10()

Exercise 4.10

1. Adding the geom_smooth geom with the default settings produces a trend line
that does not capture seasonality:

autoplot(a10) +
geom_smooth()

2. We can change the axes labels using xlab and ylab:
autoplot(a10) +

geom_smooth() +
xlab("Year") +
ylab("Sales ($ million)")

3. ggtitle adds a title to the figure:
autoplot(a10) +

geom_smooth() +
xlab("Year") +
ylab("Sales ($ million)") +
ggtitle("Anti-diabetic drug sales in Australia")

4. The colour argument can be passed to autoplot to change the colour of the
time series line:

autoplot(a10, colour = "red") +
geom_smooth() +
xlab("Year") +
ylab("Sales ($ million)") +
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ggtitle("Anti-diabetic drug sales in Australia")

Exercise 4.11

1. The text can be added by using annotate(geom = "text", ...). In order
not to draw the text on top of the circle, you can shift the x-value of the text
(the appropriate shift depends on the size of your plot window):

autoplot(gold) +
annotate(geom = "point", x = spike_date, y = gold[spike_date],

size = 5, shape = 21, colour = "red",
fill = "transparent") +

annotate(geom = "text", x = spike_date - 100,
y = gold[spike_date],
label = "Incorrect value!")

2. We can remove the erroneous value by replacing it with NA in the time series:
gold[spike_date] <- NA
autoplot(gold)

3. Finally, we can add a reference line using geom_hline:
autoplot(gold) +

geom_hline(yintercept = 400, colour = "red")

Exercise 4.12

1. We can specify which variables to include in the plot as follows:
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE)

This produces a terrible-looking label for the y-axis, which we can remove by setting
the y-label to NULL:
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE) +

ylab(NULL)

2. As before, we can add smoothers using geom_smooth:
autoplot(elecdaily[, c("Demand", "Temperature")], facets = TRUE) +

geom_smooth() +
ylab(NULL)

Exercise 4.13

1. We set the size of the points using geom_point(size):
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ggplot(elecdaily2, aes(Temperature, Demand, colour = day)) +
geom_point(size = 0.5) +
geom_path()

2. To add annotations, we use annotate and some code to find the days of the
lowest and highest temperatures:

## Lowest temperature
lowest <- which.min(elecdaily2$Temperature)

## Highest temperature
highest <- which.max(elecdaily2$Temperature)

## We shift the y-values of the text so that it appears above
# the points
ggplot(elecdaily2, aes(Temperature, Demand, colour = day)) +

geom_point(size = 0.5) +
geom_path() +
annotate(geom = "text", x = elecdaily2$Temperature[lowest],

y = elecdaily2$Demand[lowest] + 4,
label = elecdaily2$day[lowest]) +

annotate(geom = "text", x = elecdaily2$Temperature[highest],
y = elecdaily2$Demand[highest] + 4,
label = elecdaily2$day[highest])

Exercise 4.14

We can specify aes(group) for a particular geom only as follows:
ggplot(Oxboys, aes(age, height, colour = Subject)) +

geom_point() +
geom_line(aes(group = Subject)) +
geom_smooth(method = "lm", colour = "red", se = FALSE)

Subject is now used for grouping the points used to draw the lines (i.e. for
geom_line), but not for geom_smooth, which now uses all the points to create a
trend line showing the average height of the boys over time.

Exercise 4.15

Code for producing the three plots is given below:
library(fma)

# Time series plot
autoplot(writing) +
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geom_smooth() +
ylab("Sales (francs)") +
ggtitle("Sales of printing and writing paper")

# Seasonal plot
ggseasonplot(writing, year.labels = TRUE, year.labels.left = TRUE) +

ylab("Sales (francs)") +
ggtitle("Seasonal plot of sales of printing and writing paper")

# There is a huge dip in sales in August, when many French offices are
# closed due to holidays.

# stl-decomposition
autoplot(stl(writing, s.window = 365)) +

ggtitle("Seasonal decomposition of paper sales time series")

Exercise 4.16

We use the cpt.var functions with the default settings:
library(forecast)
library(fpp2)
library(changepoint)
library(ggfortify)

# Plot the time series:
autoplot(elecdaily[,"Demand"])

# Plot points where there are changes in the variance:
autoplot(cpt.var(elecdaily[,"Demand"]))

The variance is greater in the beginning of the year, and then appears to be more or
less constant. Perhaps this can be explained by temperature?
# Plot the time series:
autoplot(elecdaily[,"Temperature"])

We see that the high-variance period coincides with peaks and large oscillations in
temperature, which would cause the energy demand to increase and decrease more
than usual, making the variance greater.

Exercise 4.17

By adding a copy of the observation for month 12, with the Month value replaced by
0, we can connect the endpoints to form a continuous curve:
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Cape_Town_weather[13,] <- Cape_Town_weather[12,]
Cape_Town_weather$Month[13] <- 0

ggplot(Cape_Town_weather, aes(Month, Temp_C)) +
geom_line() +
coord_polar() +
xlim(0, 12)

Exercise 4.18

As for all ggplot2 plots, we can use ggtitle to add a title to the plot:
ggpairs(diamonds[, which(sapply(diamonds, class) == "numeric")],

aes(colour = diamonds$cut, alpha = 0.5)) +
ggtitle("Numeric variables in the diamonds dataset")

Exercise 4.19

1. We create the correlogram using ggcorr as follows:
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")])

2. method allows us to control which correlation coefficient to use:
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],

method = c("pairwise", "spearman"))

3. nbreaks is used to create a categorical colour scale:
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],

method = c("pairwise", "spearman"),
nbreaks = 5)

4. low and high can be used to control the colours at the endpoints of the scale:
ggcorr(diamonds[, which(sapply(diamonds, class) == "numeric")],

method = c("pairwise", "spearman"),
nbreaks = 5,
low = "yellow", high = "black")

(Yes, the default colours are a better choice!)

Exercise 4.20

1. We replace colour = vore in the aes by fill = vore and add colour =
"black", shape = 21 to geom_point. The points now get black borders,
which makes them a bit sharper:
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ggplot(msleep, aes(brainwt, sleep_total, fill = vore, size = bodywt)) +
geom_point(alpha = 0.5, colour = "black", shape = 21) +
xlab("log(Brain weight)") +
ylab("Sleep total (h)") +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt",

name = "Square root of\nbody weight") +
scale_color_discrete(name = "Feeding behaviour")

2. We can use ggplotly to create an interactive version of the plot. Adding text
to the aes allows us to include more information when hovering points:

library(plotly)
myPlot <- ggplot(msleep, aes(brainwt, sleep_total, fill = vore,

size = bodywt, text = name)) +
geom_point(alpha = 0.5, colour = "black", shape = 21) +
xlab("log(Brain weight)") +
ylab("Sleep total (h)") +
scale_x_log10() +
scale_size(range = c(1, 20), trans = "sqrt",

name = "Square root of\nbody weight") +
scale_color_discrete(name = "Feeding behaviour")

ggplotly(myPlot)

Exercise 4.21

1. We create the tile plot using geom_tile. By setting fun = max we obtain the
highest price in each bin:

ggplot(diamonds, aes(table, depth, z = price)) +
geom_tile(binwidth = 1, stat = "summary_2d", fun = max) +
ggtitle("Highest prices for diamonds with different depths

and tables")

2. We can create the bin plot using either geom_bin2d or geom_hex:
ggplot(diamonds, aes(carat, price)) +

geom_bin2d(bins = 50)

Diamonds with carat around 0.3 and price around 1000 have the highest bin counts.

Exercise 4.22

1. VS2 and Ideal is the most common combination:
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diamonds2 <- aggregate(carat ~ cut + clarity, data = diamonds,
FUN = length)

names(diamonds2)[3] <- "Count"
ggplot(diamonds2, aes(clarity, cut, fill = Count)) +

geom_tile()

2. As for continuous variables, we can use geom_tile with the arguments stat =
"summary_2d", fun = mean to display the average prices for different combi-
nations. SI2 and Premium is the combination with the highest average price:

ggplot(diamonds, aes(clarity, cut, z = price)) +
geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) +
ggtitle("Mean prices for diamonds with different

clarities and cuts")

Exercise 4.23

1. We create the scatterplot using:
library(gapminder)
library(GGally)

gapminder2007 <- gapminder[gapminder$year == 2007,]

ggpairs(gapminder2007[, c("lifeExp", "pop", "gdpPercap")],
aes(colour = gapminder2007$continent, alpha = 0.5),
upper = list(continuous = "na"))

2. The interactive facetted bubble plot is created using:
library(plotly)

gapminder2007 <- gapminder[gapminder$year == 2007,]

myPlot <- ggplot(gapminder2007, aes(gdpPercap, lifeExp, size = pop,
colour = country)) +

geom_point(alpha = 0.5) +
scale_x_log10() +
scale_size(range = c(2, 15)) +
scale_colour_manual(values = country_colors) +
theme(legend.position = "none") +
facet_wrap(~ continent)

ggplotly(myPlot)

Well done, you just visualised 5 variables in a facetted bubble plot!
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Exercise 4.24

1. Fixed wing multi engine Boeings are the most common planes:
library(nycflights13)
library(ggplot2)

planes2 <- aggregate(tailnum ~ type + manufacturer, data = planes,
FUN = length)

ggplot(planes2, aes(type, manufacturer, fill = tailnum)) +
geom_tile()

2. The fixed wing multi engine Airbus has the highest average number of seats:
ggplot(planes, aes(type, manufacturer, z = seats)) +

geom_tile(binwidth = 1, stat = "summary_2d", fun = mean) +
ggtitle("Number of seats for different planes")

3. The number of seats seems to have increased in the 1980’s, and then reached a
plateau:

ggplot(planes, aes(year, seats)) +
geom_point(aes(colour = engine)) +
geom_smooth()

The plane with the largest number of seats is not an Airbus, but a Boeing 747-451. It
can be found using planes[which.max(planes$seats),] or visually using plotly:
myPlot <- ggplot(planes, aes(year, seats,

text = paste("Tail number:", tailnum,
"<br>Manufacturer:",
manufacturer))) +

geom_point(aes(colour = engine)) +
geom_smooth()

ggplotly(myPlot)

4. Finally, we can investigate what engines were used during different time periods
in several ways, for instance by differentiating engines by colour in our previous
plot:

ggplot(planes, aes(year, seats)) +
geom_point(aes(colour = engine)) +
geom_smooth()
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Exercise 4.25

First, we compute the principal components:
library(ggplot2)

# Compute principal components:
pca <- prcomp(diamonds[, which(sapply(diamonds, class) == "numeric")],

center = TRUE, scale. = TRUE)

1. To see the proportion of variance explained by each component, we use
summary:

summary(pca)

The first PC accounts for 65.5 % of the total variance. The first two account for
86.9 % and the first three account for 98.3 % of the total variance, meaning that 3
components are needed to account for at least 90 % of the total variance.

2. To see the loadings, we type:
pca

The first PC appears to measure size: it is dominated by carat, x, y and z, which all
are size measurements. The second PC appears is dominated by depth and table
and is therefore a summary of those measures.

3. To compute the correlation, we use cor:
cor(pca$x[,1], diamonds$price)

The (Pearson) correlation is 0.89, which is fairly high. Size is clearly correlated to
price!

4. To see if the first two principal components be used to distinguish between
diamonds with different cuts, we make a scatterplot:

autoplot(pca, data = diamonds, colour = "cut")

The points are mostly gathered in one large cloud. Apart from the fact that very
large or very small values of the second PC indicates that a diamond has a Fair cut,
the first two principal components seem to offer little information about a diamond’s
cut.

Exercise 4.26

We create the scatterplot with the added arguments:
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
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"Groove_length", "Variety"))
seeds$Variety <- factor(seeds$Variety)

pca <- prcomp(seeds[,-8], center = TRUE, scale. = TRUE)

library(ggfortify)
autoplot(pca, data = seeds, colour = "Variety",

loadings = TRUE, loadings.label = TRUE)

The arrows for Area, Perimeter, Kernel_length, Kernel_width and Groove_length
are all about the same length and are close to parallel the x-axis, which shows
that these have similar impact on the first principal component but not the second,
making the first component a measure of size. Asymmetry and Compactness both
affect the second component, making it a measure of shape. Compactness also
affects the first component, but not as much as the size variables do.

Exercise 4.27

We change the hc_method and hc_metric arguments to use complete linkage and
the Manhattan distance:
library(cluster)
library(factoextra)
votes.repub %>% scale() %>%

hcut(k = 5, hc_func = "agnes",
hc_method = "complete",
hc_metric = "manhattan") %>%

fviz_dend()

fviz_dend produces ggplot2 plots. We can save the plots from both approaches
and then plot them side-by-side using patchwork as in Section 4.3.4:
votes.repub %>% scale() %>%

hcut(k = 5, hc_func = "agnes",
hc_method = "average",
hc_metric = "euclidean") %>%

fviz_dend() -> dendro1
votes.repub %>% scale() %>%

hcut(k = 5, hc_func = "agnes",
hc_method = "complete",
hc_metric = "manhattan") %>%

fviz_dend() -> dendro2

library(patchwork)
dendro1 / dendro2
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Alaska and Vermont are clustered together in both cases. The red leftmost cluster
is similar but not identical, including Alabama, Georgia and Louisiana.

To compare the two dendrograms in a different way, we can use tanglegram. Setting
k_labels = 5 and k_branches = 5 gives us 5 coloured clusters:
votes.repub %>% scale() %>%

hcut(k = 5, hc_func = "agnes",
hc_method = "average",
hc_metric = "euclidean") -> clust1

votes.repub %>% scale() %>%
hcut(k = 5, hc_func = "agnes",

hc_method = "complete",
hc_metric = "manhattan") -> clust2

library(dendextend)
tanglegram(as.dendrogram(clust1),

as.dendrogram(clust2),
k_labels = 5,
k_branches = 5)

Note that the colours of the lines connecting the two dendrograms are unrelated to
the colours of the clusters.

Exercise 4.28

Using the default settings in agnes, we can do the clustering using:
library(cluster)
library(magrittr)
USArrests %>% scale() %>%

agnes() %>%
plot(which = 2)

Maryland is clustered with New Mexico, Michigan and Arizona, in that order.

Exercise 4.29

We draw a heatmap, with the data standardised in the column direction because we
wish to cluster the observations rather than the variables:
library(cluster)
library(magrittr)
USArrests %>% as.matrix() %>% heatmap(scale = "col")

You may want to increase the height of your Plot window so that the names of all
states are displayed properly.
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The heatmap shows that Maryland, and the states similar to it, has higher crime
rates than most other states. There are a few other states with high crime rates in
other clusters, but those tend to only have a high rate for one crime (e.g. Georgia,
which has a very high murder rate), whereas states in the cluster that Maryland is
in have high rates for all or almost all types of violent crime.

Exercise 4.30

First, we inspect the data:
library(cluster)
?chorSub

# Scatterplot matrix:
library(GGally)
ggpairs(chorSub)

There are a few outliers, so it may be a good idea to use pam as it is less affected by
outliers than kmeans. Next, we draw some plots to help use choose 𝑘:
library(factoextra)
library(magrittr)
chorSub %>% scale() %>%

fviz_nbclust(pam, method = "wss")
chorSub %>% scale() %>%

fviz_nbclust(pam, method = "silhouette")
chorSub %>% scale() %>%

fviz_nbclust(pam, method = "gap")

There is no pronounced elbow in the WSS plot, although slight changes appear to
occur at 𝑘 = 3 and 𝑘 = 7. Judging by the silhouette plot, 𝑘 = 3 may be a good
choice, while the gap statistic indicates that 𝑘 = 7 would be preferable. Let’s try
both values:
# k = 3:
chorSub %>% scale() %>%

pam(k = 3) -> kola_cluster
fviz_cluster(kola_cluster, geom = "point")

# k = 7:
chorSub %>% scale() %>%

pam(k = 7) -> kola_cluster
fviz_cluster(kola_cluster, geom = "point")

Neither choice is clearly superior. Remember that clustering is an exploratory pro-
cedure, that we use to try to better understand our data.
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The plot for 𝑘 = 7 may look a little strange, with two largely overlapping clusters.
Bear in mind though, that the clustering algorithm uses all 10 variables and not just
the first two principal components, which are what is shown in the plot. The differ-
ences between the two clusters isn’t captured by the first two principal components.

Exercise 4.31

First, we try to find a good number of clusters:
library(factoextra)
library(magrittr)
USArrests %>% scale() %>%

fviz_nbclust(fanny, method = "wss")
USArrests %>% scale() %>%

fviz_nbclust(fanny, method = "silhouette")

We’ll go with 𝑘 = 2 clusters:
library(cluster)
USArrests %>% scale() %>%

fanny(k = 2) -> USAclusters

# Show memberships:
USAclusters$membership

Maryland is mostly associated with the first cluster. Its neighbouring state New
Jersey is equally associated with both clusters.

Exercise 4.32

We do the clustering and plot the resulting clusters:
library(cluster)
library(mclust)
kola_cluster <- Mclust(scale(chorSub))
summary(kola_cluster)

# Plot results with ellipsoids:
library(factoextra)
fviz_cluster(kola_cluster, geom = "point", ellipse.type = "norm")

Three clusters, that overlap substantially when the first two principal components
are plotted, are found.

Exercise 4.33

First, we have a look at the data:
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?ability.cov
ability.cov

We can imagine several different latent variables that could explain how well the
participants performed in these tests: general ability, visual ability, verbal ability,
and so on. Let’s use a scree plot to determine how many factors to use:
library(psych)
scree(ability.cov$cov, pc = FALSE)

2 or 3 factors seem like a good choice here. Let’s try both:
# 2-factor model:
ab_fa2 <- fa(ability.cov$cov, nfactors = 2,

rotate = "oblimin", fm = "ml")
fa.diagram(ab_fa2, simple = FALSE)

# 3-factor model:
ab_fa3 <- fa(ability.cov$cov, nfactors = 3,

rotate = "oblimin", fm = "ml")
fa.diagram(ab_fa3, simple = FALSE)

In the 2-factor model, one factor is primarily associated with the visual variables
(which we interpret as the factor describing visual ability), whereas the other primar-
ily is associated with reading and vocabulary (verbal ability). Both are associated
with the measure of general intelligence.

In the 3-factor model, there is still a factor associated with reading and vocabulary.
There are two factors associated with the visual tests: one with block design and
mazes and one with picture completion and general intelligence.

Exercise 4.34

First, we have a look at the data:
library(poLCA)
?cheating
View(cheating)

Next, we perform a latent class analysis with GPA as a covariate:
m <- poLCA(cbind(LIEEXAM, LIEPAPER,

FRAUD, COPYEXAM) ~ GPA,
data = cheating, nclass = 2)

The two classes roughly correspond to cheaters and non-cheaters. From the table
showing the relationship with GPA, we see students with high GPA’s are less likely to
be cheaters.
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Chapter 5
Exercise 5.1

1. as.logical returns FALSE for 0 and TRUE for all other numbers:
as.logical(0)
as.logical(1)
as.logical(14)
as.logical(-8.889)
as.logical(pi^2 + exp(18))

2. When the as. functions are applied to vectors, they convert all values in the
vector:

as.character(c(1, 2, 3, pi, sqrt(2)))

3. The is. functions return a logical: TRUE if the variable is of the type and
FALSE otherwise:

is.numeric(27)
is.numeric("27")
is.numeric(TRUE)

4. The is. functions show that NA in fact is a (special type of) logical. This is
also verified by the documentation for NA:

is.logical(NA)
is.numeric(NA)
is.character(NA)
?NA

Exercise 5.2

We set file_path to the path for vas.csv and load the data as in Exercise 3.8:
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)

To split the VAS vector by patient ID, we use split:
vas_split <- split(vas$VAS, vas$ID)

To access the values for patient 212, either of the following works:
vas_split$`212`
vas_split[[12]]
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Exercise 5.3

1. To convert the proportions to percentages with one decimal place, we must first
multiply them by 100 and then round them:

props <- c(0.1010, 0.2546, 0.6009, 0.0400, 0.0035)
round(100 * props, 1)

2. The cumulative maxima and minima are computed using cummax and cummin:
cummax(airquality$Temp)
cummin(airquality$Temp)

The minimum during the period occurs on the 5th day, whereas the maximum occurs
during day 120.

3. To find runs of days with temperatures above 80, we use rle:
runs <- rle(airquality$Temp > 80)

To find runs with temperatures above 80, we extract the length of the runs for which
runs$values is TRUE:
runs$lengths[runs$values == TRUE]

We see that the longest run was 23 days.

Exercise 5.4

1. On virtually all systems, the largest number that R can represent as a floating
point is 1.797693e+308. You can find this by gradually trying larger and larger
numbers:

1e+100
# ...
1e+308
1e+309 # The largest number must be between 1e+308 and 1e+309!
# ...
1.797693e+308
1.797694e+308

2. If we place the ^2 inside sqrt the result becomes 0:
sqrt(2)^2 - 2 # Not 0
sqrt(2^2) - 2 # 0

Exercise 5.5

We re-use the solution from Exercise 3.7:
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airquality$TempCat <- cut(airquality$Temp,
breaks = c(50, 70, 90, 110))

1. Next, we change the levels’ names:
levels(airquality$TempCat) <- c("Mild", "Moderate", "Hot")

2. Finally, we combine the last two levels:
levels(airquality$TempCat)[2:3] <- "Hot"

Exercise 5.6

1 We start by converting the vore variable to a factor:
library(ggplot2)
str(msleep) # vore is a character vector!

msleep$vore <- factor(msleep$vore)
levels(msleep$vore)

The levels are ordered alphabetically, which is the default in R.

2. To compute grouped means, we use aggregate:
means <- aggregate(sleep_total ~ vore, data = msleep, FUN = mean)

3. Finally, we sort the factor levels according to their sleep_total means:
# Check order:
means
# New order: herbi, carni, omni, insecti.

# We could set the new order manually:
msleep$vore <- factor(msleep$vore,

levels = c("herbi", "carni", "omni", "insecti"))

# Alternatively, rank and match can be used to get the new order of
# the levels:
?rank
?match
ranks <- rank(means$sleep_total)
new_order <- match(1:4, ranks)

msleep$vore <- factor(msleep$vore,
levels = levels(msleep$vore)[new_order])
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Exercise 5.7

First, we set file_path to the path to handkerchiefs.csv and import it to the
data frame pricelist:
pricelist <- read.csv(file_path)

1. nchar counts the number of characters in strings:
?nchar
nchar(pricelist$Italian.handkerchiefs)

2. We can use grep and a regular expression to see that there are 2 rows of the
Italian.handkerchief column that contain numbers:

grep("[[:digit:]]", pricelist$Italian.handkerchiefs)

3. To extract the prices in shillings (S) and pence (D) from the Price column and
store these in two new numeric variables in our data frame, we use strsplit,
unlist and matrix as follows:

# Split strings at the space between the numbers and the letters:
Price_split <- strsplit(pricelist$Price, " ")
Price_split <- unlist(Price_split)
Price_matrix <- matrix(Price_split, nrow = length(Price_split)/4,

ncol = 4, byrow = TRUE)

# Add to the data frame:
pricelist$PriceS <- as.numeric(Price_matrix[,1])
pricelist$PriceD <- as.numeric(Price_matrix[,3])

Exercise 5.8

We set file_path to the path to oslo-biomarkers.xlsx and load the data:
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))

To find out how many patients were included in the study, we use strsplit to split
the ID-timepoint string, and then unique:
oslo_id <- unlist(strsplit(oslo$"PatientID.timepoint", "-"))

oslo_id_matrix <- matrix(oslo_id, nrow = length(oslo_id)/2,
ncol = 2, byrow = TRUE)

unique(oslo_id_matrix[,1])
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length(unique(oslo_id_matrix[,1]))

We see that 118 patients were included in the study.

Exercise 5.9

1. "$g" matches strings ending with g:
contacts$Address[grep("g$", contacts$Address)]

2. "^[^[[:digit:]]" matches strings beginning with anything but a digit:
contacts$Address[grep("^[^[[:digit:]]", contacts$Address)]

3. "a(s|l)" matches strings containing either as or al:
contacts$Address[grep("a(s|l)", contacts$Address)]

4. "[[:lower:]]+[.][[:lower:]]+" matches strings containing any number of
lowercase letters, followed by a period ., followed by any number of lowercase
letters:

contacts$Address[grep("[[:lower:]]+[.][[:lower:]]+", contacts$Address)]

Exercise 5.10

We want to extract all words, i.e. segments of characters separated by white spaces.
First, let’s create the string containing example sentences:
x <- "This is an example of a sentence, with 10 words. Here are 4 more!"

Next, we split the string at the spaces:
x_split <- strsplit(x, " ")

Note that x_split is a list. To turn this into a vector, we use unlist
x_split <- unlist(x_split)

Finally, we can use gsub to remove the punctuation marks, so that only the words
remain:
gsub("[[:punct:]]", "", x_split)

If you like, you can put all steps on a single row:
gsub("[[:punct:]]", "", unlist(strsplit(x, " ")))

…or reverse the order of the operations:
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unlist(strsplit(gsub("[[:punct:]]", "", x), " "))

Exercise 5.11

1. The functions are used to extract the weekday, month and quarter for each
date:

weekdays(dates)
months(dates)
quarters(dates)

2. julian can be used to compute the number of days from a specific date
(e.g. 1970-01-01) to each date in the vector:

julian(dates, origin = as.Date("1970-01-01", format = "%Y-%m-%d"))

Exercise 5.12

1. On most systems, converting the three variables to Date objects using as.Date
yields correct dates without times:

as.Date(c(time1, time2, time3))

2. We convert time1 to a Date object and add 1 to it:
as.Date(time1) + 1

The result is 2020-04-02, i.e. adding 1 to the Date object has added 1 day to it.

3. We convert time3 and time1 to Date objects and subtract them:
as.Date(time3) - as.Date(time1)

The result is a difftime object, printed as Time difference of 2 days. Note that
the times are ignored, just as before.

4. We convert time2 and time1 to Date objects and subtract them:
as.Date(time2) - as.Date(time1)

The result is printed as Time difference of 0 days, because the difference in time
is ignored.

5. We convert the three variables to POSIXct date and time objects using
as.POSIXct without specifying the date format:

as.POSIXct(c(time1, time2, time3))

On most systems, this yields correctly displayed dates and times.

6. We convert time3 and time1 to POSIXct objects and subtract them:
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as.POSIXct(time3) - as.POSIXct(time1)

This time out, time is included when the difference is computed, and the output is
Time difference of 2.234722 days.

7. We convert time2 and time1 to POSIXct objects and subtract them:
as.POSIXct(time2) - as.POSIXct(time1)

In this case, the difference is presented in hours: Time difference of 1.166667
hours. In the next step, we take control over the units shown in the output.

8. difftime can be used to control what units are used for expressing differences
between two timepoints:

difftime(as.POSIXct(time3), as.POSIXct(time1), units = "hours")

The out is Time difference of 53.63333 hours.

Exercise 5.13

1. Using the first option, the Date becomes the first day of the quarter. Using
the second option, it becomes the last day of the quarter instead. Both can be
useful for presentation purposes - which you prefer is a matter of taste.

2. To convert the quarter-observations to the first day of their respective quarters,
we use as.yearqtr as follows:

library(zoo)
as.Date(as.yearqtr(qvec2, format = "Q%q/%y"))
as.Date(as.yearqtr(qvec3, format = "Q%q-%Y"))

%q, %y,and %Y are date tokens. The other letters and symbols in the format argument
simply describe other characters included in the format.

Exercise 5.14

The x-axis of the data can be changed in multiple ways. A simple approach is the
following:
## Create a new data frame with the correct dates and the demand data:
dates <- seq.Date(as.Date("2014-01-01"), as.Date("2014-12-31"),

by = "day")
elecdaily2 <- data.frame(dates = dates, demand = elecdaily[,1])

ggplot(elecdaily2, aes(dates, demand)) +
geom_line()

A more elegant approach relies on the xts package for time series:
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library(xts)
## Convert time series to an xts object:
dates <- seq.Date(as.Date("2014-01-01"), as.Date("2014-12-31"),

by = "day")
elecdaily3 <- xts(elecdaily, order.by = dates)

autoplot(elecdaily3[,"Demand"])

Exercise 5.15

## First, create a data frame with better formatted dates
a102 <- as.data.frame(a10)
a102$Date <- seq.Date(as.Date("1991-07-01"), as.Date("2008-06-01"),

by = "month")

## Create the plot object
myPlot <- ggplot(a102, aes(Date, x)) +

geom_line() +
xlab("Sales")

## Create the interactive plot
ggplotly(myPlot)

Exercise 5.16

We set file_path to the path for vas.csv and read the data as in Exercise 3.8 and
convert it to a data.table (the last step being optional if we’re only using dplyr
for this exercise):
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)
vas <- as.data.table(vas)

A better option is to achieve the same result in a single line by using the fread
function from data.table:
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)

1. First, we remove the columns X and X.1:

With data.table:
vas[, c("X", "X.1") := NULL]

With dplyr:
vas %>% select(-X, -X.1) -> vas

2. Second, we add a dummy variable called highVAS that indicates whether a
patient’s VAS is 7 or greater on any given day:
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With data.table:
vas[, highVAS := VAS >= 7]

With dplyr:
vas %>% mutate(highVAS = VAS >= 7) -> vas

Exercise 5.17

We re-use the solution from Exercise 3.7:
airquality$TempCat <- cut(airquality$Temp,

breaks = c(50, 70, 90, 110))

aq <- data.table(airquality)

1. Next, we change the levels’ names:

With data.table:
new_names = c("Mild", "Moderate",

"Hot")
aq[.(TempCat = levels(TempCat),

to = new_names),
on = "TempCat",
TempCat := i.to]

aq[,TempCat := droplevels(TempCat)]

With dplyr:
aq %>% mutate(TempCat = recode(TempCat,

"(50,70]" = "Mild",
"(70,90]" = "Moderate",
"(90,110]" = "Hot")) -> aq

2. Finally, we combine the last two levels:

With data.table:
aq[.(TempCat = c("Moderate", "Hot"),

to = "Hot"),
on = "TempCat", TempCat := i.to]

aq[, TempCat := droplevels(TempCat)]

With dplyr:
aq %>% mutate(TempCat = recode(TempCat,

"Moderate" = "Hot"))

Exercise 5.18

We set file_path to the path for vas.csv and read the data as in Exercise 3.8 using
fread to import it as a data.table:
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)

1. First, we compute the mean VAS for each patient:
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With data.table:
vas[, mean(VAS, na.rm = TRUE), ID]

With dplyr:
vas %>% group_by(ID) %>%

summarise(meanVAS =
mean(VAS, na.rm = TRUE))

2. Next, we compute the lowest and highest VAS recorded for each patient:

With data.table:
vas[, .(min = min(VAS,

na.rm = TRUE),
max = max(VAS,

na.rm = TRUE)),
ID]

With dplyr:
vas %>% group_by(ID) %>%

summarise(min = min(VAS,
na.rm = TRUE),
max = max(VAS,
na.rm = TRUE))

3. Finally, we compute the number of high-VAS days for each patient. We can
compute the sum directly:

With data.table:
vas[, sum(VAS >= 7, na.rm = TRUE),

ID]

With dplyr:
vas %>% group_by(ID) %>%

summarise(highVASdays =
sum(VAS >= 7, na.rm = TRUE))

Alternatively, we can do this by first creating a dummy variable for high-VAS days:

With data.table:
vas[, highVAS := VAS >=7]
vas[, sum(highVAS, na.rm = TRUE),

ID]

With dplyr:
vas %>% mutate(highVAS = VAS >= 7) -> vas
vas %>% group_by(ID) %>%

summarise(highVASdays = sum(highVAS,
na.rm = TRUE))

Exercise 5.19

First we load the data and convert it to a data.table (the last step being optional
if we’re only using dplyr for this exercise):
library(datasauRus)
dd <- as.data.table(datasaurus_dozen)

1. Next, we compute summary statistics grouped by dataset:
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With data.table:
dd[, .(mean_x = mean(x),

mean_y = mean(y),
sd_x = sd(x),
sd_y = sd(y),
cor = cor(x,y)),
dataset]

With dplyr:
dd %>% group_by(dataset) %>%

summarise(mean_x = mean(x),
mean_y = mean(y),
sd_x = sd(x),
sd_y = sd(y),
cor = cor(x,y))

The summary statistics for all datasets are virtually identical.

2. Next, we make scatterplots. Here is a solution using ggplot2:
library(ggplot2)
ggplot(datasaurus_dozen, aes(x, y, colour = dataset)) +

geom_point() +
facet_wrap(~ dataset, ncol = 3)

Clearly, the datasets are very different! This is a great example of how simply
computing summary statistics is not enough. They tell a part of the story, yes,
but only a part.

Exercise 5.20

We set file_path to the path for vas.csv and read the data as in Exercise 3.8 using
fread to import it as a data.table:
library(data.table)
vas <- fread(file_path, sep = ";", dec = ",", skip = 4)

To fill in the missing values, we can now do as follows:

With data.table:
vas[, Visit := nafill(

Visit, "locf")]

With tidyr:
vas %>% fill(Visit)

Exercise 5.21

We set file_path to the path to ucdp-onesided-191.csv and load the data as a
data.table using fread:
library(dplyr)
library(data.table)

ucdp <- fread(file_path)
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1. First, we filter the rows so that only conflicts that took place in Colombia are
retained.

With data.table:
colombia <- ucdp[location ==

"Colombia",]

With dplyr:
ucdp %>% filter(location ==

"Colombia") -> colombia

To list the number of different actors responsible for attacks, we can use unique:
unique(colombia$actor_name)

We see that there were attacks by 7 different actors during the period.

2. To find the number of fatalities caused by government attacks on civilians, we
first filter the data to only retain rows where the actor name contains the word
government:

With data.table:
gov <- ucdp[actor_name %like%

"[gG]overnment",]

With dplyr:
ucdp %>% filter(grepl("[gG]overnment",

actor_name)
) -> gov

It may be of interest to list the governments involved in attacks on civilians:
unique(gov$actor_name)

To estimate the number of fatalities cause by these attacks, we sum the fatalities
from each attack:
sum(gov$best_fatality_estimate)

Exercise 5.22

We set file_path to the path to oslo-biomarkers.xlsx and load the data:
library(dplyr)
library(data.table)
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))

1. First, we select only the measurements from blood samples taken at 12 months.
These are the only observations where the PatientID.timepoint column con-
tains the word months:
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With data.table:
oslo[PatientID.timepoint %like%

"months",]

With dplyr:
oslo %>% filter(grepl("months",

PatientID.timepoint))

2. Second, we select only the measurements from the patient with ID number
6. Note that we cannot simply search for strings containing a 6, as we then
also would find measurements from other patients taken at 6 weeks, as well as
patients with a 6 in their ID number, e.g. patient 126. Instead, we search for
strings beginning with 6-:

With data.table:
oslo[PatientID.timepoint %like%

"^6[-]",]

With dplyr:
oslo %>% filter(grepl("^6[-]",

PatientID.timepoint))

Exercise 5.23

We set file_path to the path to ucdp-onesided-191.csv and load the data as a
data.table using fread:
library(dplyr)
library(data.table)

ucdp <- fread(file_path)

Next, we select the actor_name, year, best_fatality_estimate and location
columns:

With data.table:
ucdp[, .(actor_name, year,

best_fatality_estimate,
location)]

With dplyr:
ucdp %>% select(actor_name, year,

best_fatality_estimate,
location)

Exercise 5.24

We set file_path to the path to oslo-biomarkers.xlsx and load the data:
library(dplyr)
library(data.table)
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))

We then order the data by the PatientID.timepoint column:
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With data.table:
oslo[order(PatientID.timepoint),]

With dplyr:
oslo %>% arrange(PatientID.timepoint)

Note that because PatientID.timepoint is a character column, the rows are now
ordered in alphabetical order, meaning that patient 1 is followed by 100, 101, 102,
and so on. To order the patients in numerical order, we must first split the ID and
timepoints into two different columns. We’ll see how to do that in the next section,
and try it out on the oslo data in Exercise 5.25.

Exercise 5.25

We set file_path to the path to oslo-biomarkers.xlsx and load the data:
library(dplyr)
library(tidyr)
library(data.table)
library(openxlsx)

oslo <- as.data.table(read.xlsx(file_path))

1. First, we split the PatientID.timepoint column:

With data.table:
oslo[, c("PatientID",

"timepoint") :=
tstrsplit(PatientID.timepoint, "-",

fixed = TRUE)]

With tidyr:
oslo %>% separate(PatientID.timepoint,

into = c("PatientID",
"timepoint"),

sep = "-") -> oslo

2. Next, we reformat the patient ID to a numeric and sort the table:

With data.table:
oslo[, PatientID :=

as.numeric(PatientID)]
oslo[order(PatientID),]

With dplyr:
oslo %>% mutate(PatientID =

as.numeric(PatientID)) %>%
arrange(PatientID)

3. Finally, we reformat the data from long to wide, keeping the IL-8 and VEGF-A
measurements. We store it as oslo2, knowing that we’ll need it again in Exercise
5.26.
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With data.table:
oslo2 <- dcast(oslo,

PatientID ~ timepoint,
value.var = c("IL-8", "VEGF-A"))

With tidyr:
oslo %>% pivot_wider(id_cols =

PatientID,
names_from = timepoint,
values_from =
c("IL-8", "VEGF-A")

) -> oslo2

Exercise 5.26

We use the oslo2 data frame that we created in Exercise 5.26. In addition, we set
file_path to the path to oslo-covariates.xlsx and load the data:
library(dplyr)
library(data.table)
library(openxlsx)

covar <- as.data.table(read.xlsx(file_path))

1. First, we merge the wide data frame from Exercise 5.25 with the
oslo-covariates.xlsx data, using patient ID as key. A left join, where we
only keep data for patients with biomarker measurements, seems appropriate
here. We see that both datasets have a column named PatientID, which we
can use as our key.

With data.table:
merge(oslo2, covar,

all.x = TRUE,
by = "PatientID")

With dplyr:
oslo2 %>% left_join(covar,

by = "PatientID")

2. Next, we use the oslo-covariates.xlsx data to select data for smokers from
the wide data frame using a semijoin. The Smoker.(1=yes,.2=no) column
contains information about smoking habits. First we create a table for filtering:

With data.table:
filter_data <-
covar[`Smoker.(1=yes,.2=no)`

== 1,]

With dplyr:
covar %>%
filter(`Smoker.(1=yes,.2=no)`

== 1) -> filter_data

Next, we perform the semijoin:
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With data.table:
setkey(oslo2, PatientID)
oslo2[oslo2[filter_data,

which = TRUE]]

With dplyr:
oslo2 %>% semi_join(filter_data,

by = "PatientID")

Exercise 5.27

We read the HTML file and extract the table:
library(rvest)

wiki <- read_html("https://en.wikipedia.org/wiki/List_of_keytars")
keytars <- html_table(html_nodes(wiki, "table")[[1]], fill = TRUE)

We note that some non-numeric characters cause Dates to be a character vector:
str(keytars)
keytars$Dates

Noting that the first four characters in each element of the vector contain the year,
we can use substr to only keep those characters. Finally, we use as.numeric to
convert the text to numbers:
keytars$Dates <- substr(keytars$Dates, 1, 4)
keytars$Dates <- as.numeric(keytars$Dates)
keytars$Dates

Chapter 6
Exercise 6.1

The formula for converting a temperature 𝐹 measured in Fahrenheit to a temperature
𝐶 measured in Celsius is $C=(F-32)*5/9. Our function becomes:
FtoC <- function(F)
{

C <- (F-32)*5/9
return(C)

}

To apply it to the Temp column of airquality:
FtoC(airquality$Temp)
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Exercise 6.2

1. We want out function to take a vector as input and return a vector containing
its minimum and the maximum, without using min and max:

minmax <- function(x)
{

# Sort x so that the minimum becomes the first element
# and the maximum becomes the last element:
sorted_x <- sort(x)
min_x <- sorted_x[1]
max_x <- sorted_x[length(sorted_x)]
return(c(min_x, max_x))

}

# Check that it works:
x <- c(3, 8, 1, 4, 5)
minmax(x) # Should be 1 and 8

2. We want a function that computes the mean of the squared values of a vector
using mean, and that takes additional arguments that it passes on to mean
(e.g. na.rm):

mean2 <- function(x, ...)
{

return(mean(x^2, ...))
}

# Check that it works:
x <- c(3, 2, 1)
mean2(x) # Should be 14/3=4.666...

# With NA:
x <- c(3, 2, NA)
mean2(x) # Should be NA
mean2(x, na.rm = TRUE) # Should be 13/2=6.5

Exercise 6.3

We use cat to print a message about missing values, sum(is.na(.)) to compute
the number of missing values, na.omit to remove rows with missing data and then
summary to print the summary:
na_remove <- . %T>% {cat("Missing values:", sum(is.na(.)), "\n")} %>%

na.omit %>% summary
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na_remove(airquality)

Exercise 6.4

The following operator allows us to plot y against x:
`%against%` <- function(y, x) { plot(x, y) }

Let’s try it out:
airquality$Wind %against% airquality$Temp

Or, if we want to use ggplot2 instead of base graphics:
library(ggplot2)
`%against%` <- function(y, x) {

df <- data.frame(x, y)
ggplot(df, aes(x, y)) +

geom_point()
}

airquality$Wind %against% airquality$Temp

Exercise 6.5

1. FALSE: x is not greater than 2.

2. TRUE: | means that at least one of the conditions need to be satisfied, and x is
greater than z.

3. FALSE: & means that both conditions must be satisfied, and x is not greater
than y.

4. TRUE: the absolute value of x*z is 6, which is greater than y.

Exercise 6.6

There are two errors: the variable name in exists is not between quotes and x > 0
evaluates to a vector an not a single value. The goal is to check that all values in x
are positive, so all can be used to collapse the logical vector x > 0:
x <- c(1, 2, pi, 8)

# Only compute square roots if x exists
# and contains positive values:
if(exists("x")) { if(all(x > 0)) { sqrt(x) } }

Alternatively, we can get a better looking solution by using &&:
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if(exists("x") && all(x > 0)) { sqrt(x) }

Exercise 6.7

1. To compute the mean temperature for each month in the airquality dataset
using a loop, we loop over the 6 months:

months <- unique(airquality$Month)
meanTemp <- vector("numeric", length(months))

for(i in seq_along(months))
{

# Extract data for month[i]:
aq <- airquality[airquality$Month == months[i],]
# Compute mean temperature:
meanTemp[i] <- mean(aq$Temp)

}

2. Next, we use a for loop to compute the maximum and minimum value of each
column of the airquality data frame, storing the results in a data frame:

results <- data.frame(min = vector("numeric", ncol(airquality)),
max = vector("numeric", ncol(airquality)))

for(i in seq_along(airquality))
{

results$min[i] <- min(airquality[,i], na.rm = TRUE)
results$max[i] <- max(airquality[,i], na.rm = TRUE)

}
results

# For presentation purposes, we can add the variable names as
# row names:
row.names(results) <- names(airquality)

3. Finally, we write a function to solve task 2 for any data frame:
minmax <- function(df, ...)
{

results <- data.frame(min = vector("numeric", ncol(df)),
max = vector("numeric", ncol(df)))

for(i in seq_along(df))
{

results$min[i] <- min(df[,i], ...)
results$max[i] <- max(df[,i], ...)
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}

# For presentation purposes, we add the variable names as
# row names:
row.names(results) <- names(airquality)

return(results)
}

# Check that it works:
minmax(airquality)
minmax(airquality, na.rm = TRUE)

Exercise 6.8

1. We can create 0.25 0.5 0.75 1 in two different ways using seq:
seq(0.25, 1, length.out = 4)
seq(0.25, 1, by = 0.25)

2. We can create 1 1 1 2 2 5 using rep. 1 is repeated 3 times, 2 is repeated 2
times and 5 is repeated a single time:

rep(c(1, 2, 5), c(3, 2, 1))

Exercise 6.9

We could create the same sequences using 1:ncol(airquality) and 1:length(airquality$Temp),
but if we accidentally apply those solutions to objects with zero length, we would
run into trouble! Let’s see what happens:
x <- c()
length(x)

Even though there are no elements in the vector, two iterations are run when we use
1:length(x) to set the values of the control variable:
for(i in 1:length(x)) { cat("Element", i, "of the vector\n") }

The reason is that 1:length(x) yields the vector 0 1, providing two values for the
control variable.

If we use seq_along instead, no iterations will be run, because seq_along(x) returns
zero values:
for(i in seq_along(x)) { cat("Element", i, "of the vector\n") }
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This is the desired behaviour - if there are no elements in the vector then the loop
shouldn’t run! seq_along is the safer option, but 1:length(x) is arguably less
opaque and therefore easier for humans to read, which also has its benefits.

Exercise 6.10

To normalise the variable, we need to map the smallest value to 0 and the largest to
1:
normalise <- function(df, ...)
{

for(i in seq_along(df))
{

df[,i] <- (df[,i] - min(df[,i], ...))/(max(df[,i], ...) -
min(df[,i], ...))

}
return(df)

}

aqn <- normalise(airquality, na.rm = TRUE)
summary(aqn)

Exercise 6.11

We set folder_path to the path of the folder (making sure that the path ends with
/ (or \\ on Windows)). We can then loop over the .csv files in the folder and print
the names of their variables as follows:
files <- list.files(folder_path, pattern = "\\.csv$")

for(file in files)
{

csv_data <- read.csv(paste(folder_path, file, sep = ""))
cat(file, "\n")
cat(names(csv_data))
cat("\n\n")

}

Exercise 6.12

1. The condition in the outer loop, i < length(x), is used to check that the
element x[i+1] used in the inner loop actually exists. If i is equal to the
length of the vector (i.e. is the last element of the vector) then there is no
element x[i+1] and consequently the run cannot go on. If this condition wasn’t
included, we would end up with an infinite loop.
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2. The condition in the inner loop, x[i+1] == x[i] & i < length(x), is used to
check if the run continues. If [i+1] == x[i] is TRUE then the next element of
x is the same as the current, meaning that the run continues. As in the previous
condition, i < length(x) is included to make sure that we don’t start looking
for elements outside of x, which could create an infinite loop.

3. The line run_values <- c(run_values, x[i-1]) creates a vector combining
the existing elements of run_values with x[i-1]. This allows us to store the
results in a vector without specifying its size in advance. Not however that
this approach is slower than specifying the vector size in advance, and that you
therefore should avoid it when using for loops.

Exercise 6.13

We modify the loop so that it skips to the next iteration if x[i] is 0, and breaks if
x[i] is NA:
x <- c(1, 5, 8, 0, 20, 0, 3, NA, 18, 2)

for(i in seq_along(x))
{

if(is.na(x[i])) { break }
if(x[i] == 0) { next }
cat("Step", i, "- reciprocal is", 1/x[i], "\n")

}

Exercise 6.13

We can put a conditional statement inside each of the loops, to check that both
variables are numeric:
cor_func <- function(df)
{

cor_mat <- matrix(NA, nrow = ncol(df), ncol = ncol(df))
for(i in seq_along(df))
{

if(!is.numeric(df[[i]])) { next }
for(j in seq_along(df))
{

if(!is.numeric(df[[j]])) { next }
cor_mat[i, j] <- cor(df[[i]], df[[j]],

use = "pairwise.complete")
}

}
return(cor_mat)

}
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# Check that it works:
str(ggplot2::msleep)
cor_func(ggplot2::msleep)

An (nicer?) alternative would be to check which columns are numeric and loop over
those:
cor_func <- function(df)
{

cor_mat <- matrix(NA, nrow = ncol(df), ncol = ncol(df))
indices <- which(sapply(df, class) == "numeric")
for(i in indices)
{

for(j in indices)
{

cor_mat[i, j] <- cor(df[[i]], df[[j]],
use = "pairwise.complete")

}
}
return(cor_mat)

}

# Check that it works:
cor_func(ggplot2::msleep)

Exercise 6.15

To compute the minima, we can use:
apply(airquality, 2, min, na.rm = TRUE)

To compute the maxima, we can use:
apply(airquality, 2, max, na.rm = TRUE)

We could also write a function that computes both the minimum and the maximum
and returns both, and use that with apply:
minmax <- function(x, ...)
{

return(c(min = min(x, ...), max = max(x, ...)))
}

apply(airquality, 2, minmax, na.rm = TRUE)
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Exercise 6.16

We can for instance make use of the minmax function that we created in Exercise
6.15:
minmax <- function(x, ...)
{

return(c(min = min(x, ...), max = max(x, ...)))
}

temps <- split(airquality$Temp, airquality$Month)

sapply(temps, minmax) # or lapply/vapply

# Or:
tapply(airquality$Temp, airquality$Month, minmax)

Exercise 6.17

To compute minima and maxima, we can use:
minmax <- function(x, ...)
{

return(c(min = min(x, ...), max = max(x, ...)))
}

This time out, we want to apply this function to two variables: Temp and Wind. We
can do this using apply:
minmax2 <- function(x, ...)
{

return(apply(x, 2, minmax))
}

tw <- split(airquality[,c("Temp", "Wind")], airquality$Month)

lapply(tw, minmax2)

If we use sapply instead, we lose information about which statistic correspond to
which variable, so lapply is a better choice here:
sapply(tw, minmax2)

Exercise 6.18

We can for instance make use of the minmax function that we created in Exercise
6.15:
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minmax <- function(x, ...)
{

return(c(min = min(x, ...), max = max(x, ...)))
}

library(purrr)

temps <- split(airquality$Temp, airquality$Month)
temps %>% map(minmax)

We can also use a single pipe chain to split the data and apply the functional:
airquality %>% split(.$Month) %>% map(~minmax(.$Temp))

Exercise 6.19

Because we want to use both the variable names and their values, an imap_* function
is appropriate here:
data_summary <- function(df)
{

df %>% imap_dfr(~(data.frame(variable = .y,
unique_values = length(unique(.x)),
class = class(.x),
missing_values = sum(is.na(.x)) )))

}

# Check that it works:
library(ggplot2)
data_summary(msleep)

Exercise 6.20

We combine map and imap to get the desired result. folder_path is the path to the
folder containing the .csv files. We must use set_names to set the file names as
element names, otherwise only the index of each file (in the file name vector) will be
printed:
list.files(folder_path, pattern = "\\.csv$") %>%

paste(folder_path, ., sep = "") %>%
set_names() %>%
map(read.csv) %>%
imap(~cat(.y, "\n", names(.x), "\n\n"))
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Exercise 6.21

First, we load the data and create vectors containing all combinations
library(gapminder)
combos <- gapminder %>% distinct(continent, year)
continents <- combos$continent
years <- combos$year

Next, we create the scatterplots:
# Create a plot for each pair:
combos_plots <- map2(continents, years, ~{

gapminder %>% filter(continent == .x,
year == .y) %>%

ggplot(aes(pop, lifeExp)) + geom_point() +
ggtitle(paste(.x, .y, sep =" in "))})

If instead we just want to save each scatterplot in a separate file, we can do so by
putting ggsave (or png + dev.off) inside a walk2 call:
# Create a plot for each pair:
combos_plots <- walk2(continents, years, ~{

gapminder %>% filter(continent == .x,
year == .y) %>%

ggplot(aes(pop, lifeExp)) + geom_point() +
ggtitle(paste(.x, .y, sep =" in "))

ggsave(paste(.x, .y, ".png", sep = ""),
width = 3, height = 3)})

Exercise 6.22

First, we write a function for computing the mean of a vector with a loop:
mean_loop <- function(x)
{

m <- 0
n <- length(x)
for(i in seq_along(x))
{

m <- m + x[i]/n
}
return(m)

}

Next, we run the functions once, and then benchmark them:
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x <- 1:10000
mean_loop(x)
mean(x)

library(bench)
mark(mean(x), mean_loop(x))

mean_loop is several times slower than mean. The memory usage of both functions
is negligible.

Exercise 6.23

We can compare the three solutions as follows:
library(data.table)
library(dplyr)
library(nycflights13)
library(bench)

# Make a data.table copy of the data:
flights.dt <- as.data.table(flights)

# Wrap the solutions in functions (using global assignment to better
# monitor memory usage):
base_filter <- function() { flights0101 <<- flights[flights$month ==

1 & flights$day == 1,] }
dt_filter <- function() { flights0101 <<- flights.dt[month == 1 &

day == 1,] }
dplyr_filter <- function() { flights0101 <<- flights %>% filter(

month ==1, day == 1) }

# Compile the functions:
library(compiler)
base_filter <- cmpfun(base_filter)
dt_filter <- cmpfun(dt_filter)
dplyr_filter <- cmpfun(dplyr_filter)

# benchmark the solutions:
bm <- mark(base_filter(), dt_filter(), dplyr_filter())
bm
plot(bm)

We see that dplyr is substantially faster and more memory efficient than the base R
solution, but that data.table beats them both by a margin.
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Chapter 7
Exercise 7.1

The parameter replace controls whether or not replacement is used. To draw 5
random numbers with replacement, we use:
sample(1:10, 5, replace = TRUE)

Exercise 7.2

As an alternative to sample(1:10, n, replace = TRUE) we could use runif to
generate random numbers from 1:10. This can be done in at least three different
ways.

1. Generating (decimal) numbers between 0 and 10 and rounding up to the nearest
integer:

n <- 10 # Generate 10 numbers
ceiling(runif(n, 0, 10))

2. Generating (decimal) numbers between 1 and 11 and rounding down to the
nearest integer:

floor(runif(n, 1, 11))

3. Generating (decimal) numbers between 0.5 and 10.5 and rounding to the nearest
integer:

round(runif(n, 0.5, 10.5))

Using sample(1:10, n, replace = TRUE) is more straightforward in this case, and
is the recommended approach.

Exercise 7.3

First, we compare the histogram of the data to the normal density function:
library(ggplot2)
ggplot(msleep, aes(x = sleep_total)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_density(colour = "blue", size = 2) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = mean(msleep$sleep_total),
sd = sd(msleep$sleep_total)))

The density estimate is fairly similar to the normal density, but there appear to be
too many low values in the data.

Then a normal Q-Q plot:
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ggplot(msleep, aes(sample = sleep_total)) +
geom_qq() + geom_qq_line()

There are some small deviations from the line, but no large deviations. To decide
whether these deviations are large enough to be a concern, it may be a good idea to
compare this Q-Q-plot to Q-Q-plots from simulated normal data:
# Create a Q-Q-plot for the total sleep data, and store
# it in a list:
qqplots <- list(ggplot(msleep, aes(sample = sleep_total)) +
geom_qq() + geom_qq_line() + ggtitle("Actual data"))

# Compute the sample size n:
n <- sum(!is.na(msleep$sleep_total))

# Generate 8 new datasets of size n from a normal distribution.
# Then draw Q-Q-plots for these and store them in the list:
for(i in 2:9)
{

generated_data <- data.frame(normal_data = rnorm(n, 10, 1))
qqplots[[i]] <- ggplot(generated_data, aes(sample = normal_data)) +
geom_qq() + geom_qq_line() + ggtitle("Simulated data")

}

# Plot the resulting Q-Q-plots side-by-side:
library(patchwork)
(qqplots[[1]] + qqplots[[2]] + qqplots[[3]]) /
(qqplots[[4]] + qqplots[[5]] + qqplots[[6]]) /
(qqplots[[7]] + qqplots[[8]] + qqplots[[9]])

The Q-Q-plot for the real data is pretty similar to those from the simulated samples.
We can’t rule out the normal distribution.

Nevertheless, perhaps the lognormal distribution would be a better fit? We can
compare its density to the histogram, and draw a Q-Q plot:
# Histogram:
ggplot(msleep, aes(x = sleep_total)) +

geom_histogram(colour = "black", aes(y = ..density..)) +
geom_density(colour = "blue", size = 2) +
geom_function(fun = dlnorm, colour = "red", size = 2,

args = list(meanlog = mean(log(msleep$sleep_total)),
sdlog = sd(log(msleep$sleep_total))))

# Q-Q plot:
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ggplot(msleep, aes(sample = sleep_total)) +
geom_qq(distribution = qlnorm) +
geom_qq_line(distribution = qlnorm)

The right tail of the distribution differs greatly from the data. If we have to choose
between these two distributions, then the normal distribution seems to be the better
choice.

Exercise 7.4

1. The documentation for shapiro.test shows that it takes a vector containing
the data as input. So to apply it to the sleeping times data, we use:

library(ggplot2)
shapiro.test(msleep$sleep_total)

The p-value is 0.21, meaning that we can’t reject the null hypothesis of normality -
the test does not indicate that the data is non-normal.

2. Next, we generate data from a 𝜒2(100) distribution, and compare its distribu-
tion to a normal density function:

generated_data <- data.frame(x = rchisq(2000, 100))

ggplot(generated_data, aes(x)) +
geom_histogram(colour = "black", aes(y = ..density..)) +
geom_density(colour = "blue", size = 2) +
geom_function(fun = dnorm, colour = "red", size = 2,

args = list(mean = mean(generated_data$x),
sd = sd(generated_data$x)))

The fit is likely to be very good - the data is visually very close to the normal
distribution. Indeed, it is rare in practice to find real data that is closer to the
normal distribution than this.

However, the Shapiro-Wilk test probably tells a different story:
shapiro.test(generated_data$x)

The lesson here is that if the sample size is large enough, the Shapiro-Wilk test (and
any other test for normality, for that matter) is likely to reject normality even if the
deviation from normality is tiny. When the sample size is too large, the power of the
test is close to 1 even for very small deviations. On the other hand, if the sample size
is small, the power of the Shapiro-Wilk test is low, meaning that it can’t be used to
detect non-normality.

In summary, you probably shouldn’t use formal tests for normality at all. And I say
that as someone who has written two papers introducing new tests for normality!
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Exercise 7.5

As in Section 3.3, we set file_path to the path to vas.csv and load the data using
the code from Exercise 3.8:
vas <- read.csv(file_path, sep = ";", dec = ",", skip = 4)

The null hypothesis is that the mean 𝜇 is less than or equal to 6, meaning that the
alternative is that 𝜇 is greater than 6. To perform the test, we run:
t.test(vas$VAS, mu = 6, alternative = "greater")

The average VAS isn’t much higher than 6 - it’s 6.4 - but because the sample size is
fairly large (𝑛 = 2, 351) we are still able to detect that it indeed is greater.

Exercise 7.6

First, we assume that delta is 0.5 and that the standard deviation is 2, and want to
find the 𝑛 required to achieve 95 % power at a 5 % significance level:
power.t.test(power = 0.95, delta = 0.5, sd = 2, sig.level = 0.05,

type = "one.sample", alternative = "one.sided")

We see than 𝑛 needs to be at least 175 to achieve the desired power.

The actual sample size for this dataset was 𝑛 = 2, 351. Let’s see what power that
gives us:
power.t.test(n = 2351, delta = 0.5, sd = 2, sig.level = 0.05,

type = "one.sample", alternative = "one.sided")

The power is 1 (or rather, very close to 1). We’re more or less guaranteed to find
statistical evidence that the mean is greater than 6 if the true mean is 6.5!

Exercise 7.7

First, let’s compute the proportion of herbivores and carnivores that sleep for more
than 7 hours a day:
library(ggplot2)
herbivores <- msleep[msleep$vore == "herbi",]
n1 <- sum(!is.na(herbivores$sleep_total))
x1 <- sum(herbivores$sleep_total > 7, na.rm = TRUE)

carnivores <- msleep[msleep$vore == "carni",]
n2 <- sum(!is.na(carnivores$sleep_total))
x2 <- sum(carnivores$sleep_total > 7, na.rm = TRUE)
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The proportions are 0.625 and 0.68, respectively. To obtain a confidence interval for
the difference of the two proportions, we use binomDiffCI as follows:
library(MKinfer)
binomDiffCI(x1, x2, n1, n2, method = "wilson")

Exercise 7.13

To run the same simulation for different 𝑛, we will write a function for the simulation,
with the sample size n as an argument:
# Function for our custom estimator:
max_min_avg <- function(x)
{

return((max(x)+min(x))/2)
}

# Function for simulation:
simulate_estimators <- function(n, mu = 0, sigma = 1, B = 1e4)
{

cat(n, "\n")
res <- data.frame(x_mean = vector("numeric", B),

x_median = vector("numeric", B),
x_mma = vector("numeric", B))

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in seq_along(res$x_mean))
{

x <- rnorm(n, mu, sigma)
res$x_mean[i] <- mean(x)
res$x_median[i] <- median(x)
res$x_mma[i] <- max_min_avg(x)

# Update progress bar
setTxtProgressBar(pbar, i)

}
close(pbar)

# Return a list containing the sample size,
# and the simulation results:
return(list(n = n,

bias = colMeans(res-mu),
vars = apply(res, 2, var)))
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}

We could write a for loop to perform the simulation for different values of 𝑛. Alter-
natively, we can use a function, as in Section 6.5. Here are two examples of how this
can be done:
# Create a vector of samples sizes:
n_vector <- seq(10, 100, 10)

# Run a simulation for each value in n_vector:

# Using base R:
res <- apply(data.frame(n = n_vector), 1, simulate_estimators)

# Using purrr:
library(purrr)
res <- map(n_vector, simulate_estimators)

Next, we want to plot the results. We need to extract the results from the list res
and store them in a data frame, so that we can plot them using ggplot2.
simres <- matrix(unlist(res), 10, 7, byrow = TRUE)
simres <- data.frame(simres)
names(simres) <- names(unlist(res))[1:7]
simres

Transforming the data frame from wide to long format (Section 5.11) makes plotting
easier.

We can do this using data.table:
library(data.table)
simres2 <- data.table(melt(simres, id.vars = c("n"),

measure.vars = 2:7))
simres2[, c("measure", "estimator") := tstrsplit(variable,

".", fixed = TRUE)]

…or with tidyr:
library(tidyr)
simres %>% pivot_longer(names(simres)[2:7],

names_to = "variable",
values_to = "value") %>%

separate(variable,
into = c("measure", "estimator"),
sep = "[.]") -> simres2

We are now ready to plot the results:
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library(ggplot2)
# Plot the bias, with a reference line at 0:
ggplot(subset(simres2, measure == "bias"), aes(n, value,

col = estimator)) +
geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
ggtitle("Bias")

# Plot the variance:
ggplot(subset(simres2, measure == "vars"), aes(n, value,

col = estimator)) +
geom_line() +
ggtitle("Variance")

All three estimators have a bias close to 0 for all values of 𝑛 (indeed, we can verify
analytically that they are unbiased). The mean has the lowest variance for all 𝑛, with
the median as a close competitor. Our custom estimator has a higher variance, that
also has a slower decrease as 𝑛 increases. In summary, based on bias and variance,
the mean is the best estimator for the mean of a normal distribution.

Exercise 7.14

To perform the same simulation with 𝑡(3)-distributed data, we can reuse the same
code as in Exercise 7.13, only replacing three lines:

• The arguments of simulate_estimators (mu and sigma are replaced by the
degrees of freedom df of the 𝑡-distribution,

• The line were the data is generated (rt replaces rnorm),
• The line were the bias is computed (the mean of the 𝑡-distribution is always 0).

# Function for our custom estimator:
max_min_avg <- function(x)
{

return((max(x)+min(x))/2)
}

# Function for simulation:
simulate_estimators <- function(n, df = 3, B = 1e4)
{

cat(n, "\n")
res <- data.frame(x_mean = vector("double", B),

x_median = vector("double", B),
x_mma = vector("double", B))

# Start progress bar:
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pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in seq_along(res$x_mean))
{

x <- rt(n, df)
res$x_mean[i] <- mean(x)
res$x_median[i] <- median(x)
res$x_mma[i] <- max_min_avg(x)

# Update progress bar
setTxtProgressBar(pbar, i)

}
close(pbar)

# Return a list containing the sample size,
# and the simulation results:
return(list(n = n,

bias = colMeans(res-0),
vars = apply(res, 2, var)))

}

To perform the simulation, we can then e.g. run the following, which has been copied
from the solution to the previous exercise.
# Create a vector of samples sizes:
n_vector <- seq(10, 100, 10)

# Run a simulation for each value in n_vector:
res <- apply(data.frame(n = n_vector), 1, simulate_estimators)

# Reformat the results:
simres <- matrix(unlist(res), 10, 7, byrow = TRUE)
simres <- data.frame(simres)
names(simres) <- names(unlist(res))[1:7]
library(data.table)
simres2 <- data.table(melt(simres, id.vars = c("n"),

measure.vars = 2:7))
simres2[, c("measure", "estimator") := tstrsplit(variable,

".", fixed = TRUE)]
# Plot the result
library(ggplot2)
# Plot the bias, with a reference line at 0:
ggplot(subset(simres2, measure == "bias"), aes(n, value,

col = estimator)) +



514 CHAPTER 13. SOLUTIONS TO EXERCISES

geom_line() +
geom_hline(yintercept = 0, linetype = "dashed") +
ggtitle("Bias, t(3)-distribution")

# Plot the variance:
ggplot(subset(simres2, measure == "vars"), aes(n, value,

col = estimator)) +
geom_line() +
ggtitle("Variance, t(3)-distribution")

The results are qualitatively similar to those for normal data.

Exercise 7.15

We will use the functions that we created to simulate the type I error rates and
powers of the three tests in Sections @ref(simtypeI} and 7.5.3. Also, we must make
sure to load the MKinfer package that contains perm.t.test.

To compare the type I error rates, we only need to supply the function rt for gen-
erating data and the parameter df = 3 to clarify that a 𝑡(3)-distribution should be
used:
simulate_type_I(20, 20, rt, B = 9999, df = 3)
simulate_type_I(20, 30, rt, B = 9999, df = 3)

Here are the results from my runs:
# Balanced sample sizes:

p_t_test p_perm_t_test p_wilcoxon
0.04340434 0.04810481 0.04860486

# Imbalanced sample sizes:
p_t_test p_perm_t_test p_wilcoxon

0.04300430 0.04860486 0.04670467

The old-school t-test appears to be a little conservative, with an actual type I error
rate close to 0.043. We can use binomDiffCI from MKinfer to get a confidence
interval for the difference in type I error rate between the old-school t-test and the
permutation t-test:
B <- 9999
binomDiffCI(B*0.04810481, B*0.04340434, B, B, method = "wilson")

The confidence interval is (−0.001, 0.010). Even though the old-school t-test appeared
to have a lower type I error rate, we cannot say for sure, as a difference of 0 is included
in the confidence interval. Increasing the number of simulated samples to, say, 99, 999,
might be required to detect any differences between the different tests.
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Next, we compare the power of the tests. For the function used to simulate data for
the second sample, we add a + 1 to shift the distribution to the right (so that the
mean difference is 1):
# Balanced sample sizes:
simulate_power(20, 20, function(n) { rt(n, df = 3,) },

function(n) { rt(n, df = 3) + 1 },
B = 9999)

# Imbalanced sample sizes:
simulate_power(20, 30, function(n) { rt(n, df = 3,) },

function(n) { rt(n, df = 3) + 1 },
B = 9999)

Here are the results from my runs:
# Balanced sample sizes:

p_t_test p_perm_t_test p_wilcoxon
0.5127513 0.5272527 0.6524652

# Imbalanced sample sizes:
p_t_test p_perm_t_test p_wilcoxon

0.5898590 0.6010601 0.7423742

The Wilcoxon-Mann-Whitney test has the highest power in this example.

Exercise 7.16

Both the functions that we created in Section 7.6.1, simulate_power and
power.cor.test include ... in their list of arguments, which allows us to pass
additional arguments to interior functions. In particular, the line in simulate_power
where the p-value for the correlation test is computed, contains this placeholder:
p_values[i] <- cor.test(x[,1], x[,2], ...)$p.value

This means that we can pass the argument method = "spearman" to use the func-
tions to compute the sample size for the Spearman correlation test. Let’s try it:
power.cor.test(n_start = 10, rho = 0.5, power = 0.9,

method = "spearman")
power.cor.test(n_start = 10, rho = 0.2, power = 0.8,

method = "spearman")

In my runs, the Pearson correlation test required the sample sizes 𝑛 = 45 and 𝑛 = 200,
whereas the Spearman correlation test required larger sample sizes: 𝑛 = 50 and
𝑛 = 215.
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Exercise 7.17

First, we create a function that simulates the expected width of the Clopper-Pearson
interval for a given 𝑛 and 𝑝:
cp_width <- function(n, p, level = 0.05, B = 999)
{

widths <- rep(NA, B)

# Start progress bar:
pbar <- txtProgressBar(min = 0, max = B, style = 3)

for(i in 1:B)
{

# Generate binomial data:
x <- rbinom(1, n, p)

# Compute interval width:
interval <- binomCI(x, n, conf.level = 0.95,

method = "clopper-pearson")$conf.int
widths[i] <- interval[2] - interval[1]

# Update progress bar:
setTxtProgressBar(pbar, i)

}

close(pbar)

return(mean(widths))
}

Next, we create a function with a while loop that finds the sample sizes required to
achieve a desired expected width:
cp_ssize <- function(n_start = 10, p, n_incr = 5, level = 0.05,

width = 0.1, B = 999)
{

# Set initial values
n <- n_start
width_now <- 1

# Check power for different sample sizes:
while(width_now > width)
{

width_now <- cp_width(n, p, level, B)
cat("n =", n, " - Width:", width_now, "\n")
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n <- n + n_incr
}

# Return the result:
cat("\nWhen n =", n, "the expected with is", round(width, 3), "\n")
return(n)

}

Finally, we run our simulation for 𝑝 = 0.1 (with expected width 0.01) and 𝑝 = 0.3
(expected width 0.05) and compare the results to the asymptotic answer:
# p = 0.1
# Asymptotic answer:
ssize.propCI(prop = 0.1, width = 0.01, method = "clopper-pearson")

# The asymptotic answer is 14,029 - so we need to set a fairly high
# starting value for n in our simulation!
cp_ssize(n_start = 14020, p = 0.1, n_incr = 1, level = 0.05,

width = 0.01, B = 9999)

#######

# p = 0.3, width = 0.05
# Asymptotic answer:
ssize.propCI(prop = 0.3, width = 0.1, method = "clopper-pearson")

# The asymptotic answer is 343.
cp_ssize(n_start = 335, p = 0.3, n_incr = 1, level = 0.05,

width = 0.1, B = 9999)

As you can see, the asymptotic results are very close to those obtained from the
simulation, and so using ssize.propCI is preferable in this case, as it is much faster.

Exercise 7.18

If we want to assume that the two populations have equal variances, we first have
to create a centred dataset, where both groups have mean 0. We can then draw
observations from this sample, and shift them by the two group means:
library(ggplot2)
boot_data <- na.omit(subset(msleep,

vore == "carni" | vore == "herbi")[,c("sleep_total",
"vore")])

# Compute group means and sizes:
group_means <- aggregate(sleep_total ~ vore,
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data = boot_data, FUN = mean)
group_sizes <- aggregate(sleep_total ~ vore,

data = boot_data, FUN = length)
n1 <- group_sizes[1, 2]

# Create a centred dataset, where both groups have mean 0:
boot_data$sleep_total[boot_data$vore == "carni"] <-

boot_data$sleep_total[boot_data$vore == "carni"] -
group_means[1, 2]

boot_data$sleep_total[boot_data$vore == "herbi"] <-
boot_data$sleep_total[boot_data$vore == "herbi"] -

group_means[2, 2]

# Verify that we've centred the two groups:
aggregate(sleep_total ~ vore, data = boot_data, FUN = mean)

# First, we resample from the centred data sets. Then we label
# some observations as carnivores, and add the group mean for
# carnivores to them, and label some as herbivores and add
# that group mean instead. That way both groups are used to
# estimate the variability of the observations.
mean_diff_msleep <- function(data, i)
{

# Create a sample with the same mean as the carnivore group:
sample1 <- data[i[1:n1], 1] + group_means[1, 2]
# Create a sample with the same mean as the herbivore group:
sample2 <- data[i[(n1+1):length(i)], 1] + group_means[2, 2]
# Compute the difference in means:
return(mean(sample1$sleep_total) - mean(sample2$sleep_total))

}

library(boot)

# Do the resampling:
boot_res <- boot(boot_data,

mean_diff_msleep,
9999)

# Compute confidence intervals:
boot.ci(boot_res, type = c("perc", "bca"))

The resulting percentile interval is close to that which we obtained without assuming
equal variances. The BCa interval is however very different.
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Exercise 7.19

We use the percentile confidence interval from the previous exercise to compute p-
values as follows (the null hypothesis is that the parameter is 0):
library(boot.pval)
boot.pval(boot_res, type = "perc", theta_null = 0)

A more verbose solution would be to write a while loop:
# The null hypothesis is there the difference is 0:
diff_null <- 0

# Set initial conditions:
in_interval <- TRUE
alpha <- 0

# Find the lowest alpha for which diff_null is in the
# interval:
while(in_interval)
{

alpha <- alpha + 0.001
interval <- boot.ci(boot_res,

conf = 1 - alpha,
type = "perc")$percent[4:5]

in_interval <- diff_null > interval[1] & diff_null < interval[2]
}

# Print the p-value:
alpha

The p-value is approximately 0.52, and we can not reject the null hypothesis.

Chapter 8
Exercise 8.1

We set file_path to the path of sales-weather.csv. To load the data, fit the
model and plot the results, we do the following:
# Load the data:
weather <- read.csv(file_path, sep =";")
View(weather)

# Fit model:
m <- lm(TEMPERATURE ~ SUN_HOURS, data = weather)
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summary(m)

# Plot the result:
library(ggplot2)
ggplot(weather, aes(SUN_HOURS, TEMPERATURE)) +

geom_point() +
geom_abline(aes(intercept = coef(m)[1], slope = coef(m)[2]),

colour = "red")

The coefficient for SUN_HOURS is not significantly non-zero at the 5 % level. The 𝑅2

value is 0.035, which is very low. There is little evidence of a connection between the
number of sun hours and the temperature during this period.

Exercise 8.2

We fit a model using the formula:
m <- lm(mpg ~ ., data = mtcars)
summary(m)

What we’ve just done is to create a model where all variables from the data frame
(except mpg) are used as explanatory variables. This is the same model as we’d have
obtained using the following (much longer) code:
m <- lm(mpg ~ cyl + disp + hp + drat + wt +

qsec + vs + am + gear + carb, data = mtcars)

The ~ . shorthand is very useful when you want to fit a model with a lot of explana-
tory variables.

Exercise 8.3

First, we create the dummy variable:
weather$prec_dummy <- factor(weather$PRECIPITATION > 0)

Then, we fit the new model and have a look at the results. We won’t centre the
SUN_HOURS variable, as the model is easy to interpret without centring. The inter-
cept corresponds to the expected temperature on a day with 0 SUN_HOURS and no
precipitation.
m <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
summary(m)

Both SUN_HOURS and the dummy variable are significantly non-zero. In the next
section, we’ll have a look at how we can visualise the results of this model.



521

Exercise 8.4

We run the code to create the two data frames. We then fit a model to the first
dataset exdata1, and make some plots:
m1 <- lm(y ~ x, data = exdata1)

# Show fitted values in scatterplot:
library(ggplot2)
m1_pred <- data.frame(x = exdata1$x, y_pred = predict(m1))
ggplot(exdata1, aes(x, y)) +

geom_point() +
geom_line(data = m1_pred, aes(x = x, y = y_pred),

colour = "red")

# Residual plots:
library(ggfortify)
autoplot(m1, which = 1:6, ncol = 2, label.size = 3)

There are clear signs of nonlinearity here, that can be seen both in the scatterplot
and the residuals versus fitted plot.

Next, we do the same for the second dataset:
m2 <- lm(y ~ x, data = exdata2)

# Show fitted values in scatterplot:
m2_pred <- data.frame(x = exdata2$x, y_pred = predict(m2))
ggplot(exdata2, aes(x, y)) +

geom_point() +
geom_line(data = m2_pred, aes(x = x, y = y_pred),

colour = "red")

# Residual plots:
library(ggfortify)
autoplot(m2, which = 1:6, ncol = 2, label.size = 3)

There is a strong indication of heteroscedasticity. As is seen e.g. in the scatterplot
and in the scale-location plot, the residuals appear to vary more the larger x becomes.

Exercise 8.5

1. First, we plot the observed values against the fitted values for the two models.
# The two models:
m1 <- lm(TEMPERATURE ~ SUN_HOURS, data = weather)
m2 <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
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n <- nrow(weather)
models <- data.frame(Observed = rep(weather$TEMPERATURE, 2),

Fitted = c(predict(m1), predict(m2)),
Model = rep(c("Model 1", "Model 2"), c(n, n)))

ggplot(models, aes(Fitted, Observed)) +
geom_point(colour = "blue") +
facet_wrap(~ Model, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

The first model only predicts values within a fairly narrow interval. The second
model does a somewhat better job of predicting high temperatures.

2. Next, we create residual plots for the second model.
library(ggfortify)
autoplot(m2, which = 1:6, ncol = 2, label.size = 3)

There are no clear trends or signs of heteroscedasticity. There are some deviations
from normality in the tail of the residual distribution. There are a few observations -
57, 76 and 83, that have fairly high Cook’s distance. Observation 76 also has a very
high leverage. Let’s have a closer look at them:
weather[c(57, 76, 83),]

As we can see using sort(weather$SUN_HOURS) and min(weather$TEMPERATURE),
observation 57 corresponds to the coldest day during the period, and observations
76 and 83 to the two days with the highest numbers of sun hours. Neither of them
deviate too much from other observations though, so it shouldn’t be a problem that
their Cook’s distances are little high.

Exercise 8.6

We run boxcox to find a suitable Box-Cox transformation for our model:
m <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

library(MASS)
boxcox(m)

You’ll notice an error message, saying:
Error in boxcox.default(m) : response variable must be positive

The boxcox method can only be used for non-negative response variables. We can
solve this e.g. by transforming the temperature (which currently is in degrees Celsius)
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to degrees Fahrenheit, or by adding a constant to the temperature (which only will
affect the intercept of the model, and not the slope coefficients). Let’s try the former:
weather$TEMPERATUREplus10 <- weather$TEMPERATURE + 10
m <- lm(TEMPERATUREplus10 ~ SUN_HOURS*prec_dummy, data = weather)

boxcox(m)

The value 𝜆 = 1 is inside the interval indicated by the dotted lines. This corresponds
to no transformation at all, meaning that there is no indication that we should
transform our response variable.

Exercise 8.7

We refit the model using:
library(lmPerm)
m <- lmp(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
summary(m)

The main effects are still significant at the 5 % level.

Exercise 8.8

The easiest way to do this is to use boot_summary:
library(MASS)
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

library(boot.pval)
boot_summary(m, type = "perc", method = "residual")

We can also use Boot:
library(car)
boot_res <- Boot(m, method = "residual")

# Compute 95 % confidence intervals using confint
confint(boot_res, type = "perc")

If instead we want to use boot, we begin by fitting the model:
library(MASS)
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

Next, we compute the confidence intervals using boot and boot.ci (note that we
use rlm inside the coefficients function!):
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library(boot)

coefficients <- function(formula, data, i, predictions, residuals) {
# Create the bootstrap value of response variable by
# adding a randomly drawn residual to the value of the
# fitted function for each observation:
data[,all.vars(formula)[1]] <- predictions + residuals[i]

# Fit a new model with the bootstrap value of the response
# variable and the original explanatory variables:
m <- rlm(formula, data = data)
return(coef(m))

}

# Fit the linear model:
m <- rlm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)

# Compute scaled and centred residuals:
res <- residuals(m)/sqrt(1 - lm.influence(m)$hat)
res <- res - mean(res)

# Run the bootstrap, extracting the model formula and the
# fitted function from the model m:
boot_res <- boot(data = mtcars, statistic = coefficients,

R = 999, formula = formula(m),
predictions = predict(m),
residuals = res)

# Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Sun hours
boot.ci(boot_res, type = "perc", index = 3) # Precipitation dummy
boot.ci(boot_res, type = "perc", index = 4) # Interaction term

Using the connection between hypothesis tests and confidence intervals, to see
whether an effect is significant at the 5 % level, you can check whether 0 is contained
in the confidence interval. If not, then the effect is significant.

Exercise 8.9

We fit the model and then use boot_summary with method = "case":
m <- lm(mpg ~ hp + wt, data = mtcars)
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library(boot.pval)
boot_summary(m, type = "perc", method = "case", R = 9999)
boot_summary(m, type = "perc", method = "residual", R = 9999)

In this case, the resulting confidence intervals are similar to what we obtained with
residual resampling.

Exercise 8.10

First, we prepare the model and the data:
m <- lm(TEMPERATURE ~ SUN_HOURS*prec_dummy, data = weather)
new_data <- data.frame(SUN_HOURS = 0, prec_dummy = "TRUE")

We can then compute the prediction interval using boot.ci:
boot_pred <- function(data, new_data, model, i,

formula, predictions, residuals){
data[,all.vars(formula)[1]] <- predictions + residuals[i]
m_boot <- lm(formula, data = data)
predict(m_boot, newdata = new_data) +

sample(residuals(m_boot), nrow(new_data))
}

library(boot)

boot_res <- boot(data = m$model,
statistic = boot_pred,
R = 999,
model = m,
new_data = new_data,
formula = formula(m),
predictions = predict(m),
residuals = residuals(m))

# 95 % bootstrap prediction interval:
boot.ci(boot_res, type = "perc")

Exercise 8.11

autoplot uses standard ggplot2 syntax, so by adding colour = mtcars$cyl to
autoplot, we can plot different groups in different colours:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)
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# Fit model and print ANOVA table:
m <- aov(mpg ~ cyl + am, data = mtcars)

library(ggfortify)
autoplot(m, which = 1:6, ncol = 2, label.size = 3,

colour = mtcars$cyl)

Exercise 8.12

We rerun the analysis:
# Convert variables to factors:
mtcars$cyl <- factor(mtcars$cyl)
mtcars$am <- factor(mtcars$am)

# Fit model and print ANOVA table:
library(lmPerm)
m <- aovp(mpg ~ cyl + am, data = mtcars)
summary(m)

Unfortunately, if you run this multiple times, the p-values will vary a lot. To fix
that, you need to increase the maximum number of iterations allowed, by increasing
maxIter, and changing the condition for the accuracy of the p-value by lowering Ca:
m <- aovp(mpg ~ cyl + am, data = mtcars,

perm = "Prob",
Ca = 1e-3,
maxIter = 1e6)

summary(m)

According to ?aovp, the seqs arguments controls which type of table is produced.
It’s perhaps not perfectly clear from the documentation, but the default seqs =
FALSE corresponds to a type III table, whereas seqs = TRUE corresponds to a type
I table:
# Type I table:
m <- aovp(mpg ~ cyl + am, data = mtcars,

seqs = TRUE,
perm = "Prob",
Ca = 1e-3,
maxIter = 1e6)

summary(m)

Exercise 8.13

We can run the test using the usual formula notation:
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kruskal.test(mpg ~ cyl, data = mtcars)

The p-value is very low, and we conclude that the fuel consumption differs between
the three groups.

Exercise 8.16

We set file_path to the path of shark.csv and then load and inspect the data:
sharks <- read.csv(file_path, sep =";")
View(sharks)

We need to convert the Age variable to a numeric, which will cause us to lose informa-
tion (“NAs introduced by coercion”) about the age of the persons involved in some
attacks, i.e. those with values like 20's and 25 or 28, which cannot be automatically
coerced into numbers:
sharks$Age <- as.numeric(sharks$Age)

Similarly, we’ll convert Sex. and Fatal..Y.N. to factor variables:
sharks$Sex. <- factor(sharks$Sex, levels = c("F", "M"))
sharks$Fatal..Y.N. <- factor(sharks$Fatal..Y.N., levels = c("N", "Y"))

We can now fit the model:
m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks, family = binomial)
summary(m)

Judging from the p-values, there is no evidence that sex and age affect the probability
of an attack being fatal.

Exercise 8.17

We use the same logistic regression model for the wine data as before:
m <- glm(type ~ pH + alcohol, data = wine, family = binomial)

The broom functions work also for generalised linear models. As for linear mod-
els, tidy gives the table of coefficients and p-values, glance gives some summary
statistics, and augment adds fitted values and residuals to the original dataset:
library(broom)
tidy(m)
glance(m)
augment(m)
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Exercise 8.18

Using the model m from the other exercise, we can now do the following.

1. Compute asymptotic confidence intervals:
library(MASS)
confint(m)

2. Next, we compute bootstrap confidence intervals and p-values. In this case,
the response variable is missing for a lot of observations. In order to use the
same number of observations in our bootstrapping as when fitting the original
model, we need to add a line to remove those observation (as in Section 5.8.2).

library(boot.pval)
# Try fitting the model without removing missing values:
boot_summary(m, type = "perc", method = "case")

# Remove missing values, refit the model, and then run
# boot_summary again:
sharks2 <- na.omit(sharks, "Fatal..Y.N.")
m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks2,

family = binomial)
boot_summary(m, type = "perc", method = "case")

If you prefer writing your own bootstrap code, you could proceed as follows:
library(boot)

coefficients <- function(formula, data, predictions, ...) {
# Remove rows where the response variable is missing:
data <- na.omit(data, all.vars(formula)[1])

# Check whether the response variable is a factor or
# numeric, and then resample:
if(is.factor(data[,all.vars(formula)[1]])) {

# If the response variable is a factor:
data[,all.vars(formula)[1]] <-
factor(levels(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data),

1, predictions)]) } else {
# If the response variable is numeric:
data[,all.vars(formula)[1]] <-

unique(data[,all.vars(formula)[1]])[1 + rbinom(nrow(data),
1, predictions)] }

m <- glm(formula, data = data, family = binomial)
return(coef(m))
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}

boot_res <- boot(data = sharks, statistic = coefficients,
R=999, formula = formula(m),
predictions = predict(m, type = "response"))

# Compute confidence intervals:
boot.ci(boot_res, type = "perc", index = 1) # Intercept
boot.ci(boot_res, type = "perc", index = 2) # Age
boot.ci(boot_res, type = "perc", index = 3) # Sex.M

# Compute p-values:

# The null hypothesis is that the effect (beta coefficient)
# is 0:
beta_null <- 0

# Set initial conditions:
in_interval <- TRUE
alpha <- 0

# Find the lowest alpha for which beta_null is in the
# interval:
while(in_interval)
{

# Based on the asymptotic test, we expect the p-value
# to not be close to 0. We therefore increase alpha by
# 0.01 instead of 0.001 in each iteration.
alpha <- alpha + 0.01
interval <- boot.ci(boot_res,

conf = 1 - alpha,
type = "perc", index = 2)$perc[4:5]

in_interval <- beta_null > interval[1] & beta_null < interval[2]
}

# Print the p-value:
alpha

Exercise 8.19

We draw a binned residual plot for our model:
m <- glm(Fatal..Y.N. ~ Age + Sex., data = sharks, family = binomial)
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library(arm)
binnedplot(predict(m, type = "response"),

residuals(m, type = "response"))

There are a few points outside the interval, but not too many. There is not trend,
i.e. there is for instance no sign that the model has a worse performance when it
predicts a larger probability of a fatal attack.

Next, we plot the Cook’s distances of the observations:
res <- data.frame(Index = 1:length(cooks.distance(m)),

CooksDistance = cooks.distance(m))

# Plot index against the Cook's distance to find
# influential points:
ggplot(res, aes(Index, CooksDistance)) +

geom_point() +
geom_text(aes(label = ifelse(CooksDistance > 0.05,

rownames(res), "")),
hjust = 1.1)

There are a few points with a high Cook’s distance. Let’s investigate point 116, which
has the highest distance:
sharks[116,]

This observation corresponds to the oldest person in the dataset, and a fatal attack.
Being an extreme observation, we’d expect it to have a high Cook’s distance.

Exercise 8.20

First, we have a look at the quakes data:
?quakes
View(quakes)

We then fit a Poisson regression model with stations as response variable and mag
as explanatory variable:
m <- glm(stations ~ mag, data = quakes, family = poisson)
summary(m)

We plot the fitted values against the observed values, create a binned residual plot,
and perform a test of overdispersion:
# Plot observed against fitted:
res <- data.frame(Observed = quakes$stations,

Fitted = predict(m, type = "response"))
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ggplot(res, aes(Fitted, Observed)) +
geom_point(colour = "blue") +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

# Binned residual plot:
library(arm)
binnedplot(predict(m, type = "response"),

residuals(m, type = "response"))

# Test overdispersion
library(AER)
dispersiontest(m, trafo = 1)

Visually, the fit is pretty good. As indicated by the test, there are however signs of
overdispersion. Let’s try a negative binomial regression instead.
# Fit NB regression:
library(MASS)
m2 <- glm.nb(stations ~ mag, data = quakes)
summary(m2)

# Compare fit of observed against fitted:
n <- nrow(quakes)
models <- data.frame(Observed = rep(quakes$stations, 2),

Fitted = c(predict(m, type = "response"),
predict(m2, type = "response")),

Model = rep(c("Poisson", "NegBin"),
c(n, n)))

ggplot(models, aes(Fitted, Observed)) +
geom_point(colour = "blue") +
facet_wrap(~ Model, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

The difference between the models is tiny. We’d probably need to include more
variables to get a real improvement of the model.

Exercise 8.21

We can get confidence intervals for the 𝛽𝑗 using boot_summary, as in previous sections.
To get bootstrap confidence intervals for the rate ratios 𝑒𝛽𝑗 , we exponentiate the
confidence intervals for the 𝛽𝑗:
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library(boot.pval)
boot_table <- boot_summary(m, type = "perc", method = "case")
boot_table

# Confidence intervals for rate ratios:
exp(boot_table[, 2:3])

Exercise 8.22

First, we load the data and have a quick look at it:
library(nlme)
?Oxboys
View(Oxboys)

Next, we make a plot for each boy (each subject):
ggplot(Oxboys, aes(age, height, colour = Subject)) +

geom_point() +
theme(legend.position = "none") +
facet_wrap(~ Subject, nrow = 3) +
geom_smooth(method = "lm", colour = "black", se = FALSE)

Both intercepts and slopes seem to vary between individuals. Are they correlated?
# Collect the coefficients from each linear model:
library(purrr)
Oxboys %>% split(.$Subject) %>%

map(~ lm(height ~ age, data = .)) %>%
map(coef) -> coefficients

# Convert to a data frame:
coefficients <- data.frame(matrix(unlist(coefficients),

nrow = length(coefficients),
byrow = TRUE),
row.names = names(coefficients))

names(coefficients) <- c("Intercept", "Age")

# Plot the coefficients:
ggplot(coefficients, aes(Intercept, Age,

colour = row.names(coefficients))) +
geom_point() +
geom_smooth(method = "lm", colour = "black", se = FALSE) +
labs(fill = "Subject")
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# Test the correlation:
cor.test(coefficients$Intercept, coefficients$Age)

There is a strong indication that the intercepts and slopes have a positive correlation.
We’ll therefore fit a linear mixed model with correlated random intercepts and slopes:
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
summary(m, correlation = FALSE)

Exercise 8.22

We’ll use the model that we fitted to the Oxboys data in the previous exercise:
library(lme4)
library(nlme)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)

First, we install broom.mixed:
install.packages("broom.mixed")

Next, we obtain the summary table as a data frame using tidy:
library(broom.mixed)
tidy(m)

As you can see, fixed and random effects are shown in the same table. However,
different information is displayed for the two types of variables (just as when we use
summary).

Note that if we fit the model after loading the lmerTest, the tidy table also includes
p-values:
library(lmerTest)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)
tidy(m)

Exercise 8.24

We use the same model as in the previous exercise:
library(nlme)
m <- lmer(height ~ age + (1 + age|Subject), data = Oxboys)

We make some diagnostic plots:
library(ggplot2)
fm <- fortify.merMod(m)
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# Plot residuals:
ggplot(fm, aes(.fitted, .resid)) +
geom_point() +
geom_hline(yintercept = 0) +
xlab("Fitted values") + ylab("Residuals")

# Compare the residuals of different subjects:
ggplot(fm, aes(Subject, .resid)) +
geom_boxplot() +
coord_flip() +
ylab("Residuals")

# Observed values versus fitted values:
ggplot(fm, aes(.fitted, height)) +
geom_point(colour = "blue") +
facet_wrap(~ Subject, nrow = 3) +
geom_abline(intercept = 0, slope = 1) +
xlab("Fitted values") + ylab("Observed values")

## Q-Q plot of residuals:
ggplot(fm, aes(sample = .resid)) +
geom_qq() + geom_qq_line()

## Q-Q plot of random effects:
ggplot(ranef(m)$Subject, aes(sample = `(Intercept)`)) +
geom_qq() + geom_qq_line()

ggplot(ranef(m)$Subject, aes(sample = `age`)) +
geom_qq() + geom_qq_line()

Overall, the fit seems very good. There may be some heteroscedasticity, but nothing
too bad. Some subjects have a larger spread in their residuals, which is to be expected
in this case - growth in children is non-constant, and a large negative residual is
therefore likely to be followed by a large positive residual, and vice versa. The
regression errors and random effects all appear to be normally distributed.

Exercise 8.25

To look for an interaction between TVset and Assessor, we draw an interaction plot:
library(lmerTest)
interaction.plot(TVbo$Assessor, TVbo$TVset,

response = TVbo$Coloursaturation)

The lines overlap and follow different patterns, so there appears to be an interaction.
There are two ways in which we could include this. Which we choose depends on
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what we think our clusters of correlated measurements are. If only the assessors are
clusters, we’d include this as a random slope:
m <- lmer(Coloursaturation ~ TVset*Picture + (1 + TVset|Assessor),

data = TVbo)
m
anova(m)

In this case, we think that there is a fixed interaction between each pair of assessor
and TV set.

However, if we think that the interaction is random and varies between repetitions,
the situation is different. In this case the combination of assessor and TV set are
clusters of correlated measurements (which could make sense here, because we have
repeated measurements for each assessor-TV set pair). We can then include the
interaction as a nested random effect:
m <- lmer(Coloursaturation ~ TVset*Picture + (1|Assessor/TVset),

data = TVbo)
m
anova(m)

Neither of these approaches is inherently superior to the other. Which we choose is
a matter of what we think best describes the correlation structure of the data.

In either case, the results are similar, and all fixed effects are significant at the 5 %
level.

Exercise 8.26

BROOD, INDEX (subject ID number) and LOCATION all seem like they could cause
measurements to be correlated, and so are good choices for random effects. To keep
the model simple, we’ll only include random intercepts. We fit a mixed Poisson
regression using glmer:
library(lme4)
m <- glmer(TICKS ~ YEAR + HEIGHT + (1|BROOD) + (1|INDEX) + (1|LOCATION),

data = grouseticks, family = poisson)
summary(m, correlation = FALSE)

To compute the bootstrap confidence interval for the effect of HEIGHT, we use
boot_summary:
library(boot.pval)
boot_summary(m, type = "perc", R = 100)
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Exercise 8.27

The ovarian data comes from a randomised trial comparing two treatments for
ovarian cancer:
library(survival)
?ovarian
str(ovarian)

Let’s plot Kaplan-Meier curves to compare the two treatments:
library(ggfortify)
m <- survfit(Surv(futime, fustat) ~ rx, data = ovarian)
autoplot(m)

The parametric confidence interval overlap a lot. Let’s compute a bootstrap confi-
dence interval for the difference in the 75 % quantile of the survival times. We set
the quantile level using the q argument in bootkm:
library(Hmisc)

# Create a survival object:
survobj <- Surv(ovarian$futime, ovarian$fustat)

# Get bootstrap replicates of the 75 % quantile for the
# survival time for the two groups:
q75_surv_time_1 <- bootkm(survobj[ovarian$rx == 1],

q = 0.75, B = 999)
q75_surv_time_2 <- bootkm(survobj[ovarian$rx == 2],

q = 0.75, B = 999)

# 95 % bootstrap confidence interval for the difference in
# 75 % quantile of the survival time distribution:
quantile(q75_surv_time_2 - q75_surv_time_1,

c(.025,.975), na.rm=TRUE)

The resulting confidence interval is very wide!

Exercise 8.28

1. First, we fit a Cox regression model. From ?ovarian we see that the sur-
vival/censoring times are given by futime and the censoring status by fustat.

library(survival)
m <- coxph(Surv(futime, fustat) ~ age + rx,

data = ovarian, model = TRUE)
summary(m)



537

According to the p-value in the table, which is 0.2, there is no significant difference
between the two treatment groups. Put differently, there is no evidence that the
hazard ratio for treatment isn’t equal to 1.

To assess the assumption of proportional hazards, we plot the Schoenfeld residuals:
library(survminer)
ggcoxzph(cox.zph(m), var = 1)
ggcoxzph(cox.zph(m), var = 2)

There is no clear trend over time, and the assumption appears to hold.

2. To compute a bootstrap confidence interval for the hazard ratio for age, we
follow the same steps as in the lung example, using censboot_summary:.

library(boot.pval)
censboot_summary(m)

All values in the confidence interval are positive, meaning that we are fairly sure that
the hazard increases with age.

Exercise 8.29

First, we fit the model:
m <- coxph(Surv(futime, status) ~ age + type + trt,

cluster = id, data = retinopathy)
summary(m)

To check the assumption of proportional hazards, we make a residual plot:
library(survminer)
ggcoxzph(cox.zph(m), var = 1)
ggcoxzph(cox.zph(m), var = 2)
ggcoxzph(cox.zph(m), var = 3)

As there are no trends over time, there is no evidence against the assumption of
proportional hazards.

Exercise 8.30

We fit the model using survreg:
library(survival)
m <- survreg(Surv(futime, fustat) ~ ., data = ovarian,

dist = "loglogistic")

To get the estimated effect on survival times, we exponentiate the coefficients:
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exp(coef(m))

According to the model, the survival time increases 1.8 times for patients in treatment
group 2, compared to patients in treatment group 1. Running summary(m) shows that
the p-value for rx is 0.05, meaning that the result isn’t significant at the 5 % level
(albeit with the smallest possible margin!).

Exercise 8.31

We set file_path to the path to il2rb.csv and then load the data (note that it
uses a decimal comma!):
biomarkers <- read.csv(file_path, sep = ";", dec = ",")

Next, we check which measurements that are nondetects, and impute the detection
limit 0.25:
censored <- is.na(biomarkers$IL2RB)
biomarkers$IL2RB[censored] <- 0.25

# Check the proportion of nondetects:
mean(censored)

27.5 % of the observations are left-censored.

To compute bootstrap confidence intervals for the mean of the biomarker level distri-
bution under the assumption of lognormality, we can now use elnormAltCensored:
elnormAltCensored(biomarkers$IL2RB, censored, method = "mle",

ci = TRUE, ci.method = "bootstrap",
n.bootstraps = 999)$interval$limits

Exercise 8.32

We set file_path to the path to il2rb.csv and then load and prepare the data:
biomarkers <- read.csv(file_path, sep = ";", dec = ",")
censored <- is.na(biomarkers$IL2RB)
biomarkers$IL2RB[censored] <- 0.25

Based on the recommendations in Zhang et al. (2009), we can now run a Wilcoxon-
Mann-Whitney test. Because we’ve imputed the LoD for the nondetects, all obser-
vations are included in the test:
wilcox.test(IL2RB ~ Group, data = biomarkers)

The p-value is 0.42, and we do not reject the null hypothesis that there is no difference
in location.
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Chapter 9
Exercise 9.1

1. We load the data and compute the expected values using the formula 𝑦 =
2𝑥1 − 𝑥2 + 𝑥3 ⋅ 𝑥2:

exdata <- data.frame(x1 = c(0.87, -1.03, 0.02, -0.25, -1.09, 0.74,
0.09, -1.64, -0.32, -0.33, 1.40, 0.29, -0.71, 1.36, 0.64,
-0.78, -0.58, 0.67, -0.90, -1.52, -0.11, -0.65, 0.04,
-0.72, 1.71, -1.58, -1.76, 2.10, 0.81, -0.30),
x2 = c(1.38, 0.14, 1.46, 0.27, -1.02, -1.94, 0.12, -0.64,
0.64, -0.39, 0.28, 0.50, -1.29, 0.52, 0.28, 0.23, 0.05,
3.10, 0.84, -0.66, -1.35, -0.06, -0.66, 0.40, -0.23,
-0.97, -0.78, 0.38, 0.49, 0.21),
x3 = c(1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0,
1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1),
y = c(3.47, -0.80, 4.57, 0.16, -1.77, -6.84, 1.28, -0.52,
1.00, -2.50, -1.99, 1.13, -4.26, 1.16, -0.69, 0.89, -1.01,
7.56, 2.33, 0.36, -1.11, -0.53, -1.44, -0.43, 0.69, -2.30,
-3.55, 0.99, -0.50, -1.67))

exdata$Ey = 2*exdata$x2 - exdata$x3 + exdata$x3*exdata$x2

Next, we plot the expected values against the actual values:
library(ggplot2)
ggplot(exdata, aes(Ey, y)) + geom_point()

The points seem to follow a straight line, and a linear model seems appropriate.

2. Next, we fit a linear model to the first 20 observations:
m <- lm(y ~ x1 + x2 + x3, data = exdata[1:20,])
summary(m)

The 𝑅2-value is pretty high: 0.91. x1 and x2 both have low p-values, as does the
F-test for the regression. We can check the model fit by comparing the fitted values
to the actual values. We add a red line that the points should follow if we have a
good fit:
ggplot(exdata[1:20,], aes(y, predict(m))) +

geom_point() +
geom_abline(intercept = 0, slope = 1, col = "red")

The model seems to be pretty good! Now let’s see how well it does when faced with
new data.
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3. We make predictions for all 10 observations:
exdata$predictions <- predict(m, exdata)

We can plot the results for the last 10 observations, which weren’t used when we
fitted the model:
ggplot(exdata[21:30,], aes(y, predictions)) +

geom_point() +
geom_abline(intercept = 0, slope = 1, col = "red")

The results are much worse than before! The correlation between the predicted values
and the actual values is very low:
cor(exdata[21:30,]$y, exdata[21:30,]$predictions)

Despite the good in-sample performance (as indicated e.g. by the high 𝑅2), the model
doesn’t seem to be very useful for prediction.

4. Perhaps you noted that the effect of x3 wasn’t significant in the model. Perhaps
the performance will improve if we remove it? Let’s try!

m <- lm(y ~ x1 + x2, data = exdata[1:20,])
summary(m)

The p-values and 𝑅2 still look very promising. Let’s make predictions for the new
observations and check the results:
exdata$predictions <- predict(m, exdata)

ggplot(exdata[21:30,], aes(y, predictions)) +
geom_point() +
geom_abline(intercept = 0, slope = 1, col = "red")

cor(exdata[21:30,]$y, exdata[21:30,]$predictions)

The predictions are no better than before - indeed, the correlation between the actual
and predicted values is even lower this time out!

5. Finally, we fit a correctly specified model and evaluate the results:
m <- lm(y ~ x1 + x2 + x3*x2, data = exdata[1:20,])
summary(m)

exdata$predictions <- predict(m, exdata)

ggplot(exdata[21:30,], aes(y, predictions)) +
geom_point() +
geom_abline(intercept = 0, slope = 1, col = "red")
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cor(exdata[21:30,]$y, exdata[21:30,]$predictions)

The predictive performance of the model remains low, which shows that model mis-
specification wasn’t the (only) reason for the poor performance of the previous mod-
els.

Exercise 9.2

We set file_path to the path to estates.xlsx and then load the data:
library(openxlsx)
estates <- read.xlsx(file_path)

View(estates)

There are a lot of missing values which can cause problems when fitting the model,
so let’s remove those:
estates <- na.omit(estates)

Next, we fit a linear model and evaluate it with LOOCV using caret and train:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ .,

data = estates,
method = "lm",
trControl = tc)

The 𝑅𝑀𝑆𝐸 is 547 and the 𝑀𝐴𝐸 is 395 kSEK. The average selling price in the
data (mean(estates$selling_price)) is 2843 kSEK, meaning that the 𝑀𝐴𝐸 is
approximately 13 % of the mean selling price. This is not unreasonably high for
this application. Prediction errors are definitely expected here, given the fact that
we have relatively few variables - the selling price can be expected to depend on
several things not captured by the variables in our data (proximity to schools, access
to public transport, and so on). Moreover, houses in Sweden are not sold at fixed
prices, but subject to bidding, which can cause prices to fluctuate a lot. All in all,
and 𝑀𝐴𝐸 of 395 is pretty good, and, at the very least, the model seems useful for
getting a ballpark figure for the price of a house.

Exercise 9.3

We set file_path to the path to estates.xlsx and then load and clean the data:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)
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1. Next, we evaluate the model with 10-fold cross-validation a few times:
library(caret)
# Run this several times:
tc <- trainControl(method = "cv" , number = 10)
m <- train(selling_price ~ .,

data = estates,
method = "lm",
trControl = tc)

m$results

In my runs, the 𝑀𝐴𝐸 ranged from to 391 to 405. Not a massive difference on the
scale of the data, but there is clearly some variability in the results.

2. Next, we run repeated 10-fold cross-validations a few times:
# Run this several times:
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100)
m <- train(selling_price ~ .,

data = estates,
method = "lm",
trControl = tc)

m$results

In my runs the 𝑀𝐴𝐸 varied between 396.0 and 397.4. There is still some variability,
but it is much smaller than for a simple 10-fold cross-validation.

Exercise 9.4

We set file_path to the path to estates.xlsx and then load and clean the data:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we evaluate the model with the bootstrap a few times:
library(caret)
# Run this several times:
tc <- trainControl(method = "boot",

number = 999)
m <- train(selling_price ~ .,

data = estates,
method = "lm",
trControl = tc)

m$results
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In my run, the 𝑀𝐴𝐸 varied between 410.0 and 411.8, meaning that the variability is
similar to the with repeated 10-fold cross-validation. When I increased the number
of bootstrap samples to 9,999, the 𝑀𝐴𝐸 stabilised around 411.7.

Exercise 9.5

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the two models using train:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
savePredictions = TRUE,
classProbs = TRUE)

# Model 1 - two variables:
m <- train(type ~ pH + alcohol,

data = wine,
trControl = tc,
method = "glm",
family = "binomial")

# Model 2 - four variables:
m2 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,

data = wine,
trControl = tc,
method = "glm",
family = "binomial")

To compare the models, we use evalm to plot ROC and calibration curves:
library(MLeval)
plots <- evalm(list(m, m2),

gnames = c("Model 1", "Model 2"))

# ROC:
plots$roc

# Calibration curves:
plots$cc

Model 2 performs much better, both in terms of 𝐴𝑈𝐶 and calibration. Adding two
more variables has both increased the predictive performance of the model (a much
higher 𝐴𝑈𝐶) and lead to a better-calibrated model.



544 CHAPTER 13. SOLUTIONS TO EXERCISES

Exercise 9.9

First, we load and clean the data:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we fit a ridge regression model and evaluate it with LOOCV using caret and
train:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ .,

data = estates,
method = "glmnet",
tuneGrid = expand.grid(alpha = 0,

lambda = seq(0, 10, 0.1)),
trControl = tc)

# Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]

Noticing that the 𝜆 that gave the best 𝑅𝑀𝑆𝐸 was 10, which was the maximal 𝜆
that we investigated, we rerun the code, allowing for higher values of 𝜆:
m <- train(selling_price ~ .,

data = estates,
method = "glmnet",
tuneGrid = expand.grid(alpha = 0,

lambda = seq(10, 120, 1)),
trControl = tc)

# Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]

The 𝑅𝑀𝑆𝐸 is 549 and the 𝑀𝐴𝐸 is 399. In this case, ridge regression did not improve
the performance of the model compared to an ordinary linear regression.

Exercise 9.10

We load and format the data as in the beginning of Section 9.1.7.

1. We can now fit the models using train, making sure to add family =
"binomial":

library(caret)
tc <- trainControl(method = "cv",
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number = 10,
savePredictions = TRUE,
classProbs = TRUE)

m1 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
method = "glmnet",
family = "binomial",
tuneGrid = expand.grid(alpha = 0,

lambda = seq(0, 10, 0.1)),
trControl = tc)

m1

The best value for 𝜆 is 0, meaning that no regularisation is used.

2. Next, we add summaryFunction = twoClassSummary and metric = "ROC",
which means that 𝐴𝑈𝐶 and not accuracy will be used to find the optimal
𝜆:

tc <- trainControl(method = "cv",
number = 10,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m2 <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
method = "glmnet",
family = "binomial",
tuneGrid = expand.grid(alpha = 0,

lambda = seq(0, 10, 0.1)),
metric = "ROC",
trControl = tc)

m2

The best value for 𝜆 is still 0. For this dataset, both accuracy and 𝐴𝑈𝐶 happened
to give the same 𝜆, but that isn’t always the case.

Exercise 9.11

First, we load and clean the data:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we fit a lasso model and evaluate it with LOOCV using caret and train:
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library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ .,

data = estates,
method = "glmnet",
tuneGrid = expand.grid(alpha = 1,

lambda = seq(0, 10, 0.1)),
trControl = tc)

# Results for the best model:
m$results[which(m$results$lambda == m$finalModel$lambdaOpt),]

The 𝑅𝑀𝑆𝐸 is 545 and the 𝑀𝐴𝐸 is 394. Both are a little lower than for the ordinary
linear regression, but the difference is small in this case. To see which variables have
been removed, we can use:
coef(m$finalModel, m$finalModel$lambdaOpt)

Note that this data isn’t perfectly suited to the lasso, because most variables are
useful in explaining the selling price. Where the lasso really shines in problems where
a lot of the variables, perhaps even most, aren’t useful in explaining the response
variable. We’ll see an example of that in the next exercise.

Exercise 9.12

1. We try fitting a linear model to the data:
m <- lm(y ~ ., data = simulated_data)
summary(m)

There are no error messages, but summary reveals that there were problems:
Coefficients: (101 not defined because of singularities) and for half
the variables we don’t get estimates of the coefficients. It is not possible to fit
ordinary linear models when there are more variables than observations (there is no
unique solution to the least squares equations from which we obtain the coefficient
estimates), which leads to this strange-looking output.

2. Lasso models can be used even when the number of variables is greater than
the number of observations - regularisation ensures that there will be a unique
solution. We fit a lasso model using caret and train:

library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(y ~ .,

data = simulated_data,
method = "glmnet",
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tuneGrid = expand.grid(alpha = 1,
lambda = seq(0, 10, 0.1)),

trControl = tc)

Next, we have a look at what variables have non-zero coefficients:
rownames(coef(m$finalModel, m$finalModel$lambdaOpt))[

coef(m$finalModel, m$finalModel$lambdaOpt)[,1]!= 0]

Your mileage may vary (try running the simulation more than once!), but it is likely
that the lasso will have picked at least the first four of the explanatory variables,
probably along with some additional variables. Try changing the ratio between n
and p in your experiment, or the size of the coefficients used when generating y, and
see what happens.

Exercise 9.13

First, we load and clean the data:
library(openxlsx)
estates <- read.xlsx(file_path)
estates <- na.omit(estates)

Next, we fit an elastic net model and evaluate it with LOOCV using caret and
train:
library(caret)
tc <- trainControl(method = "LOOCV")
m <- train(selling_price ~ .,

data = estates,
method = "glmnet",
tuneGrid = expand.grid(alpha = seq(0, 1, 0.2),

lambda = seq(10, 20, 1)),
trControl = tc)

# Print best choices of alpha and lambda:
m$bestTune

# Print the RMSE and MAE for the best model:
m$results[which(rownames(m$results) == rownames(m$bestTune)),]

We get a slight improvement over the lasso, with an 𝑅𝑀𝑆𝐸 of 543.5 and an 𝑀𝐴𝐸
of 393.
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Exercise 9.14

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the model using train. We set summaryFunction = twoClassSummary and metric
= "ROC" to use 𝐴𝑈𝐶 to find the optimal 𝑘.
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
trControl = tc,
method = "rpart",
metric = "ROC",
tuneGrid = expand.grid(cp = 0))

m

1. Next, we plot the resulting decision tree:
library(rpart.plot)
prp(m$finalModel)

The tree is pretty large. The parameter cp, called a complexity parameter, can be
used to prune the tree, i.e. to make it smaller. Let’s try setting a larger value for cp:
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,

data = wine,
trControl = tc,
method = "rpart",
metric = "ROC",
tuneGrid = expand.grid(cp = 0.1))

prp(m$finalModel)

That was way too much pruning - now the tree is too small! Try a value somewhere
in-between:
m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,

data = wine,
trControl = tc,
method = "rpart",
metric = "ROC",
tuneGrid = expand.grid(cp = 0.01))
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prp(m$finalModel)

That seems like a good compromise. The tree is small enough for us to understand
and discuss, but hopefully large enough that it still has a high 𝐴𝑈𝐶.

2. For presentation and interpretability purposes we can experiment with man-
ually setting different values of cp. We can also let train find an optimal
value of cp for us, maximising for instance the 𝐴𝑈𝐶. We’ll use tuneGrid =
expand.grid(cp = seq(0, 0.01, 0.001)) to find a good choice of cp some-
where between 0 and 0.01:

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
trControl = tc,
method = "rpart",
metric = "ROC",
tuneGrid = expand.grid(cp = seq(0, 0.01, 0.001)))

m
prp(m$finalModel)

In some cases, increasing cp can increase the 𝐴𝑈𝐶, but not here - a cp of 0 turns
out to be optimal in this instance.

Finally, to visually evaluate the model, we use evalm to plot ROC and calibration
curves:
library(MLeval)
plots <- evalm(m, gnames = "Decision tree")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13,]

# Calibration curves:
plots$cc

Exercise 9.15

We set file_path to the path of bacteria.csv, then load and format the data as
in Section 9.3.3:
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

Next, we fit a regression tree model using rows 45 to 90:
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library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[45:90,],
trControl = tc,
method = "rpart",
tuneGrid = expand.grid(cp = 0))

Finally, we make predictions for the entire dataset and compare the results to the
actual outcomes:
bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted), colour = "red")

Regression trees are unable to extrapolate beyond the training data. By design, they
will make constant predictions whenever the values of the explanatory variables go
beyond those in the training data. Bear this in mind if you use tree-based models
for predictions!

Exercise 9.16

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we fit a classification tree model with Kernel_length and Compactness as
explanatory variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "rpart",
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tuneGrid = expand.grid(cp = 0))

Finally, we plot the decision boundaries:
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions, colour = "black")

The decision boundaries seem pretty good - most points in the lower left part belong
to variety 3, most in the middle to variety 1, and most to the right to variety 2.

Exercise 9.17

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the models using train (fitting m2 takes a while):
library(caret)
tc <- trainControl(method = "cv",

number = 10,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m1 <- train(type ~ .,
data = wine,
trControl = tc,
method = "rpart",
metric = "ROC",
tuneGrid = expand.grid(cp = c(0, 0.1, 0.01)))

m2 <- train(type ~ .,
data = wine,
trControl = tc,
method = "rf",
metric = "ROC",
tuneGrid = expand.grid(mtry = 2:6))
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Next, we compare the results of the best models:
m1
m2

And finally, a visual comparison:
library(MLeval)
plots <- evalm(list(m1, m2),

gnames = c("Decision tree", "Random forest"))

# ROC:
plots$roc

# Calibration curves:
plots$cc

The calibration curves may look worrisome, but the main reason that they deviate
from the straight line is that almost all observations have predicted probabilities
close to either 0 or 1. To see this, we can have a quick look at the histogram of the
predicted probabilities that the wines are white:
hist(predict(m2, type ="prob")[,2])

We used 10-fold cross-validation here, as using repeated cross-validation would take
too long (at least in this case, where we only study this data as an example). As
we’ve seen before, that means that the performance metrics can vary a lot between
runs, so we shouldn’t read too much into the difference we found here.

Exercise 9.18

We set file_path to the path of bacteria.csv, then load and format the data as
in Section 9.3.3:
bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

Next, we fit a random forest using rows 45 to 90:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[45:90,],
trControl = tc,
method = "rf",
tuneGrid = expand.grid(mtry = 1))
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Finally, we make predictions for the entire dataset and compare the results to the
actual outcomes:
bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted), colour = "red")

The model does very well for the training data, but fails to extrapolate beyond it.
Because random forests are based on decision trees, they give constant predictions
whenever the values of the explanatory variables go beyond those in the training
data.

Exercise 9.19

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we fit a random forest model with Kernel_length and Compactness as ex-
planatory variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "rf",
tuneGrid = expand.grid(mtry = 1:2))

Finally, we plot the decision boundaries:
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
Variety = as.numeric(predict(m, contour_data)))
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library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions, colour = "black")

The decision boundaries are much more complex and flexible than those for the
decision tree of Exercise 9.16. Perhaps they are too flexible, and the model has
overfitted to the training data?

Exercise 9.20

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the model using train. Try a large number of parameter values to see if you can get
a high 𝐴𝑈𝐶. You can try using a simple 10-fold cross-validation to find reasonable
candidate values for the parameters, and then rerun the tuning with a replicated
10-fold cross-validation with parameter values close to those that were optimal in
your first search.
library(caret)
tc <- trainControl(method = "cv",

number = 10,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
trControl = tc,
method = "gbm",
metric = "ROC",
tuneGrid = expand.grid(

interaction.depth = 1:5,
n.trees = seq(20, 200, 20),
shrinkage = seq(0.01, 0.1, 0.01),
n.minobsinnode = c(10, 20, 30)),

verbose = FALSE)

ggplot(m)

Exercise 9.21

We set file_path to the path of bacteria.csv, then load and format the data as
in Section 9.3.3:



555

bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

Next, we fit a boosted trees model using rows 45 to 90:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[45:90,],
trControl = tc,
method = "gbm")

Finally, we make predictions for the entire dataset and compare the results to the
actual outcomes:
bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted), colour = "red")

The model does OK for the training data, but fails to extrapolate beyond it. Because
boosted trees models are based on decision trees, they give constant predictions
whenever the values of the explanatory variables go beyond those in the training
data.

Exercise 9.22

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we fit a boosted trees model with Kernel_length and Compactness as ex-
planatory variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
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data = seeds,
trControl = tc,
method = "gbm",
verbose = FALSE)

Finally, we plot the decision boundaries:
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions, colour = "black")

The decision boundaries are much complex and flexible than those for the decision
tree of Exercise 9.16, but does not appear to have overfitted like the random forest
in Exercise 9.19.

Exercise 9.23

1. We set file_path to the path of bacteria.csv, then load and format the data
as in Section 9.3.3:

bacteria <- read.csv(file_path)
bacteria$Time <- as.numeric(as.POSIXct(bacteria$Time, format = "%H:%M:%S"))

First, we fit a decision tree using rows 45 to 90:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[45:90,],
trControl = tc,
method = "rpart",
tuneGrid = expand.grid(cp = 0))

Next, we fit a model tree using rows 45 to 90. The only explanatory variable available
to us is Time, and we want to use that both for the models in the nodes and for the
splits:
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library(partykit)
m2 <- lmtree(OD ~ Time | Time, data = bacteria[45:90,])

library(ggparty)
autoplot(m2)

Next, we make predictions for the entire dataset and compare the results to the
actual outcomes. We plot the predictions from the decision tree in red and those
from the model tree in blue:
bacteria$Predicted_dt <- predict(m, bacteria)
bacteria$Predicted_mt <- predict(m2, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted_dt), colour = "red") +

geom_line(aes(Time, Predicted_mt), colour = "blue")

Neither model does particularly well (but fail in different ways).

2. Next, we repeat the same steps, but use observations 20 to 120 for fitting the
models:

m <- train(OD ~ Time,
data = bacteria[20:120,],
trControl = tc,
method = "rpart",
tuneGrid = expand.grid(cp = 0))

m2 <- lmtree(OD ~ Time | Time, data = bacteria[20:120,])

autoplot(m2)

bacteria$Predicted_dt <- predict(m, bacteria)
bacteria$Predicted_mt <- predict(m2, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted_dt), colour = "red") +

geom_line(aes(Time, Predicted_mt), colour = "blue")

As we can see from the plot of the model tree, it (correctly!) identifies different time
phases in which the bacteria grow at different speeds. It therefore also managed to
make better extrapolation than the decision tree, which predicts no growth as Time
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is increased beyond what was seen in the training data.

Exercise 9.24

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the model using train as follows:
library(caret)
tc <- trainControl(method = "repeatedcv",

number = 10, repeats = 100,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ .,
data = wine,
trControl = tc,
method = "qda",
metric = "ROC")

m

To round things off, we evaluate the model using evalm:
library(MLeval)
plots <- evalm(m, gnames = "QDA")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13,]

# Calibration curves:
plots$cc

Exercise 9.25

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))
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seeds$Variety <- factor(seeds$Variety)

Next, we fit LDA and QDA models with Kernel_length and Compactness as ex-
planatory variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m1 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "lda")

m2 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "qda")

Next, we plot the decision boundaries in the same scatterplot (LDA is black and
QDA is orange):
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions1 <- data.frame(contour_data,
Variety = as.numeric(predict(m1, contour_data)))

predictions2 <- data.frame(contour_data,
Variety = as.numeric(predict(m2, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions1, colour = "black") +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions2, colour = "orange")

The decision boundaries are fairly similar and seem pretty reasonable. QDA offers
more flexible non-linear boundaries, but the difference isn’t huge.

Exercise 9.26

First, we load the data as in Section 4.9:
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# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we fit the MDA model with Kernel_length and Compactness as explanatory
variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "mda")

Finally, we plot the decision boundaries:
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions, colour = "black")

The decision boundaries are similar to those of QDA.

Exercise 9.27

We load and format the data as in the beginning of Section 9.1.7. We’ll go with a
polynomial kernel and compare polynomials of degree 2 and 3. We can fit the model
using train as follows:
library(caret)
tc <- trainControl(method = "cv",

number = 10,
summaryFunction = twoClassSummary,
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savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ .,
data = wine,
trControl = tc,
method = "svmPoly",
tuneGrid = expand.grid(C = 1,

degree = 2:3,
scale = 1),

metric = "ROC")

And, as usual, we can then plot ROC and calibration curves:
library(MLeval)
plots <- evalm(m, gnames = "SVM poly")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13,]

# Calibration curves:
plots$cc

Exercise 9.28

1. We set file_path to the path of bacteria.csv, then load and format the data
as in Section 9.3.3:

bacteria <- read.csv(file_path)
bacteria$Time <- as.POSIXct(bacteria$Time, format = "%H:%M:%S")

Next, we fit an SVM with a polynomial kernel using rows 45 to 90:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[45:90,],
trControl = tc,
method = "svmPoly")

Finally, we make predictions for the entire dataset and compare the results to the
actual outcomes:
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bacteria$Predicted <- predict(m, bacteria)

library(ggplot2)
ggplot(bacteria, aes(Time, OD)) +

geom_line() +
geom_line(aes(Time, Predicted), colour = "red")

Similar to the linear model in Section 9.3.3, the SVM model does not extrapolate
too well outside the training data. Unlike tree-based models, however, it does not
yield constant predictions for values of the explanatory variable that are outside the
range in the training data. Instead, the fitted function is assumed to follow the same
shape as in the training data.

2. Next, we repeat the same steps using the data from rows 20 to 120:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(OD ~ Time,
data = bacteria[20:120,],
trControl = tc,
method = "svmPoly")

bacteria$Predicted <- predict(m, bacteria)

ggplot(bacteria, aes(Time, OD)) +
geom_line() +
geom_line(aes(Time, Predicted), colour = "red")

The results are disappointing. Using a different kernel could improve the results
though, so go ahead and give that a try!

Exercise 9.29

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we two different SVM models with Kernel_length and Compactness as ex-
planatory variables:
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library(caret)
tc <- trainControl(method = "cv",

number = 10)

m1 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "svmPoly")

m2 <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "svmRadialCost")

Next, we plot the decision boundaries in the same scatterplot (the polynomial kernel
is black and the radial basis kernel is orange):
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions1 <- data.frame(contour_data,
Variety = as.numeric(predict(m1, contour_data)))

predictions2 <- data.frame(contour_data,
Variety = as.numeric(predict(m2, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions1, colour = "black") +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions2, colour = "orange")

It is likely the case that the polynomial kernel gives a similar results to e.g. MDA,
whereas the radial basis kernel gives more flexible decision boundaries.

Exercise 9.30

We load and format the data as in the beginning of Section 9.1.7. We can then fit
the model using train. We set summaryFunction = twoClassSummary and metric
= "ROC" to use 𝐴𝑈𝐶 to find the optimal 𝑘. We make sure to add a preProcess
argument to train, to standardise the data:
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library(caret)
tc <- trainControl(method = "cv",

number = 10,
summaryFunction = twoClassSummary,
savePredictions = TRUE,
classProbs = TRUE)

m <- train(type ~ pH + alcohol + fixed.acidity + residual.sugar,
data = wine,
trControl = tc,
method = "knn",
metric = "ROC",
tuneLength = 15,
preProcess = c("center","scale"))

m

To visually evaluate the model, we use evalm to plot ROC and calibration curves:
library(MLeval)
plots <- evalm(m, gnames = "kNN")

# ROC:
plots$roc

# 95 % Confidence interval for AUC:
plots$optres[[1]][13,]

# Calibration curves:
plots$cc

The performance is as good as, or a little better than, the best logistic regression
model from Exercise 9.5. We shouldn’t make too much of any differences though,
as the models were evaluated in different ways - we used repeated 10-fold cross-
validation for the logistics models and a simple 10-fold cross-validation here (because
repeated cross-validation would be too slow in this case).

Exercise 9.31

First, we load the data as in Section 4.9:
# The data is downloaded from the UCI Machine Learning Repository:
# http://archive.ics.uci.edu/ml/datasets/seeds
seeds <- read.table("https://tinyurl.com/seedsdata",

col.names = c("Area", "Perimeter", "Compactness",
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"Kernel_length", "Kernel_width", "Asymmetry",
"Groove_length", "Variety"))

seeds$Variety <- factor(seeds$Variety)

Next, we two different kNN models with Kernel_length and Compactness as ex-
planatory variables:
library(caret)
tc <- trainControl(method = "LOOCV")

m <- train(Variety ~ Kernel_length + Compactness,
data = seeds,
trControl = tc,
method = "knn",
tuneLength = 15,
preProcess = c("center","scale"))

Next, we plot the decision boundaries:
contour_data <- expand.grid(
Kernel_length = seq(min(seeds$Kernel_length), max(seeds$Kernel_length), length = 500),
Compactness = seq(min(seeds$Compactness), max(seeds$Compactness), length = 500))

predictions <- data.frame(contour_data,
Variety = as.numeric(predict(m, contour_data)))

library(ggplot2)
ggplot(seeds, aes(Kernel_length, Compactness, colour = Variety)) +

geom_point(size = 2) +
stat_contour(aes(x = Kernel_length, y = Compactness, z = Variety),

data = predictions, colour = "black")

The decision boundaries are quite “wiggly”, which will always be the case when there
are enough points in the sample.

Exercise 9.32

We start by plotting the time series:
library(forecast)
library(fma)

autoplot(writing) +
ylab("Sales (francs)") +
ggtitle("Sales of printing and writing paper")
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Next, we fit an ARIMA model after removing the seasonal component:
tsmod <- stlm(writing, s.window = "periodic",

modelfunction = auto.arima)

The residuals look pretty good for this model:
checkresiduals(tsmod)

Finally, we make a forecast for the next 36 months, adding the seasonal component
back and using bootstrap prediction intervals:
autoplot(forecast(tsmod, h = 36, bootstrap = TRUE))
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doParallel, 376, 409
dotPlot, 373
double, 58
dplyr, 173
drop_na, 183
droplevels, 158
dtplyr, 173
duplicated, 363

e+, 153
eapply, 233
egammaAltCensored, 346
eigen, 417
element_blank, 96
element_line, 96
element_rect, 96
element_text, 96
elnormAltCensored, 346
else, 218
ends_with, 187
enormCensored, 346
epoisCensored, 346
evalm, 366
exists, 220
expand.grid, 369
exp, 35
extract, 80
fa.diagram, 139
fa.parallel, 141
facet_wrap, 47
factoextra, 134, 137
factorial, 35
factor, 58, 156

add ‘NA‘ level, 157
change order of levels, 158
combine levels, 158, 177
drop levels, 158
rename levels, 157, 176

fanny, 136
fa, 139
file.choose, 68
fill, 180
filter, 182
fixef, 330
floor, 151
fma, 107
foreach, 376, 409
forecast, 107, 401, 402
foreign, 204
format, 153
formula, 305
fortify.merMod, 331
for, 223
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parallel, 409
fpp2, 107
frankv, 183
fread, 174
fromJSON, 204
full_join, 199
function, 208
furrr, 413
future_imap, 413
future_map, 413
future, 413
fviz_cluster, 135
fviz_dend, 130
fviz_nbclust, 134
geom_abline, 75
geom_area, 255
geom_bar, 52
geom_bind2d, 121
geom_boxplot, 48
geom_contour, 369
geom_count, 122
geom_density_ridges, 98
geom_density, 98
geom_freqpoly, 97
geom_function, 251, 254
geom_hex, 121
geom_histogram, 50
geom_hline, 109
geom_jitter, 50
geom_line, 108
geom_path, 110
geom_point, 42
geom_qq_line, 252
geom_qq, 252
geom_smooth, 106
geom_text, 104
geom_tile, 121
geom_violin, 101
geom_vline, 100
getwd, 67
ggbeeswarm, 242
ggcorr, 118
ggcoxzph, 340
ggfortify, 113

ggpairs, 116
ggplot2, 42
ggplotly, 103
ggplot, 42
ggridges, 98
ggsave, 54
ggseasonplot, 112
ggtitle, 108
ginv, 417
glance, 308
glm.nb, 323
glmer, 335
glmmLasso, 385
glmnet, 379
glmtree, 394
glm, 265, 316
grid, 44
gsub, 166
hcut, 130
head, 38
heatmap, 131
hist, 50

extract breaks/midpoints, 99
hotelling.test, 263
html_nodes, 202
html_table, 203
html_text, 202
ifelse, 104, 220
if, 218
image, 416
imap, 237
inner_join, 198
inset, 79
install.packages, 37
install, 409
integer, 58
interaction.plot, 312
is.character, 149
is.logical, 149
is.na, 64
is.numeric, 149
isTRUE, 155
iwalk, 237
jsonlite, 204
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julian, 171
kendallSeasonalTrendTest, 349
kendallTrendTest, 349
keras, 419
kmeans, 133
knn, 399
kruskal.test, 313
lapply, 233
lda, 396
left_join, 199
length, 35, 76
levels, 156
library, 37
list.files, 226
list, 149
lmPerm, 304
lme4, 327
lmer, 328
lmp, 304
lmtree, 394
lm, 75, 296
load, 73
logical, 58
log, 35
lower.tri, 415
ls, 203
magrittr, 78
makeCluster, 413
map2, 239
map_chr, 236
map_dbl, 235
map_dfr, 236
map_int, 235
map_lgl, 236
mapply, 233
mark, 241
matchit, 350
match, 99, 159
matlab, 418
matrix, 59, 61, 166, 414

operations, 416
sparse, 416

max, 40
mclapply, 413

mclust, 137
mean, 33, 40, 65

by group, 76, 178
median, 40
melt, 191
merge, 198
min, 40
mob_control, 394
mona, 128
months, 170
multiply_by, 80
n_distinct, 179
na.omit, 183
na.rm, 40
nafill, 180
names, 38, 61, 167
nchar, 167
ncol, 61
ncvTest, 301
next, 231
nlme, 107
nrow, 61, 110
numeric, 58
nycflights13, 106
n, 179
offset, 325
openxlsx, 70
options

scipen, 153
optmatch, 350
order, 189
p.adjust, 263
packageVersion, 293
pam, 134
parApply, 413
parLapply, 413
parallel, 376, 409
partykit, 393
paste, 160
patchwork, 101
pch, 44
pdf, 54
perm.t.test, 260
perm_mvlogrank, 344
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pipe, 215
pivot_wider, 191
pi, 35
plan, 413
plot_ly, 118
plotly, 103
plot, 42
plumber, 403
pmap, 240
png, 54
poLCA, 141
possibly, 238
posterior_interval, 266
power.prop.test, 268
power.t.test, 264
power.welch.t.test, 264
pr_run, 404
prcomp, 125
preProcess, 399
predict, 299, 309
print, 216
prod, 35
proportions, 41
prp, 388
pr, 404
pscl, 323
psych, 139
pull, 186
purrr, 234
pwalk, 240
qr, 417
quantile, 40
quarters, 170
raise_to_power, 80
randomForest, 390
ranef, 330
rank, 159
rapply, 233
raw, 58
rbeta, 250
rbind, 196
rbinom, 251
rchisq, 250
read.csv, 67

read.dta, 204
read.mtp, 204
read.spss, 204
read.table, 124
read.xlsx, 70
read.xport, 204
read_html, 202
recode, 176
recover, 424
registerDoParallel, 376, 410
relaimpo, 374
relocate, 189
remove.packages, 409
rename, 175
reorder, 50
rep, 224
require, 407
reticulate, 418
return, 208
rexp, 249
rf, 250, 390
rgamma, 250
right_join, 199
rle, 152
rlm, 304
rlnorm, 250
rm, 203
rnbinom, 251
rnorm, 249
round, 151
row.names, 61
rowMeans, 151
rowSums, 151
rpart.plot, 388
rpart, 388
rpois, 251
rt, 250
runif, 249
rvest, 202
safely, 238
sample_n, 184
sample, 184, 248
sapply, 233
save.image, 73



INDEX 579

save, 73
scale_colour_brewer, 95
scale_colour_discrete, 120
scale_size, 120
scale_x_log10, 47
scale, 129, 297
scree, 140
sd, 40
search, 214
select_if, 187
selectorgadget, 203
semi_join, 200
separate, 192
seq.Date, 172
seq_along, 224
seq, 224
set.seed, 248
setTxtProgressBar, 227
set_names, 237
setcolorder, 189
setkey, 198
setnames, 175
setwd, 67
shapiro.test, 254
signif, 151
sim.power.t.test, 280
sim.power.wilcox.test, 280
sim.ssize.wilcox.test, 283
sin, 35
slice, 182
solve, 417
sort, 189
source, 215
sparklyr, 419
split, 150
spower, 344
sprintf, 154, 161
sqrt, 35
ssize.propCI, 269
stan_aov, 314
stan_glm, 313
stan_lmer, 336
starts_with, 187
stat_density_2d, 121

stlm, 401
stl, 112, 401
stopCluster, 413
strftime, 170
strsplit, 166
str, 38
subset, 79
substr, 161
subtract, 80
sub, 166
summary, 39, 75, 126
sum, 35, 40, 65
survfit, 337
survival, 337
survminer, 340
survreg, 341
svd, 417
switch, 221
system.time, 241
t.test, 74, 256
tail, 38
tanglegram, 130
tapply, 233
tbl_df, 59
theme_..., 94
theme, 96
tidyr, 173
tidy, 307
tolower, 161
top_n, 183
torch, 419
toupper, 161
traceback, 422
trainControl, 360
train, 360
trunc, 151
tstrsplit, 192
txtProgressBar, 227
t, 72, 415
undebug, 424
uniqueN, 179
unique, 71
unite, 193
unlist, 150, 166
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upper.tri, 415
use_series, 80
vapply, 233
varImp, 373
var, 40
vector, 224
walk2, 239
walk, 236
weekdays, 170
where, 179
which.max, 64
which.min, 64
which, 65
while, 229
wilcox.test, 266
write.csv, 72
write.xlsx, 72
xgboost, 393
xlab, 45, 46
xlim, 46
xor, 65
ylab, 45, 46
ylim, 46
[ 1], 31

accuracy, 366
aesthetics, 42
AIC, 356
annotate plot, 109
ANOVA, 311

Kruskal-Wallis test, 313
mixed model, 333
permutation test, 313
post hoc test, 312

API, 403
as.yearqtr, 171
assignment, 26
AUC, 367

confidence interval, 367

bagging, 389
bar chart, 52
bias-variance decomposition, 378
BIC, 356

boosting, 391
bootstrap, 284

evaluate predictive model, 364
inference, 284
mixed model, 332
parametric, 290
prediction interval, 309

boxplot, 48
bubble plot, 119

calibration curve, 367
categorical data, 52
class, 58
classification

class imbalance, 371
clustering, 127

𝑘-means, 133
centroid, 133
dendrogram, 128
distance measure, 128
fuzzy, 136
gap statistic, 135
hierarchical, 128
linkage, 128
model-based, 137
of variables, 131
silhouette plot, 135
WSS, 134

code, 24
Cohen’s kappa, 366
comments, 29
condition, 64
confidence interval

bootstrap, 284
difference of proportions, 270
proportion, 268
simulate sample size, 283

correlation, 34
Spearman, 119

correlogram, 118
count occurences, 76, 122, 179
cross-validation, 359

𝑘-fold, 362
LOO, 359
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LOOCV, 360
repeated 𝑘-fold, 362

cumulative functions, 152

data
estates.xlsx, 361
handkerchiefs.csv, 167
oslo-biomarkers.xlsx, 167
sharks.csv, 317
ucdp-onesided-191.csv, 185
vas-transposed.csv, 71
vas.csv, 71
CAex, 416
Cape_Town_weather, 115
Oxboys, 111
Pastes, 332
TVbo, 333
USArrests, 131
VerbAgg, 334
a10, 107
airports, 197
airquality, 61
attitude, 139
bacteria.csv, 374
cheating, 146
chorSub, 136, 137
contacts, 162
datasaurus_dozen, 77
dogs, 184
elecdaily, 109
flights, 106
gapminder, 123, 190
gold, 108
il2rb.csv, 348
keytars, 203
lalonde, 350
lung, 337
msleep, 38
mtcars, 74, 295
oslo-covariates.xlsx, 201
ovarian, 339, 341
philosophers.csv, 67
planes, 123
quakes, 324

retinopathy, 341
sales-rev.csv, 194
sales-weather.csv, 194
seeds, 124
ships, 325
sleepstudy, 327
smoke, 156
soccer, 385
stockholm, 204
tb_data, 70
upp_temp, 152
votes.repub, 128
weather, 197
wine_imb, 371
wine, 315
writing, 113
export, 72
import from csv, 67
import from database, 204
import from Excel, 70
import from JSON, 204
import from URL, 70
load from .RData, 73
National Mental Health Services

Survey, 142
save to .RData, 73
standardise, 225

data frame, 59
add variable, 63
change variable names, 167
extract vector from, 39
from long to wide, 191
from wide to long, 191
number of rows, 110
select ‘numeric‘ variables, 117
transpose/rotate, 72

data type, 58
coercion, 59, 147
hierarchy, 148

date format, 168
decision tree, 387

boosting, 391
model-based, 393
prune, 548
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pruning, 389
density plot, 98

2-dimensional, 121
descriptive statistics, 39, 40
distribution, 248

𝜒2, 250
beta, 250
binomial, 251
exponential, 249
F, 250
gamma, 250
lognormal, 250
negative binomial, 251
normal, 249
Poisson, 251
t, 250
uniform, 249

documentation, 34
down-sampling, 371

elastic net, 382
element, 30
error message, 56

(list) object cannot be
coerced to type
‘double’, 429

.Call.graphics... : invalid
graphics state, 431

No such file or directory,
426

Object of type ‘closure’ is
not subsettable, 429

$ operator is invalid for
atomic vectors, 429

arguments imply differing
number of rows, 430

attempt to apply
non-function, 428

cannot allocate vector of
size, 431

cannot open the connection,
426

could not find function, 425

missing value where
TRUE/FALSE needed, 427

non-numeric argument to a
binary operator, 430

non-numeric argument to
mathematical function,
430

object not found, 425
plot.new() : figure margins

too large, 431
replacement has ... rows

..., 431
subscript out of bounds, 428
undefined columns selected,

428
unexpected '=' in ..., 427

escape character, 159
ethics, 82, 369

ASA guidelines, 82

facetting, 47
factor analysis, 139
file

find path, 69
import data from, 67

filter
at random, 184
using conditions, 182
using regular expressions, 184
using row numbers, 182

floating point numbers, 154
frequency polygons, 97
function, 33

... argument, 213
arguments/parameters/input, 34
benchmark, 241
compile, 244
default value of argument, 212
define, 208
function as argument, 212
namespace, 214
operator, 217
vectorised, 232

functional, 232
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parallel, 413

generalised linear model
Bayesian estimation, 326

geoms, 42
graphics

save, 54
grouped summaries, 177
grouped summary, 76

heatmap, 131
help file, 34
histogram, 50
hypothesis test

bootstrap, 284
chi-squared, 268
correlation, 267
independence, 268
multiple testing, 262
permutation test, 258
simulate power, 277
simulate sample size, 282
simulate type I error rate, 275
t-test, 74, 256
t-test, bootstrap, 261
t-test, permutation, 260

if statements, 218
import data, 67
imputation, 375
index, 32, 62
infinite loop, see infinite loop
interactive plot, 103
iteration, 223

join, 198
anti, 200
full, 199
inner, 198
left, 199
right, 199
semi, 200

Juliet, 28

key, 197

kNN, 399

lasso, 381
latent class analysis, 141
latent profile analysis, 141
linear discriminant analysis, 395
linear model

Bayesian estimation, 313
mixed, 327

linear regression
centre variables, 297
confidence interval, 304
dummy variable, 298
elastic net, 382
fit model, 296
interaction, 297
lasso, 381
model diagnostics, 299
multicollinearity, 301
permutation test, 304
plot, 299
polynomial, 298
prediction, 309
prediction interval, 309
residual, 300
ridge, 379
robust, 304
Tobit, 349
transformations, 303
variable selection, 308

list, 149
collapse to vector, 150

lm.influence, 305
locale, 169
log transform, 47
logical operators, 64
longitudinal data, 109
loop, 223

for, 223
while, 229
nested, 226

MAE, 357
manipulating data, 24
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matched samples, 350
mathematical operators, 35
mean, 33
Minitab, 204
missing data, 38
mixed model, 327

ANOVA, 333
Bayesian estimation, 336
bootstrap, 332
generalised, 334
nested, 332
p-value, 330

model tree, 393
MSE, 378

namespace, 214
naming conventions, 28
nearest neighbours classifier, 399
numerical data, 42

offset, 325
oneSE, 383
overplotting, 120

p-hacking, 270
package, 36

Biconductor, 408
Github, 408
installing, 37
load, 37
use function from without

loading, 214
panel data, 109
path plot, 110
pipe, 78

inside function, 217
plot in chain, 216

plot
choose colour palette, 95
multiple plots in one graphic, 101

principal component analysis, 124
project, 73

quadratic discriminant analysis, 397

random forest, 389
random variable, 248
regular expression, 161
relative path, 73
reproducibility, 272
ridge regression, 379
RMSE, 356
ROC curve, 366
RStudio, 22
run length, 152
running code, 24

SAS, 204
scatterplot matrix, 116
scientific notation, 153
scripts, 25

creating new, 25
running, 25

seasonal plot, 112
sensitivity, 366
simulation, 248

bias and variance, 273
power, 277
sample size, 282
type I error rate, 275

spaghetti plot, 111
specificity, 366
SPSS, 204
Stata, 204
support vector machines, 397
survival analysis, 337

accelerated failure time model,
341

Cox PH regression, 339
logrank test, 338
multivariate, 343
Peto-Peto test, 338

test-training split, 358
tibble, 59
tile plot, 121
time series

ARIMA, 401
changepoint, 113
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decomposition, 112, 401
plot, 108

tolerance, 384
trend curve, 106
tuning, 379

up-sampling, 371

variable, 26
add to data frame, 63
change type, 147
compute new, 175
global, 209
local, 209
modify, 63, 174
name, 28, 167
numeric → categorical, 66
remove, 175
remove variable, 203

vector, 30
split, 150

violin plot, 101
combine with boxplot, 101

warning message
NAs introduced by coercion,

433
longer object length is not

a multiple of shorter
object length, 432

number of items to
replace..., 432

package is not available,
433

the condition has length >
1 and only the first
element will be used, 432

working directory, 67
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